
LETTER • OPEN ACCESS

Global assessment of urban trees’ cooling
efficiency based on satellite observations
To cite this article: Qiquan Yang et al 2022 Environ. Res. Lett. 17 034029

 

View the article online for updates and enhancements.

You may also like
Fault diagnosis and accommodation for
multi-actuator faults of a fixed-wing
unmanned aerial vehicle
Zhenbao Liu, Lina Wang, Yuecheng Song
et al.

-

Fault detection and fault tolerant control of
vehicle semi-active suspension system
with magneto-rheological damper
Xiumei Du, Gaowei Han, Miao Yu et al.

-

Syntheses, characterization, and
suppression efficiency of silver & silver
iodide nanoparticle for proliferation,
migration, and invasion in follicular thyroid
carcinoma cells
Saeed M Feyadh and Asma H Mohammed

-

This content was downloaded from IP address 115.156.92.4 on 23/05/2023 at 03:41

https://doi.org/10.1088/1748-9326/ac4c1c
/article/10.1088/1361-6501/ac6146
/article/10.1088/1361-6501/ac6146
/article/10.1088/1361-6501/ac6146
/article/10.1088/1361-665X/abbff8
/article/10.1088/1361-665X/abbff8
/article/10.1088/1361-665X/abbff8
/article/10.1088/2053-1591/ac6d4b
/article/10.1088/2053-1591/ac6d4b
/article/10.1088/2053-1591/ac6d4b
/article/10.1088/2053-1591/ac6d4b
/article/10.1088/2053-1591/ac6d4b


Environ. Res. Lett. 17 (2022) 034029 https://doi.org/10.1088/1748-9326/ac4c1c

OPEN ACCESS

RECEIVED

10 November 2021

REVISED

29 December 2021

ACCEPTED FOR PUBLICATION

17 January 2022

PUBLISHED

25 February 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

LETTER

Global assessment of urban trees’ cooling efficiency based on
satellite observations
Qiquan Yang1,2, Xin Huang3,4,∗, Xiaohua Tong1,2,∗, Changjiang Xiao1,2, Jie Yang3, Yue Liu3 and Yinxia Cao3

1 College of Surveying & Geo-Informatics, Tongji University, Shanghai 200092, People’s Republic of China
2 The Shanghai Key Laboratory of Space Mapping and Remote Sensing for Planetary Exploration, Tongji University, Shanghai 200092,
People’s Republic of China

3 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, People’s Republic of China
4 State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079,
People’s Republic of China

∗ Authors to whom any correspondence should be addressed.

E-mail: xhuang@whu.edu.cn and xhtong@tongji.edu.cn

Keywords: urban trees, urban heat islands, land surface temperature, remote sensing, globe

Supplementary material for this article is available online

Abstract
Trees are among the most important urban land covers, and their effects on local thermal
environments have been extensively evaluated by using the concept of urban trees’ cooling
efficiency (CE), defined as the magnitude of land surface temperature (LST) reduction by per 1%
increase in fractional tree cover (FTC). Existing studies provide quantitative knowledge of the CE
at local and regional scales, but global-scale analyses are still lacking. Therefore, this study fills this
research gap through investigating the spatiotemporal pattern of CE in 510 global cities. CE is
quantified by the opposite value of the regression coefficient of FTC (i.e. CE=−∂LST/∂FTC) in a
multiple linear regression model, where LST is the dependent variable and FTC, surface elevation,
and nighttime light intensity are the independent variables. Results show that daytime LST
decreases greatly with increasing FTC in most cities, and the globally averaged annual daytime CE
reaches 0.063 ◦C%−1, while at night, the effect of urban trees on LST weakens a lot, with an annual
average CE of only 0.007 ◦C %−1 across global cities. CE varies markedly among cities and tends to
be higher in hot and dry cities, which can be attributed to the significant nonlinear relation
between CE and climatic conditions, in that the increase in temperature and the decrease in
humidity can enhance vapor pressure deficit and further promote the heat dissipation by plant
transpiration. As expected, CE shows a distinct seasonal variation, generally characterized as being
higher in summer and lower in winter. In addition, our results suggest that previous studies based
on a bivariate linear regression model have overestimated CE, especially at night when trees’
activities are weak. This global-scale study provides new insights into the mitigation of urban
thermal stress from the perspective of increasing urban greenery.

1. Introduction

The world has experienced rapid urbanization over
the last few decades (Liu et al 2020, Xu et al 2020).
Changes in land cover and intensification of human
activities in the process of urban development can
alter the urban ecology and climate, causing several
environmental problems, the most notable of which
is the urban heat island (UHI) effect (Kalnay and Cai
2003, Grimm et al 2008, Chen et al 2021, She et al
2021). The UHI effect refers to urban areas typically

having higher temperatures than surrounding rural
areas. The UHI effect can influence urban micro-
climates and exacerbate the intensity and frequency of
urban heat waves, affecting the comfort of city dwell-
ers and even endangering their lives (Tan et al 2010,
Zhou et al 2018, Trinder and Liu 2020). Therefore, in
the context of today’s global warming, how to effect-
ively mitigate the UHI effect has become a worldwide
concern.

Numerous studies have shown that vegetated
areas tend to have lower temperatures, suggesting
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the critical roles of vegetation in affecting urban
thermal environments (Susca et al 2011, Li et al 2012,
Maimaitiyiming et al 2014, Gunawardena et al 2017,
Yan et al 2020, Liu et al 2021). Trees tend to have a
stronger transpiration rate than other low vegetation
(e.g. grasslands or croplands; Li et al 2015); further-
more, their branches and leaves can block solar radi-
ation and the resulting shadows can also have a cool-
ing effect (Jiao et al 2017). Therefore, the impact of
trees on theUHI effect has receivedmuch attention in
recent years, and a great deal of work has been done
to quantify the impact of trees on urban temperatures
(Loughner et al 2012, Jiao et al 2017, Zhou et al 2017,
Drake et al 2018, Wang et al 2018, 2019, 2020, Zhang
et al 2019, Chinchilla et al 2021).

In terms of research methodology, existing stud-
ies can be roughly divided into two main categor-
ies. The first is model-based analysis, which not only
provides a mechanistic understanding of the impact
of trees on urban climates, but also effectively quan-
tifies the contribution of different factors (such as
transpiration and shading) to the cooling effect of
urban trees. For instance, Wang et al (2018) investig-
ated the effect of urban trees on climates by using the
IntegratedWRF (Weather Research and Forecasting)-
Urban Modeling System, and found that shadows
were the main contributor to urban trees’ cooling
effect. However, modeling results can be affected by
parameters and structure of the model, leading to a
great deal of uncertainty (Loughner et al 2012).

The second category is observational-based ana-
lysis. Traditionally, this kind of research mainly relies
on in-situ observations, including weather stations
and/or field experiments. In-situ observations have
the advantages of high accuracy and temporal con-
tinuity, but are usually sparsely distributed and costly,
which limits their applications to large areas. With
the development of thermal infrared remote sensing
techniques, satellite-derived land surface temperature
(LST) has been popularly used for studying the urban
thermal environment due to its advantages of spatial
continuity and low cost.

To quantify the effect of urban trees on LST, the
cooling efficiency (CE), defined as the LST reduction
caused by every 1% increase in fractional tree cover
(FTC), has been adopted by existing studies based on
remotely sensed LST data (Zhou et al 2017, Wang
et al 2019, 2020, Zhang et al 2019). Though the CE
has been evaluated by numerous local studies across
global cities, it is still difficult to obtain a comprehens-
ive understanding by integrating the existing localized
results because of their large heterogeneity in data,
methods, and scales (Wang et al 2020). Besides, the
CE can differ greatly among cities located in differ-
ent climate zones (Zhou et al 2017), and local stud-
ies based on the data in a single or a few cities are
not sufficient to reflect the overall patterns of urban
trees’ effect on LST. Therefore, several studies have
attempted to conduct multi-city analyses on a large

scale. For example, using the Moderate Resolution
Imaging Spectroradiometer (MODIS) LST product,
Wang et al (2019) analyzed the CE in 11USmetropol-
itan cities, and showed that every 1% increase in FTC
resulted in an average decrease in LST of approxim-
ately 0.202 ◦C under extreme heat conditions. Sim-
ilarly, Wang et al (2020) used Landsat-derived LST
data to assess the CE in 118 US cities and showed
that, for every 1% increase in FTC, the summer day-
time LST was reduced by an average of 0.168 ◦C.
However, it should be noted that the CE of existing
large-scale studies was obtained by establishing bin-
ary linear regression models of LST and FTC, and did
not control the possible effects of other factors (e.g.
snow cover, topographic relief, and anthropogenic
heat), whichmay lead to an overestimation of the CE,
or even result in a strong ‘pseudo-cooling effect’ of
urban trees in winter or at night (Wang et al 2019).
Furthermore, most of the current findings are drawn
from cities in China, Europe, and theUSA, with a lack
of attention to cities located in Africa, South America,
and the Middle East.

Given all the above, this study will make a system-
atic analysis of the CE in global cities by using multi-
source satellite observations. The aims of this study
are to present a more comprehensive insight into the
spatial and temporal variability of CE, and to provide
mechanistic explanations of the spatiotemporal pat-
terns of CE from the perspective of climatic condi-
tions. In addition, this study has also improved previ-
ous large-scale studies in the way of quantifying CE,
and is able to provide a more reliable assessment of
the impact of urban trees on the ground surface.

2. Data andmethods

2.1. Extraction of study area
A total of 713 global cities were included in this
study, and the boundaries of these cities were extrac-
ted based on the global artificial impervious area
developed by Gong et al (2020). The region within
the boundary consists of the core and its equal-area
surroundings of the city; please refer to our previous
study for details (Yang et al 2021). In this study, we
further censored the cities by removing those cities
with severe missing LST data or lack of meteorolo-
gical stations (see the next section). Finally, 510 cities
were finally included in the study (figure 1), and these
cities were divided into nine biomes according to
the global terrestrial ecoregions defined by the Word
Wildlife Fund (WWF) (table S1, available online at
stacks.iop.org/ERL/17/034029/mmedia).

2.2. Data selection and processing
The global FTC was obtained from the Coperni-
cus Global Land Service (CGLS) dataset (2015). The
accuracy assessment based on over 20 000 random
samples reported that the CGLS dataset has an over-
all accuracy of better than 80% for all land-cover types

2

https://stacks.iop.org/ERL/17/034029/mmedia


Environ. Res. Lett. 17 (2022) 034029 Q Yang et al

Figure 1. The spatial distribution of 510 global cities and the biomes to which they belong. Taking the city of Beijing as an
example, we show the spatial pattern of fractional tree cover (FTC), surface elevation, nighttime light intensity (NLI), and land
surface temperature (LST). The location of Beijing is shown on the global map by a black star.

and a global average absolute error of 9% for the FTC
layer (Buchhorn et al 2020). The CGLS FTC has a
spatial resolution of 100 m, and was resampled to
1× 1 kmby calculating themean FTC in eachMODIS
LST pixel.

The LST was derived from the collection-
6 MODIS daily LST products (MOD11A1 and
MYD11A1), with a spatial resolution of 1 km.
MOD11A1 and MYD11A1 are from the Terra and
Aqua satellites, respectively, and together provide
four LST observations per day (daytime: ∼10:30 and
∼13:30, nighttime ∼1:30 and ∼22:30). This study
used all the available MODIS LST data between 2014
and 2016, with a total of 4366 images (half for day
and half for night). In each city, we removed the LST
pixels from each image that met any of the following
conditions: (1) pixels with poor quality or no data
(due to cloud coverage or other reasons) according to
the quality assessment (QA) layer; (2) pixels covered
by water according to the global surface water dataset
produced by Pekel et al (2016); and (3) pixels con-
taminated by snow according to the MODIS daily
snow cover products. The above filtering processes
can largely reduce the bias caused by LST observa-
tions, but may also result in serious data gaps for
several LST images in some cities. To reduce uncer-
tainty in the calculated CE caused by missing data,
we only retained the MODIS LST images with a per-
centage of the remaining pixels above 50% in each
city (Yang et al 2021). Furthermore, previous studies
have indicated that urban trees’ activities can vary
greatly among seasons (Wang et al 2012, Meili et al
2021). To avoid seasonal imbalance in the calculated

CE, we required that the retained daytime/nighttime
LST images in each city must cover every season of a
year, otherwise the city would be discarded from the
study.

Vegetation activity can be largely influenced by
climatic conditions. Most typically, transpiration of
trees’ leaves is likely to increase with the enhancement
of temperature or wind speed (WS), and is expec-
ted to decrease with the enhancement of humidity.
This implies that climatic conditions might have a
critical impact on the CE of urban trees. To invest-
igate the dependence of CE on climatic conditions, a
global sub-daily station dataset, referred as HadISD
(Dunn et al 2012), was used in this study. This data-
set contains hourly meteorological records of 6103
stations worldwide, comprising several climatic vari-
ables such as air temperature (Ta, ◦C), dew-point
temperature (Td, ◦C), and WS (m s−1). Addition-
ally, other climatic variables that are closely linked to
vegetation activity, including relative humidity (RH,
%) and vapor pressure deficit (VPD, kPa), were also
obtained by integrating the existing HadISD climatic
variables. The HadISD data used in this study cover
the period from2014 to 2016, which is consistentwith
the MODIS LST data. In addition, given that the spa-
tial coverage of HadISD data is insufficient and its
observation moments are not exactly the same as the
MODIS LST data, we imposed space-time constraints
on the HadISD data, and removed some cities lack-
ing HadISD stations (see the supplementary mater-
ial for details). After all the data processing men-
tioned above, 510 cities were finally included in the
analysis.
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2.3. Calculation and analysis of urban trees’
cooling efficiency
In previous studies, the CE is typically defined as
the change rate of LST to FTC (i.e. the LST reduc-
tion by per 1% increase in FTC). In terms of cal-
culation methods, existing large-scale studies typic-
ally built a binary linear regression model with LST
as the dependent variable and FTC as the independ-
ent variable, and regarded the regression coefficient
(or its opposite) as the CE (Wang et al 2019, 2020).
This approach has the advantage of being straight-
forward and easy to understand, but it does not con-
sider the influence of other factors (e.g. snow cover,
topographic relief, and anthropogenic heat), which
may cause an overestimation of the CE of urban
trees and even lead to a ‘pseudo-cooling effect’ (Wang
et al 2019). Therefore, this study constructed a mul-
tiple linear regression model with LST (after remov-
ing snow-contaminated pixels) as the dependent vari-
able, while FTC, surface elevation, and nighttime
light intensity (NLI) were independent variables, and
regarded the opposite of the regression coefficient of
FTC as the CE; i.e. CE = −∂LST/∂FTC. The NLI
was obtained from the Visible and Infrared Imaging
Suite (VIIRS) Day Night Band (DNB) dataset, which
provides monthly average NLI observations with a
spatial resolution of 500 m. Remotely sensed NLI has
been proved to be a good proxy of the anthropogenic
heat release in cities (Yang et al 2017). Surface eleva-
tion was provided by the Global 30 Arc-Second Elev-
ation (GTOPO30) dataset. All the VIIRS DNB and
GTOPO30 images were resampled to 1 km in order to
be consistent with the MODIS LST data. In each city,
we calculated the CE for every MODIS LST image
that was retained after the data processing described
in the previous section. Besides, the average values of
CEwere also calculated for different time periods (day
and night) and different seasons (spring, summer,
autumn, and winter) in each city. For cities located
in the northern (southern) hemisphere, spring, sum-
mer, autumn, and winter are defined as from March
to May (September to November), June to August
(December to February), September to November
(March to May), and December to February (June to
August), respectively.

Similar to CE, climate variables (Ta, RH,WS, and
VPD) at different time periods were also seasonally
averaged, and were used to analyze the spatiotem-
poral dependence of CE on climatic conditions. Cli-
matic conditions may affect CE in a linear or nonlin-
earmanner (Wang et al 2020). Therefore, two types of
regression models, linear (y = ax + b) and quadratic
(y= ax2 + bx+ c) regressionmodels, were separately
used to investigate the spatial correlation between CE
and each climatic variable across the globe. The good-
ness of fit was evaluated by the Akaike Information
Criterion (AIC), and the model with the lower AIC
score was considered the better one (Vrieze 2012). All
the analyses were performed in R software.

Figure 2. Diurnal contrast of the annually average urban
trees’ cooling efficiency (CE). The bars and lines represent
the mean and 95% confidence interval of CE for 510 global
cities, respectively. The observational times are∼13:30 and
∼1:30 for Aqua, and∼10:30 and∼22:30 for Terra.

3. Results

3.1. Spatial patterns of CE and their diurnal
contrasts
During daytime, the globally averaged annual mean
CEs are 0.057 [0.051, 0.062] ◦C %−1 (95% confid-
ence interval in parentheses, hereinafter) and 0.070
[0.063, 0.076] ◦C %−1 for the local time of ∼10:30
(Terra) and ∼13:30 (Aqua), respectively (figure 2).
Their mean value, 0.063 [0.057, 0.069] ◦C %−1, is
considered as the general effect of urban trees on
annual daytime LST across global cities. This means
that every 1% increase in urban FTC (i.e. fractional
tree cover) can averagely reduce global urban annual
daytime LST by about 0.063 ◦C. In terms of spa-
tial distribution, cities located in northwestern China,
southwestern USA, and the Middle East generally
have a higher CE (figure 3(a)). The CE differs greatly
among biomes, and the average annual daytime CE
of cities located in the desert biome (i.e. Biome 8)
reaches 0.170 [0.139, 0.201] ◦C %−1, significantly
(p < 0.05, t-test, hereinafter) higher than that of other
biomes (figure 3(c)). It is noteworthy that the aver-
age annual daytime CE is higher in cities domin-
ated by low vegetation (e.g. grasslands and shrub-
lands) than in cities dominated by tall vegetation
such as forests (e.g. Biome 3 > Biome 1; Biome
6 > Biome 4; figure 3(c)). In addition, cities with
the same biome but different climatic conditions can
show significant differences in CE. Most typically,
Biome 4 and Biome 5 are both tropical and sub-
tropical biomes with broadleaf forests, but differ in
dry-wet conditions (moist vs. dry; table S1), which is
probably the main reason for their significant differ-
ence in the average annual daytime CE (0.054 [0.047,
0.061] vs 0.087 [0.064, 0.109] ◦C %−1, p < 0.05;
figure 3(c)).

At night, the CE is generally lower than that of the
daytime, with globally averaged annual mean values
of 0.005 [0.003, 0.008] ◦C %−1 at the local time of
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Figure 3. Spatial distribution of the annually average urban trees’ cooling efficiency (CE) across global cities and different biomes.
The bars and lines represent the mean and 95% confidence interval of the CE in each biome, respectively.

∼1:30 (Aqua), and 0.008 [0.006, 0.011] ◦C %−1 at
the local time of ∼22:30 (Terra; figure 2). The aver-
age of them is around 0.007 [0.004, 0.009] ◦C %−1,
which is about one-tenth of the daytime value, signi-
fying a relatively weak effect of urban trees on night-
time LST. However, nighttime CE shows higher spa-
tial heterogeneity compared to daytime. As shown
in figure 3(b), cities with stronger nighttime CE are
mainly located in tropical and subtropical regions at
low latitudes or in arid regions such as the Middle
East, while in other regions, nighttime CE is gener-
ally small. It should be noted that the annual night-
time CE is negative in several cities located in China,
Europe, and the USA (figure 3(b)), suggesting that
urban trees may exhibit a weak warming effect on
nighttime LST in these cities.When comparing across
biomes, the average annual nighttime CE is highest in
the desert biome (i.e. Biome 8), followed by the trop-
ical and subtropical biomes, and is lowest in theMedi-
terranean biome (i.e. Biome 7; figure 3(d)).

3.2. Seasonal variations of CE and their spatial
heterogeneity
As expected, the CE shows obvious seasonal
variations (figures 4 and S1). During daytime,
the global average CE is strongest in summer
(0.087 [0.079, 0.095] ◦C %−1), followed by spring
(0.070 [0.063, 0.095] ◦C %−1), autumn (0.062
[0.056, 0.068] ◦C %−1), and winter (0.034 [0.031,
0.038] ◦C %−1; figure 4(a)). This seasonal pattern
of daytime CE is observed in all biomes, but with a
remarkable difference in the magnitude of seasonal
difference (figure S1). For instance, the average day-
time CE of the desert biome (i.e. Biome 8) reaches

0.231 [0.189, 0.274] ◦C %−1 in summer, which is
considerably higher than that in winter (0.092 [0.072,
0.112] ◦C %−1). In contrast, in the tropical and sub-
tropical biomes (e.g. Biomes 4, 5, 6), the difference
in the daytime CE among seasons is relatively small
(figure 4(c)). At night, the seasonal pattern of CE
is generally consistent with that of the daytime (i.e.
summer > spring > autumn > winter) for the global
urban averages, but shows some variability in the res-
ults among biomes. The most typical example is that
tropical and subtropical biomes (Biomes 5 and 6)
experience a lower nighttime average CE in summer
than in winter (figure 4(d)).

3.3. Spatiotemporal dependence of CE on climatic
conditions
For the overall picture, there is a good agreement
between CE and climatic variables (Ta, RH, WS, and
VPD) for seasonal patterns (figures 4 and S2). The
spatial dependence of CE on climatic variables was
examined across global cities by using linear and
quadratic regression models, and it is found that CE
is nonlinearly related to climatic variables in most
cases (figure 5). Daytime CE increases significantly
along the incremental direction of Ta, and the change
rate gradually accelerates with the enhancement of
Ta (figure 5(a)). In contrast, daytime CE decreases
significantly with the increase in RH, accompanied
by a slowing down of the change rate (figure 5(b)).
Besides, daytime CE shows an increasing trend with
the growth of WS, but with a very weak correlation
(figure 5(c)). These results jointly suggest that urban
trees in hot, dry, and windy climates tend to have
stronger CE. In addition, the relationship between
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Figure 4. Seasonal variations of urban trees’ cooling efficiency (CE). The bars/points and vertical lines represent the mean and
95% confidence interval, respectively.

daytime CE and VPD is as expected; i.e. daytime CE
increases significantly with the enhancement of VPD
(figure 5(d)). Moreover, the trend of nighttime CE
along each climatic variable is basically in line with
the daytime results, but the explanatory degree (R2)
of the nighttime regression model is lower than that
of the daytime (figures 5(e)–(h)).

4. Discussion

4.1. Spatiotemporal variations of urban trees’
cooling efficiency
Our results show that an increase in FTC can reduce
daytime LST, leading to a considerable cooling effect,
especially for cities located in the desert biome
(figure 3). The spatial pattern of daytime CE is closely
related to climatic conditions. Specifically, daytime
CE has a strong positive correlation with Ta and a
significant negative relation with RH, which implies
that urban trees tend to have a stronger cooling effect
on daytime LST in hotter and drier cities. This is due
to the fact that an increase in temperature and/or
a decrease in humidity can cause a rise in VPD,
which will promote the transpiration of tree leaves
and take away more surface heat (Will et al 2013,
Grossiord et al 2020). For example, a modelling study
showed that each 2.9 ◦C increase in average daily
temperature enhanced the transpiration rate and sto-
matal conductance of betula utilis leaves by 21.4%
and 33.9%, respectively (Zhen-Feng et al 2010). More

importantly, this mechanism is supported by our res-
ults that daytime CE is significantly and positively
correlated with the VPD (figure 5(d)). In addition,
theoretically, an increase in WS would enhance the
turbulent exchange rate of leaves and their evapora-
tion, thus promoting the cooling efficiency of urban
trees (Yu et al 2018). However, as revealed by this
study, the effect of WS on daytime CE seems to be
much weaker compared to Ta and RH. Overall, the
increase in FTC can be regarded as an effective way to
mitigate daytime UHI effect, especially for cities with
a hot and dry climate.

At night, the effect of urban trees on LST has
actually become very weak, with a global average of
nighttime CE being nearly close to zero (figure 2).
This is mainly due to the fact that the activity (e.g.
transpiration) of urban trees weakens or even dis-
appears at night (Peng et al 2014). Accordingly, the
influence of climatic conditions on nighttime CE is
much weaker than that of daytime. It is also worth
noting that, for numerous cities located in temperate
regions (e.g. Europe, Eastern Asia, and Eastern USA),
an increase in FTC may cause a potential warming
effect on nighttime LST (figure 3(b)). This can be
explained by the change in surface albedo due to
increased FTC. Previous studies have shown that trees
may have lower albedo than other land covers (e.g.
bare soil, cultivated land, and buildings). Thus, the
increase in FTC can cause a decrease in surface albedo,
leading to more solar energy absorption during the
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Figure 5. Scatterplots of the relationship between annually average urban trees’ cooling efficiency (CE) and climatic variables,
including air temperature (Ta), relative humidity (RH), wind speed (WS), and vapor pressure deficit (VPD). The left sub-figures
(a)–(d) are daytime results, and the right sub-figures (e)–(h) are nighttime results. Their relationship was fitted by either a linear
(y= ax+ b) or quadratic (y= ax2 + bx+ c) regression model, depending on the Akaike Information Criterion (AIC). In each
sub-figure, the solid black lines and the formula above represent the fitted results for all the 510 global cities; the dashed black line
and the formula below represent the fitted results after dropping off the data of cities located in Biomes 7 and 8; and the grey
shaded areas around the regression lines are 95% confidence intervals.

7



Environ. Res. Lett. 17 (2022) 034029 Q Yang et al

daytime (Lukeš et al 2013, Kuusinen et al 2016). This
extra energy will be released at night, and causes an
elevation in nocturnal LST. In addition, the increase
in FTC may also reduce ventilation and impede heat
dissipation, especially for regions with tall and dense
trees, where warm air can be trapped beneath the
crowns (Wujeska-Klause and Pfautsch 2020). There-
fore, it is reasonable to infer that, for several cities,
increasing FTC alone may not be able to achieve the
goal of alleviating the nocturnal heat island, and may
even cause a counterproductive effect.

CE differs greatly among seasons, and is generally
characterized as stronger in summer than in winter
(figures 4 and S1). This is understandable because
urban trees’ activities are typically seasonally depend-
ent. For example, urban trees tend to be leafy in sum-
mer and their powerful transpiration can effectively
reduce the LST in the vegetated areas and surround-
ing regions (Peters et al 2010). In winter, urban trees’
activities, along with their effects on LST, become
weak due to physiological phenomena such as leaf fall.
In addition, although some tropical trees (e.g. ever-
green forests) do not have great physiological vari-
ations among seasons, change in climate conditions
(e.g. temperature and humidity) can still affect urban
trees’ activities, which will pose a seasonal effect on
the CE (David et al 2004).

4.2. Comparative analysis of CE calculated by
different methods
It should be noted that this paper differs from pre-
vious studies in the calculation of CE. Previous stud-
ies preferred to build a binary linear regressionmodel
with LST as the dependent variable and FTC as the
independent variable, and treated the regression coef-
ficient (or its opposite) as the CE (Wang et al 2019,
2020). However, this approach ignores the influence
of other factors (e.g. snow, topographic relief, and
anthropogenic heat). Firstly, snow cover can mask
temperature variations caused by land-cover differ-
ences, and the removal of snow is essential for obtain-
ing trueCE. Secondly, temperature changeswith elev-
ation, and ignoring the influence of topographic relief
will cause bias in the calculated CE. More import-
antly, anthropogenic heat released by the production
and life of urban dwellers results in an increase of local
temperature, creating temperature gradients from the
urban center (with lower FTC) to its neighboring
regions (with higher FTC). This means that ignor-
ing the influence of anthropogenic heat may cause an
overestimation of CE andmay even lead to a ‘pseudo-
cooling effect’ (Wang et al 2019). Therefore, in this
study, we removed pixels contained by snow cover,
and further established a multiple linear regression
model with FTC, elevation, and NLI incorporated, so
as to suppress the bias of CE caused by topographic
relief and anthropogenic heat.

By comparison, it can be found that the CE
obtained by the multiple linear regression model in

Figure 6. Urban trees’ cooling efficiency (CE) calculated by
different regression models. In the binary linear regression
model, land surface temperature (LST) is the dependent
variable and fractional tree cover (FTC) is the independent
variable; in the multiple linear regression model, LST is the
dependent variable, and FTC, surface elevation, and
nighttime light intensity (NLI) are the independent
variables. The bars/points and vertical lines represent the
mean and 95% confidence interval, respectively.

this study is significantly lower than that calculated
by the binary linear regression model in previous
studies, especially for the nighttime results (figure 6).
This is because trees’ activities (e.g. transpiration)
greatly weaken at night, and the spatial variation of
LST is actually dominated by other factors, espe-
cially anthropogenic heat (Sailor 2011). Thus, the CE
obtained by the binary linear regression model can-
not truly reflect the influence of trees themselves on
the urban surface thermal environment. Overall, the
comparative analysis suggests that previous studies
have overestimated the CE of urban trees, especially
at night when trees’ activities are weak.

4.3. Implications and uncertainties
This study presents a global-scale quantitative ana-
lysis of urban trees’ cooling efficiency by using multi-
source remote sensing data. The results highlight the
positive effect of increasing FTC on reducing day-
time urban LST, which is consistent with the findings
from previous local studies (Zhou et al 2017, Wang
et al 2019, 2020). More importantly, it is found that,
though with distinctive daytime CE, urban trees pose
an ambiguous effect on nighttime LST. This implies
that increasing FTC is not an effective way to mitig-
ate the nocturnal UHI effect, and other measures are
needed for relieving nocturnal urban thermal stress
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(Zhou et al 2014, Huang and Wang 2019, Yang et al
2019). Besides, our results reveal that urban trees’ CE
is closely related to climatic conditions, and trees tend
to have a stronger cooling effect in cities with a higher
temperature and/or less humidity. This means that
the same percentage increase in FTC can achievemore
cooling benefits in dry and hot cities.

Several uncertainties need to be addressed here.
Firstly, besides the fraction of coverage, urban LST
can be affected by other aspects of trees such as the
spatial configuration and canopy height, the compos-
ition of species, and even the analysis scales (Jiao et al
2017, Zhang et al 2019, 2021). A systematic analysis of
all these factors can better capture the effect of trees
on LST, but relies onmore comprehensive and higher
resolution remotely sensed data. Secondly, the CE of
urban trees is not only dependent on climatic condi-
tions, butmay also be related to soil properties, plant-
ing conditions, and human management, and future
studies need to combine all requisite data for further
analysis.

5. Conclusions

Increasing FTC has long been recognized as an effect-
ive way tomitigate theUHI effect, but there is a lack of
global-scale quantitative analysis of the CE of urban
trees based on remotely sensed data. Therefore, this
study presents a comprehensive analysis of the spa-
tiotemporal patterns of CE in 510 global cities by
usingmulti-source satellite observations. Themethod
of quantifying CE is improved from previous studies
by constructing a multiple linear regression model,
which can suppress the influence of other factors such
as topographic relief and anthropogenic heat.

The results show that the increase of FTC in urban
regions can significantly reduce daytime LST, with an
annual average daytime CE of 0.063 ◦C %−1 across
global cities. However, the effect of urban trees on
LST is relatively weak at night, with a global aver-
age annual nighttime CE of only 0.007 ◦C%−1. More
importantly, CE shows obvious spatial heterogen-
eity, with generally higher values in hot and arid cit-
ies located in regions such as northwestern China,
southwesternUnited States, and theMiddle East, sug-
gesting that higher cooling gains can be achieved by
increasing FTC in these cities. The spatial pattern of
CE is closely related to urban climatic conditions (e.g.
temperature and humidity). An increase in temperat-
ure and a decrease in humidity can enhance VPD and
promote transpiration of tree leaves, which in turn
causes an enhancement of CE of urban trees. In terms
of seasonal variations, CE generally shows a pattern
of being highest in summer and weakest in winter,
which fits well with seasonal characteristics of trees’
own growth state. Overall, the study fills the know-
ledge gap of how urban trees influence LST across
global cities, and provides important information for
UHI mitigation from the perspective of tree planting.

Data availability statement

The global artificial impervious area (GAIA) dataset
is publicly available at http://data.ess.tsinghua.edu.cn
/gaia.html. Global fractional tree cover is derived
from the Copernicus Global Land Service
(CGLS) dataset, which is publicly available at
https://land.copernicus.eu/global/products/lc. The
climatic variables are derived from the global sub-
daily station dataset (HadISD), which is publicly
available at https://catalogue.ceda.acuk/uuid/32eff53
af32442d1a347da2cc45bb9db. The biome boundar-
ies are derived from the global terrestrial ecoregions
defined by the WWF, which are publicly available
at www.worldwildlife.org/publications/terrestrial-
ecoregions-of-the-world. The global surface water
dataset is provided by the European Commission’s
Joint Research Centre, and is publicly available at
https://global-surface-water.appspot.com/download.
The global nighttime light intensity is derived from
the Visible and Infrared Imaging Suite (VIIRS) Day
Night Band (DNB) dataset, which is publicly avail-
able at https://eogdata.mines.edu/products/vnl/. The
Moderate Resolution Imaging Spectroradiometer
(MODIS) and the Global 30 Arc-Second Eleva-
tion (GTOPO30) datasets are publicly available at
https://earthdata.nasa.gov/. In addition, all of above-
mentioned datasets (except the HadISD climatic
variables and the WWF biomes) are also publicly
available from the Google Earth Engine platform
(https://code.earthengine.google.com/).
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included within the article (and any supplementary
files).
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