Earth Syst. Sci. Data, 14, 3649-3672, 2022
https://doi.org/10.5194/essd-14-3649-2022

© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Earth System
Science

Data

Open Access

Introduction

Mapping 10 m global impervious surface area
(GISA-10m) using multi-source geospatial data

Xin Huang'?, Jie Yang', Wenrui Wang', and Zhengrong Liu'

!'School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China
2State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
‘Wuhan University, Wuhan 430079, PR China

Correspondence: Jie Yang (yang9tn @ 163.com)

Received: 20 December 2021 — Discussion started: 12 April 2022
Revised: 21 July 2022 — Accepted: 24 July 2022 — Published: 11 August 2022

Abstract. Artificial impervious surface area (ISA) documents the human footprint. Accurate, timely, and de-
tailed ISA datasets are therefore essential for global climate change studies and urban planning. However, due to
the lack of sufficient training samples and operational mapping methods, global ISA datasets at a 10 m resolu-
tion are still lacking. To this end, we proposed a global ISA mapping method leveraging multi-source geospatial
data. Based on the existing satellite-derived ISA maps and crowdsourced OpenStreetMap (OSM) data, 58 million
training samples were extracted via a series of temporal, spatial, spectral, and geometric rules. We then produced
a 10 m resolution global ISA dataset (GISA-10m) from over 2.7 million Sentinel optical and radar images on
the Google Earth Engine platform. Based on test samples that are independent of the training set, GISA-10m
achieves an overall accuracy of greater than 86 %. In addition, the GISA-10m dataset was comprehensively com-
pared with the existing global ISA datasets, and the superiority of GISA-10m was confirmed. The global road
area was further investigated, courtesy of this 10 m dataset. It was found that China and the US have the largest
areas of ISA and road. The global rural ISA was found to be 2.2 times that of urban while the rural road area
was found to be 1.5 times larger than that of the urban regions. The global road area accounts for 14.2 % of the
global ISA, 57.9 % of which is located in the top 10 countries. Generally speaking, the produced GISA-10m
dataset and the proposed sampling and mapping method are able to achieve rapid and efficient global mapping,
and have the potential for detecting other land covers. It is also shown that global ISA mapping can be improved
by incorporating OSM data. The GISA-10m dataset could be used as a fundamental parameter for Earth system
science, and will provide valuable support for urban planning and water cycle study. The GISA-10m can be
freely downloaded from https://doi.org/10.5281/zenodo.5791855 (Huang et al., 2021a).

al., 2019). With more attention now being paid to the impact

The land dominated by humans has expanded rapidly over
the past decades (Friedl et al., 2010), resulting in a large
amount of terrestrial surface that is covered by impervi-
ous surfaces (J. Gong et al., 2020). Impervious surfaces are
mainly composed of artificial materials such as gravel, glass,
asphalt, and metals (Tian et al., 2018). Such impervious
surfaces prevent or decelerate water infiltration while also
blocking evapotranspiration, which affects the terrestrial wa-
ter cycle and thermal environment (Qin et al., 2018; Yang et
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of urban sprawl on the global climate environment (United
Nations, 2016), the global monitoring of impervious surface
area (ISA) can depict the anthropic implications on the wa-
ter cycle, land cover, and biodiversity (Ji et al., 2020; Qin et
al., 2017). In addition, ISA morphology is also an important
parameter for urban planning, socio-economics, and popula-
tion studies (Voss, 2007). In summary, accurate and timely
monitoring of global ISA dynamics is important for urban
habitability (Herold et al., 2006), sustainable development
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(Dewan and Yamaguchi, 2009), and terrestrial ecosystem ser-
vices (Goetz et al., 2003).

Global ISA monitoring via satellite remote sensing data
has long been conducted. Early efforts usually focused on
global ISA mapping using coarse-resolution data, e.g., De-
fense Meteorological Satellite Program (DMSP) and Mod-
erate Resolution Imaging Spectroradiometer (MODIS) data
(Friedl et al., 2010; You et al., 2021). With the free avail-
ability of Landsat data and the advances in geospatial cloud
platforms (e.g., Google Earth Engine, GEE), recent studies
have focused on global annual ISA mapping at a 30 m res-
olution (P. Gong et al., 2020; Gorelick et al., 2017; X. Liu
et al., 2020; Woodcock et al., 2008). For instance, Huang
et al. (2021b) generated the annual global impervious sur-
face area (GISA) dataset covering 1972 to 2019 using over
three million Landsat images. Although efforts have been
made in global ISA monitoring, few studies have focused
on global ISA mapping at a 10 m resolution. Recently, Cor-
bane et al. (2021) generated the Global Human Settlement
Layer 2018 (GHSL 2018) dataset using Sentinel-2 compos-
ites and a convolutional neural network model. However,
GHSL 2018 focuses more on human settlements and lacks
depiction of ISA, such as transportation facilities. In addition
to these thematic datasets, ISA has also been documented
in land-cover products. For example, Gong et al. (2019)
generated the Finer Resolution Observation and Monitoring
of Global Land Cover map for 2017 at a 10 m resolution
(FROM_GLC10) using Sentinel-2 images. However, the ac-
curacy of ISA in the land-cover datasets may not be sufficient
to meet the needs of global climate change studies and urban
planning (P. Gong et al., 2020). Therefore, there is an urgent
need for 10 m global ISA thematic datasets, to support vari-
ous fine-scale applications.

Synthetic aperture radar (SAR) performs well in the case
of ISA mapping due to its clear response to high-rise build-
ings and its ability to penetrate clouds (e.g., Sentinel-1)
(Zhang et al., 2014). SAR data have the potential to reduce
the common false alarms that come from optical images such
as bare soil, but SAR systems can be affected by complex
terrain and shadows. Therefore, the existing studies have in-
vestigated the combination of radar and optical data to im-
prove ISA mapping. For example, Zhang et al. (2020) com-
bined Landsat 8 and Sentinel-1 data to produce a 30 m global
ISA dataset (the Global Land Cover with Fine Classification
System, GLCFCS). Similarly, Marconcini et al. (2020a) used
Landsat 8 and Sentinel-1 data to outline the world settlement
footprint (World Settlement Footprint, WSF), based on sup-
port vector machine classifiers. Although the current stud-
ies have demonstrated the effectiveness of combining multi-
source (e.g., radar and optical) remote sensing data for ISA
mapping, they have usually focused on regional or national
scales (Lin et al., 2020). In addition, combining data with
different resolutions for ISA mapping can increase the un-
certainty of the results. In particular, both Zhang et al. (2020)
and Marconcini et al. (2020a) generated global ISA (or settle-
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ment) datasets using Landsat 8 and Sentinel-1 data, but their
resolutions were different, at 30 and 10 m, respectively (Ta-
ble 1). Generally speaking, 10 m global ISA mapping based
on multi-source remote sensing data (e.g., Sentinel-1 and 2)
has been insufficiently investigated in the current literature
(Table 1).

From the perspective of the global ISA mapping meth-
ods, supervised classification has been widely employed (Ta-
ble 1). The quality of the training samples is the major
factor affecting the classification results (Foody, 2009). Vi-
sual interpretation and automatic extraction from the exist-
ing datasets are two common ways to generate training sam-
ples. Visually interpreted samples are usually accurate but
labor-intensive. Therefore, they are often used for classifi-
cation at a regional scale (Yang et al., 2020). On the other
hand, samples generated from the existing datasets have been
shown to be efficient for global ISA mapping in recent years
(Marconcini et al., 2020a; Zhang et al., 2020). In fact, ISA
samples are typically diverse, as their response to the differ-
ent sensors varies with the materials, geometry, atmospheric
conditions, and viewing angles. Therefore, accurate and suf-
ficient samples are required to address the above issue for the
purpose of consistent ISA mapping at a global scale. Given
the higher spatial resolution (10 m) of the Sentinel satellites,
it remains challenging to obtain high-quality and adequate
training samples for 10 m global ISA mapping.

In general, due to the difficulty of collecting training sam-
ples and the limitation of the computational and storage ca-
pacity required to deal with massive data, efficient methods
and accurate datasets for 10 m resolution global ISA mapping
are lacking. Therefore, in this study, we proposed a global
ISA mapping method that leverages multi-source geospatial
data to map the 10 m global impervious surface area (GISA-
10m). To the best of our knowledge, this is the first global
10 m ISA map based on Sentinel-1 and 2 data. Specifically,
by combining multi-source remote sensing data and crowd-
sourced OpenStreetMap data, we developed a sample gen-
eration method involving a series of temporal, spatial, spec-
tral, and geometric rules to collect training samples with a
global coverage. Furthermore, an adaptive hexagonal parti-
tioning strategy was introduced for multi-source feature ex-
traction and classification. Finally, the accuracy of the GISA-
10m dataset was assessed using three independent sample
sets. Meanwhile, we also compared GISA-10m with the ex-
isting datasets to better reflect its quality, and the ISA dis-
tribution in the global urban and rural regions was analyzed.
In particular, the global road ISA was further extracted and
investigated. Ablation experiments were also conducted to
demonstrate the feasibility of OSM data in global ISA map-

ping.
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2 Data

2.1 Remote sensing data

Sentinel-2 optical data and Sentinel-1 SAR data were used in
the GISA-10m mapping. Sentinel-2 is a high-resolution mul-
tispectral imaging mission operated by the European Space
Agency (ESA) Copernicus program. The first Sentinel-2
satellite (Sentinel-2A) has been acquiring high-resolution
Earth observation data since June 2015, consisting mainly of
four 10 m resolution visible and near-infrared (NIR) bands,
six 20 m resolution red-edge and short-wave infrared (SWIR)
bands, and three 60 m bands (Drusch et al., 2012; Zhang et
al., 2018). After testing and adjustment, a complete global
coverage was obtained for the Sentinel-2 satellite in 2016
(Fig. S2 in the Supplement). Therefore, we used all the avail-
able Level-1C top of atmosphere (TOA) reflectance data ac-
quired in 2016 for the 10 m ISA mapping. Systematic radio-
metric calibration and geometric and terrain correction have
already been performed for the Level-1C TOA data by ESA.
Clouds and shadows were removed via the quality band to
obtain cloud-free pixels.

The Sentinel-1A satellite was launched in April 2014, car-
rying a C-band SAR instrument. After the launch of Sentinel-
1B in 2016, the two satellites now have a return visit period
of six days at the Equator. We used all the available Ground
Range Detected (GRD) images acquired under Interferomet-
ric Wide (IW) mode, with a spatial resolution of 10m. The
boundary noise removal, thermal noise removal, radiomet-
ric calibration, and terrain correction were conducted on the
GEE platform with the same processing tools as the Sentinel-
1 Toolbox. Sentinel-1 data in both ascending and descend-
ing orbit were considered. For the locations where two or-
bits were available, only the descending data were used to
avoid the terrain distortion caused by the combination of two
orbits (Veloso et al., 2017). In total, over 2.7 million Sen-
tinel images were used to cover the global terrestrial surface
(Fig. S2).

2.2 \Volunteered geographic information data

Volunteered geographic information (VGI) is geographic in-
formation that is created, edited, and updated by volunteers
(Goodchild, 2007). The well-known OpenStreetMap (OSM)
VGI project provides online maps that can be edited and used
by everyone. Since its launch in 2004, OSM has been up-
dated and maintained by over seven million volunteers (Hak-
lay and Weber, 2008). OSM has been used for positioning
and navigation (Fonte et al., 2020), urban modeling (Goetz,
2013), and land-cover mapping (Tian et al., 2019). In fact,
over 600 million buildings and roads have been tagged in the
OSM database (https://taginfo.openstreetmap.org/keys, last
access: 17 August 2021). These data should be important
reference data for ISA mapping but, unfortunately, in the
current literature, they have seldom been used for ISA map-
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ping at the global scale. Therefore, we used the OSM data
as a source of training samples for the GISA-10m mapping.
Specifically, we extracted the buildings and road networks
as potential training samples from the OSM Planet data built
on 2 January 2017 (https://planet.openstreetmap.org/planet/
2017/planet-170102.0sm.bz2, last access: 13 March 2021).

2.3 Existing ISA datasets

We compared GISA-10m with the existing ISA datasets,
ie., GISA, GAIA, GAUD, WSF2015, FROM_GLCI0,
GLCFCS, and GHSL 2018 (Table 1). GISA, GAIA, and
GAUD are Landsat-derived annual global ISA datasets for
the time periods of 1972-2019, 1985-2018, and 1985-2015,
respectively. GHSL 2018 is a global settlement layer based
on a Sentinel-2 composite, where a convolutional neural
network model was used to estimate the settlement proba-
bility (Corbane et al., 2021). WSF2015 and GLCFCS are
global ISA datasets based on Landsat 8 and Sentinel-1
data. Marconcini et al. (2020a) collected the samples for
WSF2015 based on a set of spectral and topographic rules,
and Zhang et al. (2020) derived the samples for GLCFCS
from GlobeLand30. Gong et al. (2019) generated the 10 m
FROM_GLCI10 using Sentinel-2 data and random forest
classifiers. It should be noted that these datasets differ in their
mapping purposes and their definitions of the land-cover
categories. For instance, GHSL 2018 and WSF2015 focus
on human settlements, while GAUD delineates urban extent
(Table 1). The GISA-10m dataset generated in this study re-
flects the ISA generated by human activities, including all
kinds of human settlements, transportation facilities, indus-
tries, and mining locations, courtesy of the employment of
the high spatial resolution satellite data. Therefore, artificial
impervious surfaces and human settlements were treated as
ISA in this study.

3 Methodology

The main objectives of this study were to (1) investigate 10 m
global ISA mapping (GISA-10m) by combining Sentinel-1
and 2 images with other geographic information; and (2) an-
alyze the distribution of urban and rural ISA at a 10m res-
olution. The flowchart for GISA-10m mapping is shown in
Fig. 1, including training sample generation, multi-source
feature construction, random forest (RF) classification, ac-
curacy validation, and dataset comparison. Based on the
satellite-derived ISA maps and the VGI data (i.e., Open-
StreetMap), we proposed a rule-based approach to automat-
ically generate global training samples. Using more than
2.7 million Sentinel images on the GEE, multi-source fea-
tures were constructed and fed into the RF classifier to obtain
the mapping results. The accuracy of the GISA-10m was as-
sessed by visual interpretation and third-party samples. To
better evaluate the performance of GISA-10m, we compared
it with the current state-of-the-art global ISA datasets (Ta-
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Figure 1. The flowchart for GISA-10m mapping.

ble 1). Finally, the distribution of ISA over urban and rural
regions was analyzed.

3.1 Global ISA mapping using multi-source geospatial
data

3.1.1  Sample collection

In the case of large-scale supervised classification, both the
quantity and quality of samples are important (Foody and
Arora, 1997). ISA is a highly variable object, and its at-
tributes in the Sentinel-2 multispectral images are related to
materials, viewing angles, and atmospheric conditions, while
its response to the Sentinel-1 SAR instrument depends on di-
electric properties, geometry, and surface roughness. Hence,
a large number of training samples was required to address
the aforementioned challenges that would be encountered
at the global scale. Training samples are usually acquired
by means of visual interpretation or automatic extraction
from the existing datasets. However, the visual interpreta-
tion methods are labor- and time-intensive, even for small
regions. Therefore, at a large scale, training samples are usu-
ally extracted from the existing datasets with similar tem-
poral and spatial coverages. However, the sample quality is
affected by the quality of the datasets. Theoretically, samples
extracted from a single dataset will result in more errors and
uncertainties, while multi-source data can improve the relia-
bility of the training samples (Huang and Zhang, 2013). We
therefore proposed to collect global training samples by in-
corporating the existing ISA datasets and the crowdsourced
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OSM database. To distinguish the two types of ISA sam-
ples, we named the ISA samples extracted from the existing
satellite-derived ISA datasets as ISArs and those extracted
from the OSM as ISAosm.

The existing ISA datasets generally cover a broad terres-
trial surface, but they differ in terms of their definition, spatial
resolution, and temporal coverage. In this study, the GISA,
FROM_GLCI10, and GlobeLand30 products were chosen to
extract the training samples for the following reasons: (1) the
GISA is aimed at mapping the global ISA, which is consis-
tent with GISA-10m; (2) the team behind the GlobeLand30
employed extensive visual interpretation to detect artificial
surfaces, which can effectively reduce the false alarms from
other datasets, i.e., GISA and FROM_GLC10 (Chen et al.,
2015); and (3) the definition of FROM_GLCI10 (impervious
surfaces) is consistent with that of GISA-10m, and its spa-
tial resolution is also 10 m. The GHSL 2018, WSF2015, and
GAUD were not considered since they aim to outline human
settlements or urban extent (Table 1). We then collected the
eligible training samples according to the following rules.

1. Temporal rule. The GISA is a global ISA dataset cov-
ering 1972-2019, so we selected its results for 2016
to match the Sentinel data used in this research. Glo-
beLand30 documents global land cover for 2000, 2010,
and 2020, so the 2010 map was chosen in this study.
Although the 2020 map is more recent than the 2016
map, it contains ISA that was built after 2016, making it
unsuitable for the GISA-10m mapping. Although there
is a 6-year gap between GlobeLand30 and the other

Earth Syst. Sci. Data, 14, 3649-3672, 2022
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datasets (i.e., GISA and FROM_GLCI10), we adopted
the commonly used assumption that the transition from
ISA to non-impervious surface area (NISA) rarely hap-
pens (P. Gong et al., 2020; Huang et al., 2021b, 2022),
so that the GlobeLand30 for 2010 could be used for the
GISA-10m mapping. The following spatial and spectral
rules were used to remove the possible errors.

. Spatial rule. We first checked the class labels of the three
datasets at each pixel. If these labels were the same (i.e.,
ISA), the pixel was taken as a potential ISArg sample.
The incorporation of multiple datasets can effectively
reduce the errors that exist in a single dataset. In addi-
tion, we filtered out the edge pixels in each dataset to
reduce the uncertainty, since they were more likely to
be mixed pixels. Edge pixels were defined as the out-
ermost pixels of each ISA patch. We removed the edge
pixels in each dataset, and then selected their ISA in-
tersection as potential training samples. In this way, the
errors contained in the non-edge pixels in the 30 m reso-
lution data (e.g., mixed pixels) could be removed by the
edge pixels in the 10 m resolution data.

. Spectral rule. After the above steps, a small amount of
errors may still remain in the current samples. Hence,
we applied the spectral rule to remove these erroneous
samples. Specifically, we measured the Mahalanobis
distance between each ISArs sample to the spectral av-
erage of each hexagon (the mapping unit adopted in
this study), and filtered out the samples with a dis-
tance greater than u + § (where p and § represent the
mean and standard deviation, respectively) (Huang et
al., 2021b). Vegetation and water bodies are common
sources of false alarms in the existing datasets (Fig. 2a
and b). However, these errors often account for a rela-
tively small proportion, and they can be effectively iden-
tified and reduced by the spectral rule. It can be seen
in Fig. 2 that most of the water bodies and vegetation
(the red rectangles in Fig. 2) were successfully removed
from the initial ISARg training samples.

X. Huang et al.: Mapping 10 m global impervious surface area

applied to global ISA mapping, especially given the
more than 200 million buildings in the OSM database.
Therefore, in this study, we extracted the geometric cen-
ter of a building polygon as an ISAgsy sample, which
was more efficient than buffering or random points. No-
tably, although we could filter out the erroneous build-
ings using attribute tags (e.g., dams, swimming pools,
playgrounds), the geometric center of a building was not
always an ISA sample. Hence, we further required that
the geometric center must be contained by the build-
ing. As in Fig. 3a and b, the incorrect building geo-
metric centers (e.g., the vegetation and water, as indi-
cated by the yellow points) were successfully identified
and removed by the geometric rule. In addition, we ex-
cluded buildings with an area of less than 100 m? (ap-
proximately a Sentinel pixel), to ensure the reliability of
the samples. This is because a training sample extracted
from the geometric center may be NISA when the area
of the building is smaller than a Sentinel pixel.

Compared with the widely used 30 m Landsat data, the
high-resolution Sentinel data allow a better delineation
of roads. We thereby also extracted ISApsm samples
from the OSM road networks. The OSM roads usually
consist of centerlines rather than boundaries. Therefore,
we extracted the center point of each road, rather than
its geometric center, as the road ISA samples. Given that
the width of low-grade roads may be less than 10 m (i.e.,
a Sentinel pixel), we kept only the main roads (highway
= “primary”).

. Spatial rule. Given the uneven spatial distribution of

OSM data (Tian et al., 2019), we applied the spatial rule
to balance the distribution at the global scale. Specifi-
cally, for hexagons with more than 10 000 OSM records
(i.e., buildings and roads), we randomly selected 10 000
records as initial samples. The dilution of OSM data can
significantly reduce the subsequent computational cost.
In the field of supervised classification, the diversity of
the samples is important for the generalization ability of
the classification model (Huang and Zhang, 2013). Con-

We extracted the ISApsm samples from the OSM build-

. ! sidering that ISApsm can overlie with ISAgrs, we re-
ings and roads through the following rules.

moved the ISApsm samples intersected with the ISARrg

1. Temporal rule. We chose the OSM data built on 2 Jan- sample pool to increase the diversity and reduce the re-

uary 2017 in terms of the time of GISA-10m. This ver-
sion of the OSM data was employed to ensure that the
buildings and roads were constructed in 2016 or before,
and hence were suitable for the 2016 ISA mapping.

. Geometric rule. A natural way to extract training points
from OSM data is to generate random points within the
building or road polygons (D. Liu et al., 2020). How-
ever, random points may contain erroneous or mixed
pixels. Such problems can be mitigated by applying
negative buffers to the polygons (D. Liu et al., 2020a).
However, this approach is very time-consuming when

Earth Syst. Sci. Data, 14, 3649-3672, 2022

dundancy of the ISA samples.

. Spectral rule. Although OSM uses humans as sensors,

ISApsm samples can still contain erroneous points, such
as vegetation and water bodies, in addition to roads. As
shown in Fig. 3c and d, the yellow points satisfy the
temporal, spatial, and geometric rules, but they are ac-
tually vegetation. Hence, we applied the spectral rule
to filter out these erroneous points. Specifically, the
ISAopsm samples whose modified normalized difference
water index (MNDWI) or normalized difference vege-
tation index (NDVI) value was larger than p + 8§ were

https://doi.org/10.5194/essd-14-3649-2022
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Figure 2. Examples of the initial and filtered ISARg training samples from the city of Wuhan in China (30.625382° N, 114.392682° E). The

purple in the close-up maps represents the samples.

removed (u and § represent the mean and standard de-
viation of the indices, respectively), as these points were
more likely to be vegetation or a water body (Huang et
al., 2021b).

After obtaining the ISA candidate samples, we ran-
domly selected 2500 ISARrs and ISApsm samples, re-
spectively, within each hexagon as the final ISA training
samples (see Sect. 5.3 for details). It can be seen that the
generated ISA samples cover a broad terrestrial surface,
especially in India and China, where a large number of
small villages are found (Fig. 4).

On the other hand, NISA (non-ISA) training samples are
also important for accurate ISA mapping. We used the three
existing datasets (i.e., GISA 30m, FROM_GLCI10, Glo-
beLand30) and the OSM to generate the NISA samples.
Firstly, we took the intersection of the NISA regions in the
three datasets as the initial NISA sample pool:

NISA = NISAgisa N NISAGiobeLand30

NNISAfrom_cLc10 — ISAosm. (D

For GlobeLand30 and FROM_GLC10, NISA is defined
as all the land-cover types other than ISA. We masked
the initial NISA sample pool using the OSM buildings
and roads to suppress the errors in the existing global
datasets. To this end, we used the OSM version built in De-
cember 2020 (https://planet.openstreetmap.org/planet/2020/
planet-201207.0sm.bz2, last access: 13 March 2021), which
documents more buildings and road networks than the 2017
version. In addition, we buffered the OSM roads with a 30 m
buffer to mitigate the errors. Subsequently, 30000 points
were randomly selected in each hexagon as NISA samples.
The distance between each NISA sample was kept larger than

https://doi.org/10.5194/essd-14-3649-2022

200 m to ensure the diversity and irrelevance. Finally, we ex-
tracted 58 million training samples (51 674 533 NISA sam-
ples and 6 897 378 ISA samples) for the GISA-10m mapping.

3.1.2 Multi-source feature extraction

The dedicated image pyramid of the GEE platform enabled
us to perform pixel-wise feature extraction (Gorelick et al.,
2017). Therefore, based on all the available Sentinel data for
2016, we constructed a set of spectral, phenological, textural,
SAR, and topographical features with the temporal compos-
ite method (Table 2). This approach used all the available
data and, at the same time, allowed us to reduce the fea-
ture dimension, preserve the temporal information, and min-
imize the effects of clouds and shadows (Yang and Huang,
2021). Firstly, we used the spectral signatures provided by
the Sentinel-2 data to extract the ISA in the visible, red-
edge, NIR, and infrared bands (Table 2). Moreover, consider-
ing that spectral indices can increase the differences between
land covers, we also extracted a series of normalized spec-
tral indices to enhance the discriminative ability between ISA
and NISA (Yang and Huang, 2021) (Table 2). These indices
were built according to the following criteria: (1) they were
mainly constructed by the NIR and SWIR bands due to their
better atmospheric transmission (Huang et al., 2021b; Yang
and Huang, 2021); and (2) each index contained at least one
10 m band (i.e., visible and NIR bands) to ensure the spatial
resolution of the features.

The complex spectral and spatial characteristics in ur-
ban environments increase the difficulty of ISA mapping.
In this regard, textural features are usually employed to de-
pict the spatial information of urban ISA (Huang and Zhang,
2013). To further exploit the textural information for the ISA
mapping, we computed the gray-level co-occurrence matrix

Earth Syst. Sci. Data, 14, 3649-3672, 2022
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Figure 3. Examples of the initial and filtered ISAggpm training samples from the city of Wuhan in China (30.530202° N, 114.356287° E).
The yellow points in the close-up maps represent the errors recognized by (a—b) the geometric rule and (c—d) the spectral rule.
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Figure 4. Global distribution of ISA training samples. The number of samples was counted within 0.5° spatial grid.

(GLCM) via the NIR band to depict the spatial information
of urban ISA. Owing to the high redundancy among GLCM
measurements (Clausi, 2002), we chose the contrast, dis-
similarity, entropy, inverse difference moment (IDM), and
angular second moment (ASM) for the texture extraction
(Rodriguez-Galiano et al., 2012). The window size for the
GLCM measurements was set to 7 x 7 as this is suitable
for urban classification with an image resolution from 2.5
to 10 m (Puissant et al., 2005). In addition, we averaged the
GLCM from different directions (0, 45, 90, and 135°) to
maintain the rotational invariance (Rodriguez-Galiano et al.,
2012).

Given that the spectra and backscatter of some NISA (e.g.,
vegetation and water bodies) vary throughout time, the phe-
nological information derived from the multi-temporal spec-

Earth Syst. Sci. Data, 14, 3649-3672, 2022

tral and SAR data was utilized to depict the temporal fluctu-
ations. We calculated the maximum NDVI and the standard
deviation of the NDVI (Tucker, 1979), MNDWI (Xu, 2006),
and normalized difference built-up index (NDBI) (Zha et al.,
2003), to further enhance the temporal information. These
temporal characteristics are useful in identifying NISA with
temporal fluctuations. For example, the spectra of fallow
cropland and ISA are similar, and even SAR data may not
separate them well. However, the NDVI of cropland can de-
scribe the changes of crop growth, and hence its standard
deviation can be used to distinguish between ISA and crop-
land. In addition, to increase the robustness of these temporal
features, Sentinel-2 data from two adjacent years were also
considered.
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Table 2. The multi-source features used for the GISA-10m mapping.
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Type Features Description Dimension  Source
Spectrum Blue, green, red, red 50th percentile value of the reflectance 10 Sentinel-2
edge 1, red edge 2, red  derived from all the available Sentinel-2
edge 3, NIR, rededge 4, images
SWIR 1, and SWIR 2
Normalized indices  Index1, Index2, Index3, Normalized indices derived from the 15 Sentinel-2
Index4, Index5, Index6,  spectral bands described above. The
Index7, Index8, Index9, indices were calculated as
Index10, Index11, Index1 = NI (NIR, blue),
Index12, Index13, Index2 = NI (NIR, green),
Index14, Index15 Index3 = NI (NIR, red),
Index4 = NI (NIR, red edge 1),
Index5 = NI (NIR, red edge 2),
Index6 = NI (NIR, red edge 3),
Index7 = NI (NIR, red edge 4),
Index8 = NI (SWIR 1, blue),
Index9 = NI (SWIR 1, green),
Index10 =NI (SWIR 1, red),
Index11=NI (SWIR 1, NIR),
Index12 = NI (SWIR 2, blue),
Index13 = NI (SWIR 2, green),
Index14 = NI (SWIR 2, red),
Index15 =NI (SWIR 2, NIR),
where NI represents the function
(b1—b2)/(bl+ b2), and bl and b2
denote two spectral bands
SAR VV, VH Temporal mean VV and VH backscatter 2 Sentinel-1
coefficients of the Sentinel-1 images
Temporal statistics NDVI_Std, Standard deviation of NDVI, MNDWI, 5 Sentinel-1 & Sentinel-2
MNDWI_Std, NDBI VV and VH backscatter coeffi-
NDBI_Std, cients; maximum NDVI of the year
NDVIMax, VV_Std,
VH_Std
Texture Contrast, dissimilarity, The GLCM texture derived from the 5 Sentinel-2
entropy, IDM, ASM NIR band of the Sentinel-2 data, includ-
ing entropy, dissimilarity, contrast, an-
gular second moment (ASM), and in-
verse difference moment (IDM)
Topography Elevation, slope, and Slope and aspect calculated from the el- 3 SRTM & GMTED
aspect evation
SAR data have the potential to reduce the false alarms composite method:
caused by bare soil in optical images, and are more sensitive !
to buildings. In addition, SAR signals can penetrate clouds. Omean = _Z?ﬂai (2)
Therefore, in this study, SAR data were combined with op- n -
tical. data for the ISA .mapping. Speci.ﬁcally, .the vertical— S (o1 — Oimean)
vertical (VV) polarization and the vertical-horizontal (VH) Ostd = " , (3)

polarization backscatter coefficients from the Sentinel-1 im-
ages were selected. Based on all the available Sentinel-1
data, the annual mean and standard deviation of the VV and
VH backscatter coefficients were calculated by the temporal
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where n denotes the total number of Sentinel-1 observa-
tions within a year, and o; represents the ith backscatter
coefficient observation in the year. The temporal compos-
ite method can reduce the speckle noise in SAR imagery

Earth Syst. Sci. Data, 14, 3649-3672, 2022
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(Lin et al., 2020), while the annual standard deviation can re-
flect the temporal information. Topography-related features
are also necessary for ISA mapping in order to reduce the
confusion between complex terrain and buildings. For in-
stance, topographical features can help to distinguish steep
hills from buildings (Gamba and Lisini, 2013). Specifically,
we used Shuttle Radar Topographic Mission (SRTM) digi-
tal elevation model (DEM) data in the areas below 58° lat-
itude, and Global Multi-resolution Terrain Elevation Data
2010 (GMTED?2010) in the areas above 58° (Huang et al.,
2021b). Finally, a total of 41 features were constructed from
the 2.7 million Sentinel images (2613 180 Sentinel-2 and
122 156 Sentinel-1) and DEM data.

3.1.3 Hexagon-based adaptive random forest
classification

When dealing with global land-cover classification, the
global terrestrial surface is usually divided into homogeneous
sub-regions according to criteria such as climate, land cover,
or administrative regions (Goldblatt et al., 2018). For global
ISA mapping, regular square grids are commonly used (Ta-
ble 1), such as 1 and 5° grids (e.g., WSF2015 and GLCFCS).
In this study, we divided the terrestrial surface into 2° hexag-
onal grid cells (Fig. 1) due to the symmetry and invariance
(You et al., 2021). Furthermore, there were no gaps or over-
laps between hexagons, and the distance between adjacent
hexagon centers was approximately equal (Richards et al.,
2000).

The RF classifier has been widely used in global ISA
mapping due to its robustness to erroneous samples, flex-
ibility with high-dimensional data, and tolerance to noise
(Bauer and Kohavi, 1999; Wulder et al., 2018) (Table 1).
The RF classifier utilizes ensemble learning to obtain pre-
dictions by voting on categories through multiple decision
trees (Breiman, 2001). Each tree uses a random subset of
the input features to increase the generalization ability. In
addition, trees are grown from different subsets of training
data (i.e., bagging or bootstrapping) to increase the diver-
sity (Rodriguez-Galiano et al., 2012). RF has been shown
to outperform other classifiers when dealing with large-scale
and high-dimensional data (Goldblatt et al., 2016). The abil-
ity of RF to handle multi-source data also makes it con-
venient when dealing with Sentinel radar and optical data.
Therefore, together with the aforementioned multi-source
features and global training samples, the RF classifier was
used for the GISA-10m mapping. As suggested by Yang and
Huang (2021), the number of trees was set to 200. We divided
the global terrestrial surface into 1808 hexagons, and a local
RF model was built for adaptive ISA classification in each
hexagon. Therefore, a total of 1808 RF models were built.
In terms of the features used to train each tree, the random
forest uses a random subset of features to reduce the correla-
tion between trees. In general, the diversity of the trees can
be increased when fewer features are used for training each
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tree (Breiman, 2001). In the GISA-10m mapping, we set the
number of features used for each tree to the square root of the
total number of features, as suggested by H. Liu et al. (2020).

3.2 Accuracy assessment

The test samples for GISA-10m included (1) visually inter-
preted samples via Google Earth; (2) test samples extracted
from ZiYuan-3 (ZY-3) built-up datasets (Liu et al., 2019);
and (3) building samples located in arid areas.

1. As suggested by Stehman and Foody (2019), we used
cluster sampling to collect the visually interpreted test
samples. The primary sampling unit involved 59 grid
cells with a side length of 1°, which were randomly se-
lected based on population, ecoregion, and urban land-
scape (the red squares in Fig. 5). The secondary sam-
pling unit included the random samples within each grid
cell. In such a way, samples from different urban sizes
and densities were considered for the validation. Specif-
ically, in each grid cell, we randomly selected 100 ISA
and 100 NISA points to test their accuracy. An equal al-
location of ISA and NISA test samples could reduce the
bias of the accuracy assessment, and hence allow for a
more accurate estimation of the user’s accuracy (Olofs-
son et al., 2014; Stehman, 2012). By referring to high-
resolution Google Earth images, a pixel (10m x 10 m)
was labeled as ISA if more than half of its area was cov-
ered by ISA; otherwise, it was identified as NISA. As
can be seen in Fig. 5, the test samples involved not only
high-density ISA samples from urban areas, but also a
large number of low-density samples from suburban and
rural regions. Finally, a total of 11 800 test samples were
obtained.

2. Liu et al. (2019) proposed a multi-angle built-up in-
dex to extract built-up areas from ZY-3 images cover-
ing 45 global cities, which obtained an overall accu-
racy (OA) of greater than 90 %. The multi-angle ZY-3
images depict the three-dimensional and vertical struc-
ture of buildings, which is more effective and accurate
than planar feature extraction for detecting built-up ar-
eas. Given the higher spatial resolution (2m) and bet-
ter accuracy of the ZY-3 global built-up dataset, we ex-
tracted test samples from it for the year of 2016 (Huang
et al., 2021b; Liu et al., 2019). A sample (10m x 10 m)
was labeled as ISA if more than 50 % of its area was
classified as ISA in the ZY-3 dataset, while the NISA
samples were those with no built-up pixels in the area
(Huang et al., 2021b). For each city, the number of sam-
ples was proportional to the area of the ZY-3 image, and
the ratio of ISA and NISA test samples was consistent
with the ratio of the built-up and non-built-up classes
(Huang et al., 2021b). In this way, we obtained 47 216
NISA samples and 21 152 ISA samples (the green dots
in Fig. 5) from 24 cities in the ZY-3 built-up dataset.
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3. Considering the difficulty of ISA extraction in arid re-
gions (Tian et al., 2018), we paid special attention to
the accuracy assessment in the arid regions. To this end,
we visually interpreted 5385 building pixels in these re-
gions. A total of 25 photo interpreters were recruited for
this task by referring to the Google Earth images. These
samples were then further checked by three experts. The
arid regions were defined according to the “deserts and
xeric shrublands” biome in Olson et al. (2001).

Based on the three groups of test samples aforemen-
tioned, the accuracy of GISA-10m was assessed us-
ing the OA, kappa, producer’s accuracy (PA), user’s
accuracy (UA), and Fl-score (the harmonic mean of
the PA and UA). Seven existing global ISA datasets
were used for the inter-comparison with GISA-10m,
i.e., GHSL 2018, GLCFCS, WSF2015, FROM_GLC10,
GISA, GAUD, and GAIA (Table 1). The three groups of
test samples mentioned above were used to assess and
compare the accuracy of these products.

4 Results

4.1 Accuracy assessment of GISA-10m
41.1 Global scale

The accuracy assessment based on the visually interpreted
samples is shown in Table 3. GISA-10m exhibits the highest
OA of 86.06 %, representing an increase in OA of +2.73 %,
+3.73%, and +2.3% over GHSL 2018, GLCFCS, and
WSF2015, respectively (Table 3). The kappa of GISA-10m
is 0.7165, which exceeds WSF2015, FROM_GLCI10, and
GAIA by 0.052, 0.1774, and 0.2039, respectively. GISA-
10m also shows a higher accuracy than the 30 m resolution
datasets (i.e., GISA, GAUD, GAIA), which suggests a better
delineation of global ISA due to the higher resolution. Fig-
ure 6 summarizes the results of the accuracy assessment at
the continent level, with the average and standard deviation
of the OA for each continent shown in the box plots. Overall,
GISA-10m exhibits a stable performance for each continent
with an average OA of more than 85 %. Specifically, Ocea-
nia and South America show the best OAs of 87.25 % and
87.08 %, followed by Europe (86.45 %) and Asia (85.85 %).
The results also show that the average OA of GISA-10m ex-
ceeds that of the existing datasets in Africa, North America,
and Europe. In addition, it is apparent that the performance
of GHSL 2018 and GLCFCS is relatively unstable in South
America and North America, respectively.

GISA-10m obtains the best OA of 86.25% on the
ZY-3 samples, outperforming GHSL 2018, GLCFCS, and
WSF2015 by 1.72 %, 1.69 %, and 0.81 %, respectively. The
7Y-3 images employed by Liu et al. (2019) covered 45 ma-
jor global cities, and therefore the ZY-3 samples were more
inclined to reflect the accuracy in urban regions. Therefore,
the accuracy difference between the various datasets is not
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significant (Table 3). Due to the relatively coarse resolution,
the 30 m datasets usually tend to overestimate the ISA extent
(P. Gong et al., 2020), resulting in a higher UA but lower PA
(Table S1 in the Supplement). For example, the ISA UA of
GISA is slightly higher than that of GISA-10m, but its PA
is much smaller (Table S1). However, when the two metrics
(PA and UA) are considered at the same time (i.e., the F1-
score), GISA-10m outperforms GISA.

4.1.2 Rural, arid, and urban regions

The population of rural regions is comparable to that of urban
regions (https://data.worldbank.org/, last access: 9 August
2022). The existing studies, and their global ISA datasets,
have usually focused on the performance in urban regions,
and the accuracy of the rural ISA regions has not been suffi-
ciently assessed. Hence, in this study, we paid special atten-
tion to the accuracy assessment in the global rural regions.
Specifically, we divided the GISA-10m into urban and rural
regions using the urban boundary defined by Li et al. (2020).
In fact, due to the random sampling strategy, most of the vi-
sually interpreted test samples were located in rural regions.

In the case of the visually interpreted samples, GISA-
10m exhibits a better OA of 86.19 % than GHSL 2018
(84.92 %), GLCFCS (83.25 %), FROM_GLC10 (78.83 %),
and WSF2015 (83.81 %). As regards the three 30 m datasets
(i.e., GISA, GAIA, GAUD), their ISA accuracy (F1-score)
decreases significantly in the rural regions, while the NISA
accuracy is relatively stable (Tables 2-3). Taking a closer
look at the PA, it is apparent that the ISA PA decreases
by more than 15 % for all three 30 m datasets (Table S2),
which suggests that there are more omission errors in the ru-
ral regions (Fig. 11b). This demonstrates the deficiency of
the 30 m datasets in depicting rural ISA, and also reflects the
importance of 10 m global ISA mapping.

Furthermore, we also focused on the accuracy assess-
ment in arid regions. In general, the OA of GISA-10m is
higher than that of the existing datasets (Table 5). Although
its ISA UA does not always outperform the other datasets,
GISA-10m achieves the highest PA (Table S4). Specifically,
GISA-10m exhibits a notably higher ISA PA than GLCFCS,
FROM_GLC10, GISA, GAUD, and GAIA (Table S3), in-
dicating its superior ability to detect ISA in arid regions
(Fig. 7). Moreover, the accuracy of these global ISA prod-
ucts was assessed using the manually and randomly chosen
rural building samples (see Sect. 3.2). It can be found that
GISA-10m detects 15 % more buildings in arid regions than
FROM-GLC10, GAUD, and GAIA (Table S5), which further
verifies its superior performance in describing rural ISA.

In the case of urban regions, GISA-10m exhibits a satis-
factory result, with an OA similar to that of the global as-
sessment (Table S4). Note that urban ISA only accounts for
one-third of global ISA, while nearly 70 % of ISA is lo-
cated in suburban and rural regions. The existing datasets
show relatively more ISA omissions in rural and arid re-
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Figure 6. Box plots of the overall accuracy for GISA-10m and existing datasets in the six continents.

gions, suggesting that global ISA mapping at a 10 m reso-
lution (e.g., GISA-10m) is necessary. Moreover, we divided
the visually interpreted samples located in cities into three
levels (i.e., small, medium, and large cities) to assess the ac-
curacy of GISA-10m for cities of different scales, i.e., Level
1 (population < 250 000), Level 2 (250 000 to 1 000 000), and
Level 3 (> 1000000) (Yang et al., 2019). The OA of GISA-
10m across the three levels of cities is 85.35 %, 87.43 %, and
85.42 %, respectively (Table S6). These results indicate that
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the performance of GISA-10m in different scales of cities is
stable, and the results are also close to the global assessment
result (OA of 86.06 %).

4.2 Global ISA distribution
4.2.1 Urban and rural ISA

Based on the GISA-10m, we analyzed the global ISA distri-
bution at a 10 m scale (Fig. S1). Global ISA is mainly dis-
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Table 3. Results of quantitative accuracy assessment via visually interpreted and ZY-3 samples between GISA-10m and the existing ISA
datasets. OA represents the overall accuracy. Bold numbers represent the highest value for each metric.

Global Visually interpreted samples (n = 10 800) Z7Y-3 samples (n = 68 368)

OA Kappa Fl-scoreof Fl-score of OA Kappa Fl-scoreof Fl-score of

(%) ISA (%)  NISA (%) (%) ISA (%)  NISA (%)
GISA-10m 86.06 0.7165 83.65 88.55 86.25 0.6664 76.25 90.32
GHSL 2018 83.33  0.6540 78.66 86.89 84.53  0.6401 75.27 88.74
GLCFCS 82.33  0.6336 71.57 85.96 84.56  0.6280 73.68 89.08
WSF2015 83.76  0.6645 79.68 87.06 85.44  0.6664 77.35 89.27
FROM_GLC10 78.16 0.5391 69.65 83.39 83.66  0.6082 72.39 88.39
GISA 78.84  0.5532 70.65 83.88 85.63 0.6627 76.65 89.63
GAUD 7736  0.5185 67.46 83.01 85.59  0.6549 75.70 89.76
GAIA 77.05 0.5126 67.13 82.77 84.23  0.6381 75.39 88.40

Table 4. Results of quantitative accuracy assessment via visually interpreted and ZY-3 samples in rural regions between GISA-10m and the
existing ISA datasets. OA represents the overall accuracy. Bold numbers represent the highest value for each metric.

Rural regions

Visually interpreted samples (n = 9547)

Z7Y-3 samples (n = 43 950)

OA Kappa Fl-scoreof Fl-score of OA Kappa Fl-scoreof Fl-score of

(%) ISA (%)  NISA (%) (%) ISA (%)  NISA (%)
GISA-10m 86.19 0.6794 77.96 90.48 90.85 0.4768 52.46 94.94
GHSL 2018 84.92  0.6297 73.34 89.88 88.95 0.4656 52.82 93.74
GLCFCS 83.25 0.5871 70.15 88.72 89.46 0.4261 48.33 94.13
WSF2015 83.81 0.6012 71.17 89.12 89.37 04514 51.05 94.04
FROM_GLCI0 78.83 0.4485 57.08 86.24 88.59  0.3884 45.08 93.63
GISA 77.87 0.4082 52.53 85.80 89.83  0.3954 44.66 94.40
GAUD 76.38 0.3516 46.13 85.05 89.70  0.3199 36.35 94.40
GAIA 7541 0.3213 43.05 84.49 88.93 0.3611 41.85 93.88

tributed in Asia (41.43 %), North America (20.59 %), and
Europe (18.93 %), followed by Africa (9.78 %) and South
America (7.50 %). It is found that 67 % of global ISA is lo-
cated in the Eastern Hemisphere, while 85 % of ISA is dis-
tributed to the north of the Equator. Rural ISA is more scat-
tered than urban ISA (Fig. S1), and is mainly located in Asia
(42.84 %), Europe (19.49 %), and North America (16.51 %).
Asia has the largest urban ISA, which is more than twice
that of Europe. Although North America only accounts for
20 % of global ISA, its urban ISA takes up more than 29 %
of the global total. Taking a closer look at the ratio of rural
and urban ISA (Table 6), it can be seen that rural ISA is 2.2
times larger than urban ISA. At the continental level, Africa
possesses the highest “rural-to-urban ratio”, which is likely
related to its large population but relatively poor economy.
At the country scale, China and the US account for 33 %
of global ISA. Together with Russia, Brazil, India, Japan, In-
donesia, France, Canada, and Germany, these 10 countries
account for 58 % of the world ISA. The urban ISA of the top
10 countries (US, China, Russia, Brazil, Japan, India, Mex-
ico, France, Germany, and the United Kingdom) makes up
69 % of the global total, while the top 10 countries in terms
of rural ISA (China, US, Russia, Brazil, India, Indonesia,

https://doi.org/10.5194/essd-14-3649-2022

Japan, France, Canada, and Germany) account for only 54 %
of the total (Fig. S3). In Africa, the Republic of South Africa
has much more urban ISA than the other countries. How-
ever, Nigeria has a comparable rural ISA to South Africa
(~7738km?). China ranks first in terms of rural ISA, most
of which is located in the North China Plain (Fig. S1b). In-
donesia also possesses a lot of rural ISA, since it ranks sixth
for rural ISA but only 16th for urban ISA.

4.2.2 Global road area

Roads are major anthropic footprints, so we attempted to an-
alyze the global road area based on GISA-10m, courtesy of
its high spatial resolution. Firstly, the road networks were ex-
tracted from the OSM database, and then the ISA regions
in the GISA 10m data within a 10 m buffer of the road
networks were identified as road areas (Fig. 8). The results
show that 82.84 % of the global road area is located in Asia
(30.74 %), North America (27.17 %), and Europe (24.92 %),
while the remaining 17.16 % is found in South America
(8.26 %), Africa (7.47 %), and Oceania (1.44 %). Although
Asia far exceeds the other continents with regard to ISA and
rural road area, it possesses a smaller urban road area than

Earth Syst. Sci. Data, 14, 3649-3672, 2022
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Table 5. Results of quantitative accuracy assessment via visually interpreted and ZY-3 samples in arid regions between GISA-10m and the
existing ISA datasets. OA represents the overall accuracy. Bold numbers represent the highest value for each metric.

Arid region Visually interpreted samples (n = 1020) Z7Y-3 samples (n = 10 827)

OA Kappa Fl-score of Fl-score of OA Kappa Fl-scoreofI Fl-score of

(%) ISA (%) NISA (%) (%) ISA (%) NISA (%)
GISA-10m 86.67 0.7358 86.05 88.22 89.64 0.7296 79.95 93.01
GHSL 2018 86.57 0.7336 86.06 87.99 85.13  0.5817 67.68 90.34
GLCFCS 82.16  0.6454 80.32 84.46 85.14 0.6232 72.45 89.82
WSF2015 82.45 0.6516 80.95 84.56 88.37  0.6881 76.53 92.27
FROM_GLC10 76.27 0.5271 70.97 80.59 84.06 0.5755 68.18 89.37
GISA 80.20  0.6058 76.89 83.39 87.72  0.6795 76.23 91.72
GAUD 77.06 0.5424 71.88 81.20 88.66  0.6894 76.37 92.54
GAIA 7745 0.5506 72.84 81.35 85.78 0.6317 72.79 90.37

! Ao, ?
FROM_GLC102017

|

*g‘}‘ =

(d) Ashkhabad

GISA-10m 2016

*

4000 m b 3
Semeetl|| GAUD 3015

GISA 30m 2016

GLCFCS 2015

Figure 7. Comparison of the GISA-10m and the other datasets over arid regions in (a) Kabul, Afghanistan; (b) Mashhad, Iran; (c¢) Buraidah,
Saudi Arabia; and (d) Ashkhabad, Turkmenistan. The illustration is of Sentinel-2 images with a false-color combination (R: NIR, G: red, B:
green) to enhance the ISA.
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Table 6. Impervious surface area derived from GISA-10m in the six continents.
ISA Europe Africa S. America Oceania N. America Asia Global
Total (107 km?) 1.88(1893%) 097(9.78%) 0.75(7.50%) 0.18 (1.76 %) 2.05(20.59%) 4.12(41.43%) 9.94 (100 %)
Rural (10°km?) 133 (19.49%) 0.78 (11.43%) 0.55(8.11%) 0.11(1.62%) 1.13(16.51%) 2.93 (42.84%) 6.84 (100 %)
Urban (100km?)  0.55(17.69%)  0.19(6.16%) 0.19(6.17%) 0.07 2.07%) 0.92(29.56%) 1.19(38.35%) 3.10 (100 %)
Rural/urban 242 4.08 1.73 1.22 2.46 2.20

it

Toyama Detroit

Chengdu Riyadh

Figure 8. Examples of road area derived from GISA-10m and OSM in Toyama (Japan), Detroit (US), Chengdu (China), and Riyadh (Saudi

Arabia).

North America. China and the US have the largest road area,
together accounting for 29 % of the global total, followed
by Brazil, Japan, Russia, Germany, India, France, Indone-
sia, and Mexico. The top 10 countries have more than half
of the global road area. The global road area accounts for
14.18 % of the global ISA, and the rural road area is 1.5 times
larger than the urban road area (Table 7). However, it should
be noted that these estimates might be biased owing to the
incompleteness of the OSM data. In addition, narrow roads
might be partly detected or missed due to the limitation of
the spatial resolution.

5 Discussions

5.1 Inter-comparison with the existing datasets

To further validate the performance of GISA-10m, we com-
pared it with the existing state-of-the-art global datasets,
i.e., three 10m resolution datasets (WSF2015, GHSL
2018, FROM_GLC10) and four 30 m resolution datasets
(GLCFCS, GAUD, GAIA, GISA). Their spatial agreement
with GISA-10m was measured by the linear fit of the ISA
fraction, including metrics such as the correlation coefficient
and root mean square error (RMSE). Attention was also paid
to the performance of the different products in urban and ru-
ral regions for a comprehensive assessment. Considering the
different spatial resolutions, the ISA fraction was calculated
within the 0.05° spatial grid.

In general, GISA-10m exhibits a high agreement
(0.777 < R? <0.892) with these existing datasets over ur-
ban regions. In the case of GHSL 2018 and FROM_GLC10,
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their fitted lines with GISA-10m are closer to the 1:1 line
in the high fraction regions (Fig. 9a and c). As shown in
Fig. 10, GHSL 2018 and GISA-10m are generally similar
in the dense urban areas (e.g., the urban cores in Fig. 10),
but GHSL 2018 tends to overestimate ISA in the low-density
residential areas (Fig. 10c). The fitted lines for GLCFCS and
WSF2015 are above the diagonal (slope greater than 1 and
intercept greater than 0) in both the high and low ISA fraction
regions, possibly due to their overestimation. For instance,
in the case of Cairo (Fig. 10b), WSF2015 shows significant
overestimation, but the other datasets better depict the res-
idential areas. According to Marconcini et al. (2020a), the
overestimation of WSF2015 may be related to the employ-
ment of the coefficient of variation (COV), which reduces
the omissions in the rural regions, but at the same time leads
to overestimation of the ISA extent. The fitted lines for the
three 30 m resolution datasets (i.e., GISA, GAIA, GAUD) are
all above the diagonal (Fig. 9e—g), suggesting that they de-
tect more urban ISA than GISA-10m. However, in the 30 m
resolution datasets, vegetation alongside roads or buildings
is often identified as ISA due to the issue of mixed pixels
(P. Gong et al., 2020). From this perspective, the results of
GISA-10m appear more reliable due to its higher spatial res-
olution. For instance, in the case of Johannesburg and Los
Angeles (Fig. 10c and d), GAIA and GAUD exhibit false
alarms in both residential and industrial areas, but these er-
rors are significantly reduced in GISA-10m, due to the supe-
rior discriminative ability of the 10 m Sentinel data.

On the other hand, the agreement between GISA-10m
and the existing datasets is slightly lower in rural regions

Earth Syst. Sci. Data, 14, 3649-3672, 2022
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Table 7. Statistics for the road area derived from GISA-10m and OSM in the six continents.

Road Europe Africa S. America Oceania N. America Asia Global

Total (10* km?) 351 (24.92%) 1.05(7.47%) 1.16(826%) 0.20(1.44%) 3.83(27.17%) 4.34(30.74%) 14.10 (100 %)

Rural (10*km?)  2.27(26.88%) 0.71 8.43%) 0.75(8.88%) 0.11(1.26%) 1.84 (21.73%) 2.77 (32.82%) 8.45 (100 %)

Urban (10*km?)  1.24 (21.99%) 0.34 (6.03%) 042(7.34%) 0.10(1.70%) 2.00 (35.29%) 1.56 (27.65 %) 5.66 (100 %)

Rural/Urban 1.82 2.09 1.81 1.10 0.92 1.77 1.49
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Figure 9. Scatterplots of the urban and rural ISA fraction between GISA-10m with GHSL, WSF, FROM_GLC10, GLCFCS, GAUD, GAIA,
and GISA, respectively. The ISA fraction was calculated within a 0.05° x 0.05° spatial grid.

(0.5099 < R? < 0.6525). The fitted slopes between the three
30m datasets (i.e., GISA, GAIA, GAUD) and GISA-10m
in the rural regions are all less than one. This phenomenon
can be attributed to the finer spatial resolution of GISA-10m,
which detects more rural ISA than the 30 m datasets (Fig. 11b
and d). As for GLCFCS and WSF2015, they possess more
rural ISA than GISA-10m (Fig. 9i and k), which could be
attributed to their overestimation. For example, in Fig. 11a
and ¢, GLCFCS and WSF2015 fail to identify the vegeta-
tion in the village. FROM_GLC10 appears more consistent
with GISA-10m (see the sample from the US in Fig. 11d),
but it tends to underestimate the rural ISA (see Fig. 11a—c).

Earth Syst. Sci. Data, 14, 3649-3672, 2022

GHSL 2018 and GISA-10m show high agreement in rural
regions. However, GHSL 2018 is aimed at outlining human
settlements, while GISA-10m is focused on artificial ISA (in-
cluding buildings, parking lots, and roads).

The differences between GHSL 2018, WSF2015, and
GISA-10m were further analyzed by taking Beijing and
Washington as examples. In Fig. 12, the overlapping parts
between these datasets are marked in different colors, and
the regions where the three datasets all agree are shown in
gray. In both examples, WSF2015 and GHSL 2018 tend to
overestimate the ISA extent (Fig. 12b), and they wrongly
identify vegetation as ISA in the low-density residential ar-
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Figure 10. Comparison between GISA-10m and the seven datasets over urban regions in (a) Suzhou, China; (b) Cairo, Egypt; (c) Johan-
nesburg, South Africa; and (d) Los Angeles, US. The Sentinel-2 images were composited in a false-color combination (R: NIR, G: red, B:

green).

eas (Fig. 12h). In particular, GHSL 2018 successfully detects
the roads in Beijing, but fails in Washington (see the purple
color in Fig. 12). This may be related to the fact that GHSL
2018 uses different sources of training samples in different
regions (Corbane et al., 2021). Although WSF2015 gener-
ally obtains similar results to GISA-10m, its detected roads
may stem from the overestimation of building boundaries.
For instance, WSF2015 ignores the airport runways in the
example of Beijing (Fig. 12d). In the case of Washington,
WSF2015 is less capable of delineating scattered buildings
than GISA-10m and GHSL 2018 (Fig. 12f), possibly because
it also incorporates the 30 m Landsat data in the ISA detec-
tion. It should be mentioned that GHSL 2018 estimates the
probability of human settlement, and hence different thresh-
olds could yield different results. Small thresholds are suit-
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able for capturing scattered settlements, but could result in
false alarms. In this study, we chose 0.2 as the threshold, as
suggested by Corbane et al. (2021).

5.2 Importance of multi-source features

In this study, we developed a global ISA mapping method
that incorporates spectral, SAR, and temporal information
extracted from multi-source Sentinel data. To illustrate the
importance of multi-source features in global ISA mapping,
we selected 30 hexagons in terms of the global urban ecore-
gions (Schneider et al., 2010). Urban ecoregions are defined
with reference to biomes, urban landscapes, and economic
levels. In each ecoregion, we randomly selected two grid
cells with a population of greater or less than 5 million, re-

Earth Syst. Sci. Data, 14, 3649-3672, 2022
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Figure 11. Comparison between GISA-10m and the seven datasets over rural regions in (a) China (126.348044° E, 45.269079° N);
(b) Uzbekistan (60.573313°E, 41.461425°N); (¢) Cote d’Ivoire (5.853317°W, 6.820244°N); and (d) the US (90.210747° W,
39.950221° N). The illustration is of Sentinel-2 images with a false-color combination (R: NIR, G: red, B: green) to enhance the ISA.

spectively (Fig. S4). The “snow and ice” ecoregion was not
considered. Feature contribution estimated by the RF classi-
fier was employed to analyze the relative importance of the
multi-source features (Pflugmacher et al., 2014). The differ-
ent color schemes in Fig. 13 indicate the different types of
features. For instance, the blue denotes SAR features while
the green represents the spectral indices. The results indicate
that the feature importance varies in the different regions.
For example, SAR features are more effective in the tem-
perate grassland of the Middle East and Asia (53N_75E and
50N_39E), while phenological features have more influence
in the deciduous forest of Siberia (65N_125E). In particular,
SAR features play a more important role in the more popu-
lated regions, e.g., in the temperate forest of North America

Earth Syst. Sci. Data, 14, 3649-3672, 2022

and Europe and the temperate grassland of the Middle East
and Asia (Fig. 13).

It is worth noting that although high-rise ISA (e.g., build-
ings) tends to have higher radar backscatter, the importance
of the SAR features is not always the highest. For exam-
ple, in the hexagon of central US (45N_96W), the SAR fea-
tures play a less significant role than the temporal metrics. In
contrast, the spectral indices and phenological information
are more effective in this region. For example, as shown in
Fig. S5 (red squares), in the residential area, the buildings
are often surrounded by dense shrubs, which can reduce the
double bounce scattering. Therefore, the spectral and phe-
nological features have a higher importance since they can
better distinguish vegetation from non-vegetation. A similar
situation occurs in a desert area (26N_45E) where the SAR
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Figure 12. Ilustration of WSF2015, GHSL 2018, and GISA-10m in (i) Beijing and (ii) Washington. Regions where the three datasets all

agree are shown in gray.
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Figure 13. Relative importance of the multi-source features in 30 randomly selected grids located in different urban ecoregions. The labels
on the right denote the grid ID and total population. Dis, IDM, and ASM represents the dissimilarity, angular second moment, and inverse

difference moment, respectively.

features cannot distinguish ISA from NISA effectively due
to the complex topography. In this case, the spectral indices
and textures are more effective (Fig. 13). However, SAR fea-
tures are still very important for global ISA mapping, es-
pecially for identifying rural buildings (Zhang et al., 2020).
Therefore, in this study, we used multi-source features and
hexagon-based adaptive RF models to ensure that the most
suitable features were chosen for the different regions.
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5.3 Impact of the training sample size and tree number

Based on the aforementioned randomly selected 30 hexagons
in different urban ecoregions, we investigated the relation-
ship between the training sample size and the accuracy
(Fig. S4). For each hexagon, we fixed the number of NISA
samples to 30000, and changed the number of ISArs and
ISApsm samples. Specifically, we first randomly selected
1000 ISAgs, 1000 ISApsm, and 2,000 NISA samples from
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the candidate pool (see Sect. 3.1.1) as the test samples and
used the remaining ones for the training. We randomly se-
lected 50 ISARrs and 50 ISApsm samples as the initial train-
ing samples and, subsequently, in an iterative manner, 400
ISARrs and ISApsm samples were randomly selected from
the pool and added to the training samples to train the RF
classifier. It can be observed that all the hexagons reach sat-
uration with 2500 ISArs and ISApsm samples (Fig. S6).
Therefore, in this research, we set the number of ISARs,
ISApsm, and NISA samples to 2500, 2500 and 30 000, re-
spectively.

We also analyzed the effect of the tree number on the ac-
curacy of global ISA mapping using the 30 aforementioned
mapping grid cells from global urban ecological regions. The
results show that the OA is low and unstable when the num-
ber of trees is less than 20 (Fig. S7). As the number of trees
increases, the mapping accuracy increases and then stabilizes
around 200 trees. Therefore, we used 200 trees for each RF
model in GISA-10m.

5.4 Advantages of locally adaptive RF classification

We used two hexagons located in China (CHN) and Saudi
Arabia (SA) to demonstrate the advantages of the adap-
tive RF classification. Although China and Saudi Arabia are
both located in Asia, their urban landscapes and architec-
tural styles are significantly different due to their differences
in climate, environment, and culture. In this experiment, we
migrated the training samples from one hexagon to classify
the other one. For example, training samples collected in SA
were used to classify the hexagon of China. The accuracy of
each hexagon was evaluated by the visually interpreted sam-
ples inside it. The results show that the OA decreases by 34 %
when the SA samples are applied to CHN (written as SA-to-
CHN). Similarly, the OA is substantially reduced by 23 % by
the transfer of CHN-to-SA. Furthermore, the local samples
always outperform the migrated ones (see Table S7), which
verifies the necessity of locally adaptive classification strate-
gies in global ISA mapping. Furthermore, a locally adaptive
model is more sensitive to the sample quality than a global
model (Radoux et al., 2014), which further shows the neces-
sity and effectiveness of the local classification strategy.

5.5 Influence of the sources of training samples

In this section, the effects of the training sample sources, i.e.,
the remote sensing dataset (ISArs) and the OSM database
(ISAopsm), were investigated. Various combinations of the
ISARs and ISApgyv training samples were tested at the global
scale using the visually interpreted samples from Sect. 3.2
(Table S8). In general, it can be found that using both sources
yields the most accurate results, which shows the effective-
ness and necessity of incorporating training samples from
both remote sensing and crowdsourced OSM data. By further
checking the UA and PA of ISA, it can be seen that using both
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sample sources significantly improves the PA and reduces the
ISA omissions, since the combination of ISArs and ISAposm
strengthens the diversity of the training samples. Similarly, it
is also found that the multi-source samples significantly raise
the PA of NISA and lower its commission error.

Given that geographic bias in the spatial distribution of
OSM data can affect the mapping results (Zacharopoulou
et al., 2021), we applied temporal and spatial rules to mit-
igate the effect of the difference of the spatial distribution.
In addition, a spectral rule was used to remove potential er-
rors in the OSM-derived training samples (i.e., ISAosm). In
fact, more than 82 % of the OSM ways are buildings and
highways, whose total number exceeds 700 million (https:
/Mtaginfo.openstreetmap.org/keys, last access: 20 June 2022).
Therefore, OSM data provide a reference for large-scale ISA
mapping, but have rarely been employed in global ISA map-
ping. We calculated the OA for the test grid cells where the
number of ISApsm training samples was less than or larger
than 2500 (i.e., the recommended size of training sample
in Sect. 5.3). The results show that the accuracy of these
regions is similar to the global accuracy (Table S9). This
phenomenon demonstrates the stable performance of GISA-
10m. Moreover, global ISA mapping using only ISAosm
training samples shows a relatively stable accuracy across
the continents (Fig. S8), suggesting that the refined OSM
buildings and roads can reduce the impact of their uneven
spatial distribution. This can be attributed to the rule-based
method we implemented that improved the reliability and
spatial consistency of ISApsm. In addition, the collaboration
of ISApsm improves the OA of global ISA mapping by 3 %
(Table S8), indicating the feasibility of OSM data in enhanc-
ing the performance of global ISA mapping after a series of
refinements. Overall, although the spatial distribution of the
OSM data is uneven, we tried to balance its spatial distribu-
tion through a series of rules, and incorporated multi-source
geospatial data (e.g., satellite-derived datasets) to reduce the
impact of geographical bias on GISA-10m.

6 Data availability

The GISA-10m dataset generated in this
study is available in the public domain at
https://doi.org/10.5281/zenodo.5791855 (Huang et al.,
2021a). The Sentinel data were acquired from the GEE
(available at http://code.earthengine.google.com, Google
Earth Engine, 2021). The GHSL data were provided by the
Joint Research Centre at the European Commission (avail-
able at https://ghsl.jrc.ec.europa.eu/datasets.php, GHSL,
2021). WSF was provided by the German Aerospace Center
(https://doi.org/10.6084/m9.figshare.c.4712852, Marconcini
et al., 2020b). The GlobeLand30 and GAUD were down-
loaded from the websites of the National Geomatics Center
of China (available at http://www.globallandcover.com/,
GlobeLand30, 2021) and Sun Yat-sen University (available
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at https://doi.org/10.6084/m9.figshare.11513178.v1, Huang,
2022). The FROM_GLC10, global urban boundaries, and
GAIA were provided by Tsinghua University (available at
http://data.ess.tsinghua.edu.cn, FROM-GLC, 2021). The
GISA was provided by the Institute of Remote Sensing
Information Processing at Wuhan University (available
at https://doi.org/10.5281/zenodo.5136330, Huang et al.,
2021c). The GLCFCS was provided by the Aerospace Infor-
mation Research Institute at the Chinese Academy of Sci-
ences (available at https://doi.org/10.5281/zenodo.4280923,
Zhang et al, 2020). The Planet files were down-
load from the OpenStreetMap website (available at
https://planet.openstreetmap.org, OpenStreetMap, 2021).

7 Conclusions

In this study, we proposed a global ISA mapping method and
produced a 10 m global ISA dataset (GISA-10m). To the best
of our knowledge, this is the first global 10 m resolution ISA
dataset based on Sentinel-1 and 2 data. To this end, a global
training sample generation method was introduced based on
a series of temporal, spatial, spectral, and geometrical rules,
and 58 million training samples were generated from the ex-
isting global ISA datasets and VGI data (i.e., OSM). On the
basis of the 2.7 million Sentinel images available on the GEE
platform, multi-source features were constructed, including
spectral, textural, SAR, and temporal metrics. The global ter-
restrial surface was divided with hexagons, and the results
were obtained by a series of RF classifiers. In particular, the
mapping was conducted adaptively for each hexagon by con-
sidering the difficulty and diversity for the global ISA detec-
tion. The OA of GISA-10m exceeded 86 % based on a set
of independent test samples. The inter-comparison between
the different global ISA datasets confirmed the superiority of
the results obtained in this study. Based on the GISA-10m
dataset, the ISA distribution at the global, continental, and
country levels was investigated and compared. In addition,
the global ISA distribution was compared between rural and
urban areas. In particular, for the first time, courtesy of the
high spatial resolution, the global road ISA was further iden-
tified, and its distribution was discussed.

The GISA-10m dataset could be used for global climate
change studies and urban planning. The proposed rule-based
sample generation method could also be applied for the
global mapping of other land-cover categories. For example,
the millions of cropland and forest tags in the OSM database
could facilitate global high-resolution cropland and forest
mapping. The ISA mapping method via multi-source geospa-
tial data presented in this paper could also be improved by
incorporating additional data sources, such as building foot-
prints from Microsoft and Facebook (Corbane et al., 2021).
In the future, we plan to extend the temporal coverage of
GISA-10m and reveal the global ISA dynamics at the 10 m
resolution.
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