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Mapping High-Resolution Global Impervious
Surface Area: Status and Trends

Huiqun Ren, Yu Liu

Abstract—Impervious surface area (ISA) mapping at the global
scale has entered a new era. Currently, the number of high-
resolution global ISA products is gradually increasing; however,
a literature review that systematically investigates these ISA prod-
ucts is still lacking, which limits the application of these products.
Thus, we provide a comprehensive analysis of the existing high-
resolution global ISA products, concentrating on the aspects of
the data sources, training samples, features, and methods. More-
over, we evaluate these products at multitemporal and multispatial
scales, using a series of independent test samples. The results
demonstrate that the multitemporal accuracy of the ISA products
presents an increasing trend, due to the increase of the available
sensors. Among the continuous time-series products [e.g., the up-
dated new global impervious surface area (GISA 2.0), the global
impervious surface area (GISA), global annual urban dynamics,
global human settlement layer, and global artificial impervious
areas], the accuracy of the GISA 2.0 outperforms the others at
global, continental, and regional scales. However, the mapping
performance of these products in small towns and arid and rural
regions needs to be enhanced. In particular, we focus on the spatio-
temporal disagreement of the ISA products. We show that the high
disagreement regions are predominantly concentrated in eastern
Asia, western Europe, and eastern North America. In addition, the
high disagreement regions are characterized by low ISA density,
high vegetation coverage, and high albedo bare ground coverage.
Additionally, this article concludes with some remarks about the
future directions of global ISA mapping.

Index Terms—Global, high resolution, impervious surface,
Landsat, remote sensing, sentinel, urban.
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I. INTRODUCTION

MPERVIOUS surface areas (ISAs) are usually covered by

man-made materials that prevent water penetrating into soil.
They usually include buildings, roads, roofs, etc. [1], [2]. In the
past decades, urbanization has been growing rapidly throughout
the world, especially in developing countries such as China
and India. Although urbanization has brought convenience to
mankind, it has also led to climate, topographic, and ecological
problems, e.g., urban heat islands, soil erosion, and air pollution
[3], [4], [5]. The emergence of ISA products has provided new
indicators for measuring human activity intensity, reflecting
the urban development process and monitoring environmental
quality [6], [7]. Furthermore, the mapping or estimation of
ISA can help with the monitoring of population growth, urban
expansion, and environmental change [8], [9], [10]. Global ISA
mapping can provide reliable macroscopic information on global
social, economic, and ecological factors, and is thus of great
importance.

From the 1970s to the 1980s, the main means of extracting
ISA information was traditional surveying technology, such
as field surveys, and aerial photo interpretation. Although the
traditional surveying technology can offer accurate and reliable
information on impervious surfaces, ISA mapping using the
traditional surveying technology is limited in scope (i.e., limited
to regional or local scales), expensive, and cannot easily be used
to update datasets in a timely manner [11]. From the economic
and technical point of view, traditional surveying technology
is not suitable for mapping ISA datasets at a global scale. The
remote sensing technology offers a new approach, with a high
cost-benefit ratio, to mapping global ISA products. However,
in the early years (i.e., the 1990s), the advancement of global
ISA mapping was hindered by the poor availability of remote
sensing images [12]. Up until the year 2000, there was only one
map—The Digital Chart of the World (DCW or VMAP(O)—that
described the global urban areas [13]. The DCW product, as
the earliest available global urban extent map with a scale of
1:1000000, represents the beginning of mapping global ISA.

The period from the 2000s to the 2010s was a stage of
development for global ISA mapping. During this time, satel-
lite imagery and remote sensing techniques started to gain
popularity for the mapping of global ISA datasets, and some
products related to ISA (the so-called first-generation prod-
ucts) were produced by various organizations. Examples of
the first-generation ISA products are the History Database of
the Global Environment v3 (HYDE3) with a 10-km resolution
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TABLE I
HIGH-RESOLUTION GLOBAL IMPERVIOUS SURFACE AREA PRODUCTS CONSIDERED IN THIS RESEARCH

Abbr. Map (reference) Data sources Spatial Time span(year) Definition Mapping
resolution method
GISA 2.0 A updated Global Landsat TM, ETM+, and 30 m 1985-2018 Impervious RF
impervious surface area OLIL, DEM surface area
[38]
GISA Global impervious surface ~ Landsat TM, ETM+,and 30 m 1972-2019 Impervious Local adaptive
area [37] OLI, DEM surface area RF
GAIA Global artificial Landsat TM, ETM+,and 30 m 19852018 Artificial Exclusion-
impervious areas [35] OLI, Sentinel-1, VIIRS impervious inclusion
NTL, MODIS areas method
GAUD Global annual urban Landsat TM, ETM+,and 30 m 1985-2015 Urban areas RF, temporal
dynamics [36] OLIL DMSP-OLS NTL segmentation
GHSL Global Human Settlement Landsat MSS, TM, 30 m 1975,1990, Built-up area SML
Layer [32], [33], [34] ETM+, and OLI 2000,2014
Sentinel-1 20 m 2016 SML
Sentinel-2 10 m 2018 Convolutional
neural network
GlobeLand30 30 m Global Land Cover Landsat TM and ETM, 30 m 2000,2010, Artificial POK-based
product [45] OLI, HJ-1 2020 surfaces method
FROM-GLC Finer Resolution Landsat TM and ETM+ 30m 2010 Impervious MLC, J4.8
2010 Observation and decision tree
Monitoring of Global Land classifier, RF,
Cover product [29], [30], SVM
[31] Landsat OLI 30 m 2015 RF
Landsat, Sentinel-2, 10 m/30 m 2017 RF
SRTM DEM
MSMT 2015  Multi-source multi- Landsat OLIL Sentinel-1, 30 m 2015 Impervious Local adaptive
or temporal impervious VIIRS NTL, SRTM surface area RF
GLC_FCS30-  surface map [40] DEM
2015
GLC_FCS30-  Global land cover product Landsat, Sentinel-1, 30m 2020 Local adaptive
2020 with fine classification VIIRS NTL, DEM RF

system [39]

Note: Long time-series (i.e., more than 30 year) Global ISA datasets include GISA 2.0, GISA, GAIA, GAUD, and GHSL. Others datasets are refereed to short time-series (i.e., less than 30 year) Global
ISA datasets. In this paper, MSMT_2015 is also called GLC_FCS30-2015 because they were derived by the same method. Hence, GLC_FCS30-2015 and GLC_FCS30-2020 is hereafter referred to as
the “GLC_FCS30” datasets. Abbreviations: MSS, Multispectral Scanner; TM, Thematic Mapper; ETM+, Enhanced Thematic Mapper Plus; OLI, Operational Land Imager; DEM, digital elevation
model; VIIRS, Visible Infrared Imaging Radiometer Suite; NTL, nighttime light; MODIS, Moderate Resolution Imaging Spectroradiometer; DMSP-OLS, Defense Meteorological Satellite Program’s
Operational Line-scan System; HJ-1, the Chinese Environmental and Disaster satellite; SRTM, Shuttle Radar Topography Mission; RF, random forest; SML, symbolic machine learning model;
POK-based method, the pixel-object-knowledge-based method; MLC, conventional maximum likelihood classifier; SVM, support vector machine.

[14], LandScan 2005 (LSCAN) [15], the Global Rural-Urban
Mapping Project (GRUMP) [2], [16], Global Land Cover 2000
(GLC 2000) at a 1-km resolution [17], the Moderate Resolution
Imaging Spectroradiometer (MODIS) 500-m map of global
urban extent (MCD12Q1) [18], [19], GlobeCover [20], and the
European Space Agency Climate Change Initiative Land Cover
project (ESA-CCI-LC) with a spatial resolution of 300 m [21].
These datasets were generated from coarse spatial resolution
(> 30 m) remote sensing data, and built with the aid of the
DCW product, vector maps, and population data [22], [23].
Although the first-generation products have significant value for
various applications and policy decisions, they also suffer from
some issues, i.e., the coarse resolution, limited accuracy, and
disagreement between products [24], [11].

During the 2000s to 2010s, the first-generation datasets
evolved from simple data processing (e.g., fusion, clustering)
and regression analysis to supervised—unsupervised classifi-
cation and feature extraction. This demonstrates that remote

sensing technology was gradually being employed in global
ISA mapping. However, the first-generation datasets exhibited
serious misclassification and overestimation problems, due to
the fact that only spectral features were considered and/or
coarse-resolution images were used. Furthermore, the intrinsic
characteristics of ISA, including the complexity, diversity, and
heterogeneity, increases the difficulty of accurate detection from
remote sensing images. Hence, there is an urgent need to develop
a global ISA dataset that has a high spatial resolution (< 30 m)
and precise mapping performance for accurate and efficient
monitoring.

The period from 2010 has been a boom period for global ISA
mapping. With the advent of freely available high-resolution
(< 30 m) Earth observation satellite images, such as Landsat
and Sentinel, much effort has been made with regard to global
ISA mapping. High-resolution images with rich spectral, spatial,
and texture information hold great potential for precise and
accurate global ISA mapping. Moreover, the emergence of cloud



7290

computing platforms [such as Google Earth Engine (GEE),
Amazon Web Services (AWS), Microsoft Azure Cloud, and
PIE-Engine] has enabled parallel accessing, processing, and
computing of huge amounts of remote sensing data [25]. Global
ISA datasets with a high resolution (< 30 m) (the so-called
second-generation products) have been produced in recent years,
including the 30 m Global Land Cover (GlobeLand30) [26],
[27], [28], the Finer Resolution Observation and Monitoring of
Global Land Cover (FROM-GLC) [29], [30], [31], the Global
Human Settlement Layer (GHSL) [32], [33], [34], the global
artificial impervious areas (GAIA) [35], the global annual ur-
ban dynamics (GAUD) [36], the global impervious surface
area (GISA) product [37], the updated global impervious sur-
face area (GISA 2.0) [38], and the global land-cover product
with fine classification system (GLC_FCS30) [39], [40]. The
second-generation products were achieved by remote sensing
images with a fine spatial resolution. In addition, these datasets
with a high spatial resolution have smaller omission errors for
impervious surface extraction in rural regions and low-density
settlements.

GlobeLand30, as the first free and openly available 30-m
global land-cover dataset, provides the earliest high spatial
resolution ISA product for the years 2000, 2010, and 2020. The
GHSL product is the first relatively long time-series (i.e., more
than 30 year) global ISA product available at a 30-m spatial
resolution, which depicts global changes in human settlement
areas over the past 40 years [33]. Subsequently, the annual
time-series global ISA products, e.g., GAIA, GAUD, GISA, and
GISA 2.0, were successively generated to provide a reference
for monitoring detailed urban, ecological, and environmental
changes. The emergence of the second-generation global ISA
products has also illustrated that relatively long time-series
global ISA mapping has entered a new stage with the char-
acteristics of high accuracy and high spatial resolution. More
recently, the Joint Research Centre released two new versions
of the GHSL product, i.e., a 2016 version with a resolution of
20 m and a 2018 version with a resolution of 10 m [32], [34]. In
addition, Marconcini et al. [41] produced the World Settlement
Footprint product with a 10-m resolution for the year of 2015,
exploiting open-and-free Landsat 8 optical and Sentinel-1 radar
satellite imagery. Furthermore, Esri developed a 10-m resolution
global land-cover product with nine Level 1 classes for the year
2020 [42]. The above products have further increased the spatial
resolution of the global ISA products, to 10 m and even higher
spatial resolutions.

To date, global ISA mapping has evolved from static to
dynamic (i.e., multiple periods), from coarse and medium spatial
resolutions (> 30 m) to high spatial resolutions (< 30 m).
The analysis and comparison of the global ISA datasets is of
paramount importance, due to the increased amount of attention
these products are generating. Although previous efforts have
been made to analyze and compare the global ISA products
[22], [23], [43], [44], these studies have mostly concentrated
on area estimation and accuracy assessment of the static global
ISA products (i.e., only one time series). A meta-analysis of the
high-resolution global ISA products covering multiple periods,
in regard to their data, samples and methods, is lacking in the
current literature.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Thus, in this article, we target the existing high-resolution
global ISA products with multiple time series (see Table I), and
undertake a more in-depth review from three perspectives.

1) We provide an in-depth analysis of the differences between
ISA products in terms of the data sources, sample collec-
tion, feature selection, and mapping methods, as well as
the impact of these differences on the products.

2) By the use of a series of global multitemporal valida-
tion samples, the existing ISA products are evaluated
separately at multitemporal and multispatial scales, with
special attention paid to their performance in arid regions,
rural regions, and different-level cities.

3) Weinvestigate the differences and correlations of the high-
resolution global ISA products through a consideration of
the different scales, including global, continental, and grid
scales. Furthermore, we explore the disagreement between
datasets, and delve into the key points and problems of
global ISA mapping.

We also list some recommendations for the future directions

of high-resolution global ISA mapping.

II. HIGH-RESOLUTION GLOBAL ISA MAPPING FRAMEWORKS

In this study, as shown in Table I, we analyzed eight public
high spatial resolution global ISA products. This section pro-
vides a detailed review of the dataset information, including the
data source, training samples, features, and methods.

A. Data Sources and Platform

High-resolution global ISA datasets are mainly derived from
Landsat and Sentinel data, and supported by MODIS, nighttime
light (NTL) data, Digital Elevation Model (DEM), and other
ancillary data (see Table I). Landsat data, with the more than
40-year record, allow long-term ISA monitoring research (e.g.,
GISA 2.0, GISA, GAIA, GAUD, and GHSL) at a global scale.
On the other hand, the ancillary data play a complementary role
in global ISA mapping. For instance, NTL data can provide
lighting information to reduce the false alarms caused by bright
bare land and scattered vegetation, especially in arid regions, and
MODIS normalized difference vegetation index (NDVI) data
use the rich time-series information to describe the phenological
characterization.

The storage and processing of huge amounts of remote sens-
ing data is a challenge for mapping ISA at a global scale.
In the early years, high-resolution global ISA mapping (e.g.,
GlobeLand30, FROM-GLC) was expensive in terms of the data
acquisition and data processing. Since 2013, this situation has
been greatly improved by the use of cloud computing platforms,
e.g., GEE [27]. GEE offers a wide range of data sources (e.g., re-
mote sensing images, ready-to-use data), creating an integrated
model for data acquisition, processing, and analysis. As such,
the advent of GEE has made it possible to quickly and efficiently
map high-resolution ISA at a global scale. In particular, in
recent years, a series of annual datasets e.g., GISA 2.0, GISA,
GAIA and GAUD, covering a relatively long-term, have been
developed.

The availability of remote sensing imagery is the basis for
global ISA mapping. Based on the GEE platform, we counted
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Fig. 1. Data availability from 1982 to 2020 based on GEE. Note: MSS, TM,
ETM+ and OLI represent Multispectral. Scanner, Thematic Mapper, Enhanced
Thematic Mapper Plus, and Operational Land Imager, respectively. Both VV and
VH are single co-polarization. The former represents vertical transmit/vertical
receive and the latter represents vertical transmit/horizontal receive.

the available data, with the cloud threshold set at 80%, for
Landsat and Sentinel images from 1982 to 2020 (see Fig. 1).
Overall, the annual observations have increased over the past
three decades, and fewer Landsat images were available in
the 1980s. To address this situation, some studies (e.g., GISA,
GAIA) have supplemented the information with the help of
images from adjacent time periods, to reduce the effect of
missing data from the early years (e.g., the 1980s) [35], [37].
However, there are greater uncertainties in the early years in the
long-term datasets (e.g., GISA 2.0, GISA, GAIA, GAUD, and
GHSL) than in more recent years (e.g., after 2000). Sentinel
images, with higher spatial resolution than Landsat, became
available after 2015. Of these images, the Sentinel-1 images
have shown great potential to support global ISA mapping,
because of their all-day, all-weather characteristics. However,
the short observation records of the Sentinel images signify that
they cannot be used for long time-series ISA monitoring [46].
In order to ensure the quality and quantity of the imagery, some
studies have employed remote sensing imagery from different
sensors, but the inconsistency between satellite sensors is also
an issue that needs to be considered [32], [47].

B. Training Sample Collection

Training samples are a crucial part of global high-resolution
ISA mapping. There are the following three main ways to collect
training samples in high-resolution global land-cover mapping:

1) field surveys [48];

2) visual interpretation based on high-resolution remote
sensing imagery [49];

3) the use of open-source data (e.g., geographic information
system (GIS) data, OpenStreetMap (OSM) data, settle-
ment points data, existing land-cover datasets) [16].

Sample collection via field survey has the highest accuracy
and reliability. However, this method is expensive and time-
consuming, especially for large-scale and long-term land-cover
mapping. In fact, visual interpretation or the use of open-source
data is currently the most extensively used method of sample
collection.

Visual interpretation is performed by interpreters to collect
samples using high-resolution remote sensing imagery, such
as Google Earth, Landsat, etc. Some studies have argued that
the visual interpretation method tends to make the training
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samples less representative and comprehensive, because of the
intervention of humans with limited domain knowledge [50].
In addition, collecting time-series training samples with a high
quality for long time period land-cover mapping is still a chal-
lenge. Especially before 2000, there is greater uncertainty in the
training samples obtained from visual interpretation, due to the
unavailability of Google Earth images. Hence, some products,
such as GISA and GAIA, refer to MODIS NDVI time-series
data to improve the accuracy of multitemporal training samples.

On the other hand, through the use of open-source data, it is
possible to automatically and efficiently select training samples,
but these open-source data are often sourced from different orga-
nizations or institutions, so that the consistency and quality of the
training samples can be not guaranteed. In addition, the training
samples generated from the existing land-cover products are
inevitably affected by classification errors.

The scale and representativeness of the training samples di-
rectly influences the mapping quality [51]. Insufficient, unrepre-
sentative, and incorrect training samples introduce uncertainty
and have a negative effect in the land-cover mapping procedure
[11]. Generally, researchers prefer to use the stratified random
sampling strategy to collect samples for global land-cover map-
ping [52], [53]. The obtained training samples are then secon-
darily checked to further ensure their quality. As it is difficult
and challenging to check all the training samples at a global
scale, researchers have usually randomly checked a proportion
of the training samples. For example, Zhang et al. [40] selected
1% of the total training samples verify their representativeness
and sensitivity.

Training sample collection is still a costly task in high-
resolution global ISA mapping. Therefore, this calls for an
automated or semi-automated method to collect accurate and
sufficient samples [54]. Several studies have used mathematical
morphology or distance detection methods to reduce the cost of
sample collection and time-series sample update [55], [56], [57].
For example, Li and Xu [58] proposed a rapid method to extract
training samples from multisource land-cover products, which
effectively improved the reliability and accuracy of the samples;
and Li and Xu [59] used a robust marginal distance detection
method to automatically update 35 annual training samples
for dynamic surface water mapping. More recently, Huang et
al. [38] combined training samples from visual interpretation
and automatic extraction to generate a new 30 m global ISA
dataset (GISA 2.0), and the results indicated that this method
further improves global ISA accuracy. Hence, these automatic
and semi-automatic training sample collection methods are im-
portant references for high-resolution global ISA mapping.

C. Features of Global High-Resolution ISA Mapping

The features used in the existing high-resolution global ISA
products can be categorized into topographic, spectral, syn-
thetic aperture radar (SAR), and texture features (see Table II).
Among the different features, spectral features are essential for
extracting ISA information. Meanwhile, other features play a
complementary role in global ISA mapping, and they contribute
to further improving the accuracy of the datasets. Topographic
features describe the elevation, slope, aspect of the land surface.
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TABLE II

FEATURE INFORMATION OF THE EXISTING GLOBAL HIGH-RESOLUTION ISA MAPPING PRODUCTS

ISA product Topography feature Optical feature SAR feature Texture feature
GISA 2.0 Elevation, slope Spectral bands and NDVI, MNDWI, - -
NDBI (in their 20%, 50% and 80%
percentiles) as well as their multi-temporal
standard deviations
GISA Elevation, slope Spectral bands and NDVI, MNDWI, - -
NDBI (in their 20%, 50% and 80%
percentiles) as well as their multi-temporal
standard deviations
GAIA -- Spectral bands (such as SWIR), NDVI, Backscatter coefficients (i.e., -
MNDWI, NDVI (in their standard VV and VH polarizations)
deviations, mean and anomaly)
GAUD -- Spectral bands (including blue, green, red, - -
NIR, SWIRI, and SWIR2), NDVI,
NDWI, and NDBI
GHSL - Spectral bands (including blue, green, red, - Rotation-
NIR, and PAN), NDVI, etc. invariant and
anisotropic
contrast texture
GHSL 2016 Slope, aspect, and crest -- Dual-polarization backscatter Texture
lines coefficients (VV and VH) (including the
mean and
standard
deviation of the
backscatter
coefficients)
GHSL 2018 - Spectral bands (including blue, green, red, - --
and NIR)
GlobeLand30 - Six spectral bands (such as red, NIR, -- Variance
SWIR, etc.), NDVI, and NDBI texture of the
PAN band and
NIR band
FROM-GLC - Spectral bands (including blue, green, red, - --
2010 NIR, SWIRI and SWIR2)
FROM-GLC - Spectral bands (for example, blue, green) -- --
2015
FROM-GLC Elevation, slope, and Nine Landsat-8 image bands, NDVI, EVI, - -
2017 aspect MNDWI, NDBI, NBI (in their 25%, 50%
and 75% percentiles) as well as their
standard deviations and mean
GLC_FCS30 Elevation, slope, and Spectral bands (including blue, green, red, Backscatter coefficient (VV Variance,
aspect NIR, SWIRI, and SWIR2), NDVI, NDBI, and VH polarizations) dissimilarity

NDWTI (in their 15% and 85%) as well as
their mean and standard deviations

and entropy
textures of the
NIR, VV, and
VH

Note: Abbreviations: NDVI, normalized difference vegetation index; MNDWI, modified normalized difference water index; NDWI, normalized difference water
index; NDBI, normalized difference built-up index; SWIR, shortwave infrared; NIR, near infrared; PAN, panchromatic; EVI, enhanced vegetation index; NBR,
normalized burn ratio. Note: -- indicates that the corresponding feature is not used.

Owing to the unique characteristics of topographic features in
mountainous and shaded areas, many studies (e.g., GISA 2.0,
GISA, GHSL, FROM-GLC, and GLC_FCS30) have generated
ISA products using topographic features at a global scale [30],
[32], [37], [38], [40]. For instance, the GLC_FCS30 product
considers elevation, slope, and aspect, calculated from the Shut-
tle Radar Topography Mission (SRTM) Advanced Spaceborne
Thermal Emission and Reflection Radiometer DEM data, to
help identify ISA. The GHSL product uses topographic fea-
tures (including slope, aspect, and crest lines) to attenuate the

confusion between the vertical structures of built-up areas and
vertical land-cover classes (such as rock cliffs).

The spectral features [e.g., red, green, blue, near infrared
(NIR), and shortwave infrared (SWIR) bands] have been found
to be essential for mapping ISA datasets [60], [61]. In the
1990s, Ridd [62] decomposed the urban ecosystem into ISA
and non-ISA (including vegetation, bare land, and water bodies).
Hence, the essence of ISA mapping is to mask nonimpervious
information. NDVI and EVI data are efficient ways to express
vegetation information [63], but they are primarily acquired
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during the growing season, to increase the distinction between
vegetation and other classes. Water bodies can be masked out by
NDWI or MNDWT I indices [64], [65]. Bare land can be extracted
using the SWIR band, which can separate bare land from ISA in
summer [66].The ISA information can also be identified using
the normalized difference built-up index (NDBI), biophysical
composition index, and built-up areas saliency index [67]. In
addition, some studies, such as GISA 2.0, GISA, GAIA, FROM-
GLC 2017, and GLC_FCS30, calculated the mean, percentage
(e.g., 15%, 85%), and standard deviation of the spectral bands
to obtain their temporal features [68], [69].

SAR features have the potential to mitigate the spectral sim-
ilarity between ISA and other classes, because they canuseful
information about the dielectric and geometric characteristics of
ISA [70], [71], [72]. Among the existing high-resolution global
datasets, GAIA uses backscatter coefficients to remove bare land
from ISA in arid regions, and the GLC_FCS30 product fuses
SAR and optical features to help with ISA recognition. However,
SAR features cannot easily distinguish between mountainous
areas with steep slopes and man-made facilities associated with
water bodies (e.g., ships, drilling rigs, bridges). Compared to
spectral features, SAR features have not been widely explored
in ISA mapping, owing to the complexity of their interactions
with the diverse ISA types [73], [74].

Texture features from high-resolution satellite imagery
present the structure of ISA [11]. Several studies have pointed
out the effectiveness of texture features for high-resolution
global ISA mapping [75], [76]. For example, GHSL employs a
string of textures, e.g., anisotropic contrast texture and backscat-
ter texture, to improve the separability between ISA and the most
confusing classes [33]; GlobeLand30 uses variance textures
to extract ISA information in high heterogeneity areas; and
GLC_FCS30 detects different ISA classes with the support of
the variance, phase anisotropy, and entropy textures.

Several studies have analyzed the contribution of ISA map-
ping features [77], [78]. For example, Zhang et al. [72] compared
optical and SAR features, and found that the optical features
provided better ISA estimation results than the SAR features;
Shao et al. [67] discovered that both optical features and single-
polarized SAR features are useful for mapping global ISA, but
the best mapping accuracy was achieved by fusing optical and
SAR features; and Zhang et al. [40] ranked the contributions of
the topographic-texture-optical-SAR features, and revealed that
the VV and VH features are of the highest importance in most
regions of the world, followed by the blue, green, red, and SWIR
bands.

In summary, the optical and SAR features play a vital role in
ISA mapping, but other features can be used to derive more ISA
information. In order to achieve a high accuracy in global ISA
mapping, the multifeature fusion approach is a good choice.
Currently, the multifeature fusion approach is less commonly
used in high-resolution global ISA mapping, however, it is able
to achieve complementarity between features, reduce the clas-
sification uncertainties of spectral features, relieve the negative
effects of spectral confusion (e.g., high-reflectance ISA with
bare land, low reflectance ISA with shadows), and cope with the
heterogeneous landscapes of ISA at a global scale. Therefore,
the multifeature fusion approach provides a new possibility
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for high-resolution and high-quality global ISA mapping, and
needs to be given more consideration in future research. At the
same time, it will also be necessary to consider the computa-
tional cost of multiple features and the redundancy between
features.

D. Mapping Methods

Studies of mapping ISA atregional, national, and global scales
using satellite imagery were started more than four decades ago,
and a wide range of methods have since been developed. Lu
et al. [24] grouped the major ISA mapping methods into six
categories [pixel-based, object-based, subpixel-based, spectral
mixture analysis (SMA), regression analysis, and thresholding],
according to the use of the remote sensing variables and tech-
niques. In addition, Wang and Li [50] divided the ISA mapping
methods into four categories, i.e., SMA, image classification,
urban indices, and multisource data fusion, with respect to the
characteristics and framework of the methods. Thus, researchers
can choose the appropriate ISA mapping method by taking into
account the data source, study purpose and application, study
area scale, characteristics, etc. [11].

Random forest (RF), support vector machine (SVM), and
decision tree classifiers are widely used, given the huge amount
of data processing and computational cost in global ISA map-
ping. In addition, some studies have employed indices-based,
threshold-based, regression-based, and deep learning methods
to estimate ISA extent at a global scale (see Table I). In the
time-series ISA mapping (e.g., GISA 2.0, GISA, and GAIA),
the postprocessing methods are usually used for dealing with
the classification errors of temporal-independent ISA maps
[79]. The postprocessing methods often include the temporal
consistency check and logical transition [80]. The temporal
consistency check employs the temporal—spatial filter windows
of different sizes, and aim to remove noise or misclassifications.
The logical transition suppresses illogical conversion between
land cover classes according to the transition rules, e.g., the
ISA irreversibility rule [59], [81]. The postprocessing method
is important for obtaining the temporally consistent ISA maps.
The effectiveness of the postprocessing methods for generating
more reliable ISA time-series information has been verified in a
number of studies [82].

GlobeLand30 and FROM-GLC, as earlier high-resolution
global ISA products, used multiple classifiers to complete the
ISA mapping [26], [29], [45]. GlobeLand30 employed a combi-
nation of SVM and decision tree classifiers to cope with the com-
plexity and diversity of the ISA environment. FROM-GLC 2010
employed SVM, RF, MLC, and J4.8 decision tree classifiers,
and the results showed that the SVM classifier gave the highest
mapping accuracy. However, the accuracy for the class of ISA
was below 20%. This may be due to the fact that FROM-GLC
2010, as an attempt at global mapping, has shortcomings in the
data selection, sample collection, and feature extraction.

The RF classifier is the most popular classifier in global high-
resolution ISA mapping [83], [84]. This can be attributed to its
following advantages:

1) robustness, in that the result is not easily affected by

training sample errors;
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2) stability, in that the mapping accuracy is less affected by

the classifier parameters and input features;

3) the good tradeoff between mapping accuracy and com-

putation time;

4) efficient handling of multidimensional multisource data

[85], [86], [87], [88].

Notably, the locally adaptive RF method has been uti-
lized in global ISA mapping, e.g., for GISA 2.0, GISA, and
GLC_FCS30. The locally adaptive RF method partitions the
mapping area into multiple regions, and then trains the classifier
for each region using local training samples [89]. Studies have
demonstrated that the locally adaptive RF approach increases
the sensitivity to the quality of the training data and mitigates
the deficiencies of migrating a single global classifier to other
mapping regions [90], [91].

Deep learning has been applied in many remote sensing
studies, due to its excellent performance in visual recognition,
object detection, and semantic segmentation [92], [93], [94]. In
recent years, deep learning has been put to use as a new tool for
high-resolution global ISA mapping [95], [96]. For example,
Corbane et al. [34] used a convolutional neural network (CNN)
to develop the GHSL 2018 version, with a spatial resolution
of 10 m; Liu et al. [97] adopted an intelligent mapping frame-
work combining RF and machine learning to produce the first
30-m annual to seasonal global land-cover mapping product for
1985-2020; and Karra et al. [42] used deep learning models to
train over 5 million Sentinel-2 artificial labels for developing
global land-cover products at a 10-m resolution. The successful
generation of the above products illustrates the great potential
of deep learning methods for high-resolution large-scale ISA
mapping, although its biggest impediment is the requirement
for large numbers of training samples and large amount of
computing power.

The mapping strategies also influence the global ISA map-
ping. The mapping strategies include: global and local strategies.
The global strategies regard the globe as a whole, by constructing
a single classification method using global training samples
[40]. For example, FROM-GLC 2010 was generated using a
global classifier with 91 433 training samples [29]. On the other
hand, however, the local strategies split the globe into a number
of regions, and a local classifier is trained with local training
samples. Recently, researchers have indicated that the local
strategies performed better than the global ones at balancing the
data volume, reducing computation cost, and improving classi-
fication accuracy [89], [90]. Hence, in the recently developed
global ISA products (e.g., GISA 2.0, GISA, GAIA, GAUD, and
GLC_FCS30), the local classification strategies are preferred,
by dividing the globe into amounts of grid tiles.

III. ACCURACY COMPARISON BETWEEN EXISTING GLOBAL
ISA DATASETS

A. Collection of Test Samples

In this study, a series of independent test samples were col-
lected to evaluate the accuracy of the existing high-resolution
global ISA products (in Table I) over multiple temporal and
multiple scales.
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TABLE III
GLOBAL HUMAN SETTLEMENT POINTS STATISTICS

Name Year Sample number
GRUMP 2000 39401
2001 13321
2002 3981
GeoNames 2010 2687
2011 6194
2012 21552
2013 7209
2014 15994
2015 6828
2016 12530
2017 26854
2018 17809
2019 14 345
Total - 188705

1) Manually Interpreted Samples: The manually interpreted
samples (MI samples) were in 243 cities around the world. In
order to evaluate the multiperiod accuracy of the high-resolution
global ISA datasets, the MI samples covered nine sampling years
(1978, 1985, 1990, 1995, 2000, 2005, 2010, 2015, and 2018),
and were obtained with the assistance of high-resolution Google
Earth images. For each sampling year, 27 cities were randomly
selected across the world, in respect to their population and
biomes, including seven large cities (population > 5 million), 10
medium cities (1 million < pop < 5 million), and 10 small cities
(population < 1 million). For each city, the stratified random
sampling method was used. According to the sampling strategy
recommended by Olofsson et al. [52], the number of samples
in each city was proportional to its area, and the number of
samples per year was between 3000 and 6000. The sampling was
conducted by experienced interpreters, and each interpreter was
independent of the others in the sampling process. Additional
interpreters were invited to check and correct the samples.

2) High-Resolution ZY3 Built-Up Area Samples (ZY3 Sam-
ples): Based on the high spatial resolution (3 m) multiview ZY3
remote sensing imagery, Liu et al. [98] established a built-up area
dataset from 2012 to 2017 in 45 typical cities around the world.
The ZY3 samples with a high spatial resolution and reliability
were extracted from this built-up area dataset, and were used
as test samples for assessing the global ISA dataset. Likewise,
we used a stratified random sampling design. In addition, the
interpreters carried out a secondary check of the ZY3 samples
with reference to the high-resolution ZY3 imagery to ensure the
correctness of the sample datasets. The spatial distribution of
the MI samples and the ZY3 samples is shown in Fig. 2.

3) Global Settlement Points Data: We also validated the
high-resolution global ISA datasets with the settlement points
provided by the GRUMP [99] and GeoNames (http://download.
geonames.org) (see Table III). These settlement points include
the human habitations of different sizes around the world, and
every point reflects the location of a city or town. As suggested
by Gong et al. [100], we designed different buffers for every
point, with diameters of 30, 100, 250, and 500 m, to represent the
artificial impervious areas. As the number of settlement points
varies between years (see Table III), the results are presented as
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Fig. 2.  Spatial distribution of the test samples.

the percentage of detected settlement points relative to the total
number of settlement points.

B. Results

1) Accuracy Comparison: Table IV lists the test accuracies
of the high spatial resolution global ISA products, as obtained
from the MI samples and ZY3 samples. Focusing on the long
time-series products (e.g., GISA 2.0, GISA, GAIA, GAUD, and
GHSL), GISA 2.0 has the highest test accuracy, and its overall
accuracy (OA) is 97.38% and 88.56% for the MI and ZY3
samples, respectively, followed by GISA (96.92%, 86.72%),
GAUD (95.54%, 88.06%), GAIA (89.19%, 86.03%), and GHSL
(94.37%, 83.72%). GISA 2.0 obtains the highest accuracy due
to its concentration on the inconsistent regions of the existing
global ISA products, and the mapping results in these regions
were enhanced by adding manually interpreted samples [38]. It
should be noted that GHSL provides only a few discontinuous
time-series results. Consequently, the number of test samples for
GHSL was 19 517 and 22 536 for the MI and ZY3 validation
data, respectively, while the number of test samples for other
long time-series products was 32 392 and 42 850.

Among short time-series products (e.g., GlobeLand30,
FROM-GLC, and GLC_FCS30), GlobeLand30 has the highest
accuracy, with an OA of 97.44% and 85.32% for MI and ZY
test samples, respectively. The high accuracy of GlobeLand30
can be attributed to its use of the multiple-classifier mapping
method (see Section II-D), which mitigated the spectral confu-
sion of the different land-cover classes. In addition, the extensive
consistency checking and manual interpretation guaranteed the
quality of the GlobeLand30 product [46].

2) Multitemporal Accuracy At Global and Continental Lev-
els: Fig. 3 shows the multitemporal OA of the high-resolution
global ISA products obtained using the MI validation samples.
As the percentage of ISA in Oceania is very small, we combined

0°

30°E 60°E

ZY-3 high resolution samples

90°E 120°E 150°E

Oceania into Asia in this accuracy assessment. Overall, the OA
displays an increasing trend during 1975-2020 at both global
and continental scales. The trend in OA can be divided into
two periods over the past 40 decades. Before 2000, the OA
growth was dramatic, and the OA difference between various
ISA products was significant; however, after 2000, the OA
growth slowed, and the accuracy difference between different
products gradually reduced. This pattern is mainly because of the
improvement of the remote sensing image quality and quantity
over time. For the long time-series datasets, the OA growth over
time is more obvious.

The time-series OA curves also manifest different fluctua-
tions at global and continental scales (see Fig. 3). At global
scale, the OA curves of the ISA products are less fluctuated.
Hence, the time-series OA curves of the continuous time-series
products have small OA variance at global scale (see Fig. 4).
Larger fluctuation of the OA curves is observed in Africa and
South America, which shows that the ISA mapping results
have more instabilities in these regions, and the time-series
regularity and calibration need further enhancement. In contrast,
the OA curves in Asia, Europe, and North America are relatively
stable.

Among the long time-series products (i.e., GISA 2.0, GISA,
GAIA, GAUD, and GHSL), GAUD presents the smallest OA
variance at global scale (see Fig. 4). Hence, GAUD has the
highest mapping stability, due to its use of temporal segmenta-
tion method [36]. GAIA has a large OA variance, indicating its
poor mapping stability, especially in Asia, Europe, and Africa.
In addition, the accuracy variance of GISA2.0 is also smaller,
which demonstrates that it has advantages in both mapping
accuracy and stability.

GlobeLand30, GLC_FCS30, and FROM-GLC are not dis-
cussed here, as they only provide a few discontinuous results.
These datasets are also not considered in Section III-B, Sec-
tion III-C, and Section III-D.
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TABLE IV

HIGH-RESOLUTION ISA MAPPING ACCURACY OBTAINED FROM THE MI SAMPLES (LEFT COLUMN) AND ZY 3 HIGH-RESOLUTION SAMPLES

(RIGHT COLUMN) AT A GLOBAL SCALE

MI samples ZY 3 validation points

GISA 2.0 (30 m) ISA NISA UA (%) GISA 2.0 (30m) ISA NISA UA (%)
ISA 15469 80 99.49 ISA 18 588 2066 90.00
NISA 768 16 075 95.44 NISA 2837 19 359 87.22
PU (%) 95.27 99.50 32392 PU (%) 86.76 90.36 42 850
OA (%) 97.38 kappa 0.9476 OA (%) 88.56 kappa 0.7712
GISA (30 m) ISA NISA UA (%) GISA (30 m) ISA NISA UA (%)
ISA 15319 81 99.47 ISA 17 601 1867 90.41
NISA 918 16 992 94.60 NISA 3824 19 558 83.65
PU (%) 94.35 99.50 32392 PU (%) 82.15 91.29 42 850
OA (%) 96.92 kappa 0.9383 OA (%) 86.72 kappa 0.7344
GAIA (30 m) ISA NISA UA (%) GAIA (30 m) ISA NISA UA (%)
ISA 12902 168 98.71 ISA 17 768 2331 88.40
NISA 3335 15987 82.74 NISA 3657 19 094 83.93
PU (%) 79.46 98.96 32392 PU (%) 82.93 89.12 42 850
OA (%) 89.19 kappa 0.78.38 OA (%) 86.03 kappa 0.7205
GAUD (30 m) ISA NISA UA (%) GAUD (30 m) ISA NISA UA (%)
ISA 14990 198 98.70 ISA 18 556 2248 89.19
NISA 1247 15957 92.75 NISA 2869 19177 86.99
PU (%) 92.32 98.77 32392 PU (%) 86.61 89.51 42 850
OA (%) 95.54 kappa 0.9108 OA (%) 88.06 kappa 0.7612
GHSL (30 m-10 m) ISA NISA UA (%) GHSL (30 m-10 m) ISA NISA UA (%)
ISA 8839 1[73]33 98.51 ISA 8548 1343 86.42
NISA 965 9580 90.85 NISA 2720 9925 78.49
PU (%) 90.16 98.63 19517 PU (%) 75.86 88.08 22 536
OA (%) 94.37 kappa 0.8875 OA (%) 81.97 kappa 0.6394
GlobeLand30 ISA NISA UA (%) GlobeLand30 (30 m) ISA NISA UA (%)
(30 m)

ISA 4604 99 97.89 ISA 4323 933 82.25
NISA 144 4649 97.00 NISA 476 3866 89.04
PU (%) 96.97 97.91 9496 PU (%) 90.08 80.56 9598
OA (%) 97.44 kappa 0.9488 OA (%) 85.32 kappa 0.7064
FROM-GLC (30 m- ISA NISA UA (%) FROM-GLC (30 m- ISA NISA UA (%)
10 m) 10 m)

ISA 6277 99 98.45 ISA 9441 1143 89.20
NISA 1791 7887 81.49 NISA 3908 12 206 75.75
PU (%) 77.80 98.76 16 054 PU (%) 70.72 91.44 26 698
OA (%) 88.22 kappa 0.76.48 OA (%) 81.08 kappa 0.6216
GLC FCS30 (30m) ISA NISA UA (%) GLC_FCS30 (30 m) ISA NISA UA (%)
ISA 5323 263 95.29 ISA 10 869 1650 86.82
NISA 316 5294 94.37 NISA 2480 11699 82.51
PU (%) 94.40 95.27 11196 PU (%) 81.42 87.64 26 698
OA (%) 94.83 kappa 0.8966 OA (%) 84.53 kappa 0.6906

Note: OA: overall accuracy; UA: user accuracy; PA: product accuracy.

3) Accuracy At the City Level: We further tested the accuracy
for the different-level cities. As illustrated in Fig. 5, the median
OA for all the cities is greater than 89%. However, the large and
medium cities show better results than the small ones, in terms
of the maximum and median OA. Hence, more attention should
be devoted to small cities in future work. In general, GAIA
shows the largest variations for each city level. The GISA 2.0
and GISA achieve the high OA, but GISA shows large variance
in the small cities. GAUD shows the smallest variation in all the
city levels, but it has a lower accuracy in small cities. For GHSL,
it can be seen that the variations of the accuracy become larger
gradually from level 1 to level 3. Possible explanations include:
1) the definition of GHSL is focused more on urban areas, and
2) mapping rural ISA is more difficult than mapping urban ISA.

For the purpose of visual inspection, we randomly selected
two large cities (Beijing and New York), two medium cities

(Rome and Adelaide), and two small cities (Iquitos and Kindia).
As seen from Fig. 6, the large and medium cities have more
ISA with a concentrated and continuous distribution pattern,
and these regions demonstrate a higher mapping accuracy and
smaller differences between datasets. In contrast, the small
cities, with low-density, fragmented ISA, have relatively lower
mapping accuracy and larger differences between datasets.
Moreover, we calculated the agreement extent of the global ISA
products for the cities at different levels (the last row in Fig. 6),
and found that large cities show a better agreement than medium
and small cities.

Meanwhile, it is important to note that in the mapping results
of the large and medium cities, their high agreement regions
are mainly distributed in the urban centers. Thus, the regions
surrounding the urban areas with discrete ISA objects still need
to be given more attention for future global ISA mapping.
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Multiperiod accuracy of the high-resolution global ISA products at global and continental scales, where the accuracy was evaluated using the MI samples

For these difficult regions, higher spatial resolution remote sens-
ing imagery may be needed, to increase the identifiability of ISA.

C. Accuracy for Rural and Arid Regions

In arid regions, the ISA with high albedo can be confused
with the surrounding bare land, due to their similar spectral
properties, which usually leads to low classification accuracy
in these regions [35], [100]. In rural regions, small and isolated
impervious objects may result in omission and underestimation
[101]. Therefore, we divided the mapping area into arid and
nonarid regions, and urban and rural regions, respectively, ac-
cording to global biome data and multitemporal global urban
boundary data [35], [102]. We then assessed the accuracy of the
long time-series global ISA products for arid and rural regions,
using the MI samples. The spatial distribution of the samples is
displayed in Figs. 15 and 16.

Table V illustrates that the accuracy in rural and arid regions is
lower than the global accuracy (see Table IV). Itis suggested that
the mapping results for arid and rural regions are relatively poor.
The rural and arid regions need to be paid more attention in future
work. Specifically, the OA in arid regions in descending order is:
GISA 2.0 (94.46%), GISA (90.78%), GHSL (84.96%), GAUD
(84.79%), and GAIA (83.36%), and the OA in rural regions is:
GISA 2.0 (91.31%), GISA (88.33%), GHSL (84.74%), GAUD
(and 78.12%), and GAIA (72.10%).

In addition, the UA of the ISA products is generally higher
than the PA in arid and rural regions, which is mainly because
these regions have more non-ISA. Therefore, we used the F-
score indicator to integrate PA and UA of the ISA products.
The F-score also shows a similar situation: GISA 2.0> GISA >
GHSL > GAUD > GAIA.
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D. Accuracy From Global Human Settlement Points It should be kept in mind that GHSL has only four discontinuous
periods, and hence, it uses much smaller settlement points than
the other products in the test accuracy, which is a major reason for
its highest accuracy. Of the long time-series ISA products (i.e.,
GISA 2.0, GISA, GAIA, and GAUD), the GHSL and GISA 2.0
are superior to other ones in most situations.

Fig. 7 displays the accuracy of the long time-series datasets,
assessed by the global human settlement points. In this case,
GHSL shows the highest accuracy, since it targets built-up areas,
i.e., houses and their surrounding neighborhoods [33], [34].



REN et al.: MAPPING HIGH-RESOLUTION GLOBAL IMPERVIOUS SURFACE AREA: STATUS AND TRENDS 7299
TABLE V
CONFUSION MATRICES FOR THE SEVEN ISA PRODUCTS AT A GLOBAL SCALE
Arid areas OA (%) Kappa UA of ISA (%) PA of ISA (%) F-Score of ISA (%)
GISA 2.0 94.56 0.8913 99.12 89.93 94.30
GISA 90.78 0.8155 98.28 83.00 90.00
GAIA 83.36 0.6673 97.92 68.18 80.38
GAUD 84.79 0.6957 97.36 71.51 82.46
GHSL 84.96 0.6992 98.18 7124 82.57
Rural areas OA (%) Kappa UA of ISA (%) PA of ISA (%) F-Score of ISA (%)
GISA 2.0 91.31 0.8263 99.42 83.11 90.54
GISA 88.33 0.7666 98.94 77.49 86.91
GAIA 72.10 0.4420 97.66 45.29 61.88
GAUD 78.12 0.5623 98.06 57.37 72.39
GHSL 84.74 0.6948 98.01 70.92 82.29
Note: OA represents overall accuracy. UA represents user’s accuracy. PA represents producer’s accuracy.
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Fig. 7. Accuracy comparison for the ISA products based on global human
settlement points.

Buffer zones with different diameters affect the accuracy of
the ISA products. When the buffer zone has a diameter of 100
or 250 m, the ISA products achieve the highest accuracy, and
the accuracy of the ISA products is the lowest in a buffer with a
500-m diameter. This is because buffers with a small diameter
include a high ISA proportion, so more settlement points can be
recognized.

IV. DISAGREEMENT BETWEEN EXISTING GLOBAL ISA
PRODUCTS

A. Disagreement of ISA Area

The multitemporal area curves for the high spatial resolution
ISA products at the global scale are shown in Fig. 8. Overall,
most of the ISA products show reasonable temporal trends. How-
ever, the GLC_FCS30 and GHSL products exhibit anomalies,
with regard to their area, in 2020 and 2016, respectively. This
may be related to the fact that these products are made up of
discontinuous time-series data, and thus lack time-series con-
sistency corrections. Furthermore, the GHSL products for 2016

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020

Fig. 8.
scale.

Comparison of the ISA areas between different products at a global

and 2018 are produced from different methods and data sources
(see Table I), which could be a factor of the area anomalies.
Other ISA products, such as GlobeLand30 and FROM-GLC,
also suffer from similar problems to some extent. In contrast,
the long time-series ISA products, such as GISA 2.0, GISA and
GAUD, utilize postprocessing operations, e.g., the assumption
that the transition from ISA to non-ISA is usually not likely, so
that they possess more reasonable area growth trend.

According to Fig. 8, it is apparent that there are differences
in the area curves for the existing high-resolution global ISA
products. For instance, GlobeLand30, GLC_FCS30, and GHSL
cover more ISA area at a global scale. While the ISA areas
are very close between GISA 2.0 and GISA. Taking 2010 and
2015 as examples, we explored the spatial distribution and
characteristics of these ISA products (see Fig. 9).

Fig. 9 indicates that GlobeLand30 and GLC_FCS30 cover
more ISA area in Europe, South America, and North America.
In particular, GlobeLand30 covers a significantly larger area than
the other products in Europe. On the other hand, GLC_FCS30
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has a larger mapping extent in some regions, e.g., the United
States and France, and a possible reason is that GLC_FCS30 has
a better identification ability for small, fragmented ISA objects
(e.g., villages and roads) [40]. In addition, the areas covered
by GlobeLand30 and GLC_FCS30 are also relatively large in
Africa and South America. In contrast, the ISA areas detected
by FROM-GLC are small in all the continents.

As displayed in Fig. 9, for the long time-series products, GISA
2.0 and GISA have an equivalent area to GHSL in Asia, and
covers a slightly larger area than GAIA and GAUD. Notably,
GAIA extracts more impervious surfaces in China and India
[35], due to the fact that it considers both urban and rural regions
in the mapping results. GHSL has the largest ISA area in Europe,
especially in England, France, and Germany. At a global scale,
GISA 2.0, GISA, and GHSL show a larger area than GAIA
and GAUD (see Fig. 8). A possible reason is that the GISA
2.0, GISA, and GHSL consider all of the global land area when
extracting ISA, and they do not use an urban mask. Therefore,
they have relatively less omission errors compared to GAUD
[33], [37].

According to Fig. 3, GISA 2.0 shows better performances,
compared to other datasets. Thus, using GISA as a reference,
we investigated the correlation of the existing ISA products at
a 0.06° spatial resolution (see Fig. 10). The results show that
GISA 2.0 has the highest correlation with GISA (R* = 0.982,
RMSE = 0.011), followed by GAUD (R*> = 0.949, RMSE
= 0.018), GHSL (R?> = 0.909, RMSE = 0.024), GAIA (R*
= 0.906, RMSE = 0.024), FROM-GLC (R> = 0.876, RMSE
= 0.028), GLC_FCS30 (R?> = 0.699, RMSE = 0.044), and
GlobeLand30 (R* = 0.592, RMSE = 0.049). It can be said
that the correlation between the long time-series products is
high. This infers the necessity to consider temporal factors (e.g.,
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temporal consistency checks, postprocessing constraints) when
mapping time-series ISA products.

In addition, we further analyzed the multitemporal trends for
the area of the ISA datasets in arid and rural regions (Fig. 11).
The ISA area in arid regions only accounts for one-seventh of the
total ISA. In contrast, the ISA area in rural regions accounts for
more than half of the total. As shown in Fig. 11, GlobeLand30,
GLC_FCS30, and FROM-GLC contain more ISA, in both arid
and rural regions. In arid regions, GISA 2.0, GISA agrees with
GAIA and GHSL, while GAUD shows a slightly smaller area. In
rural regions, the curves of the high-resolution global products
show similar patterns to those at the global scale (see Fig. 8),
i.e., GHSL has a larger area than GISA, GAIA, and GAUD.
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TABLE VI
GLOBAL ISA DATASETS USED IN SPATIAL DISAGREEMENT ANALYSIS FOR
DIFFERENT YEARS

Year ISA Products
1985 GISA2.0, GISA, GAIA, GAUD
1990 GISA2.0, GISA, GAIA, GAUD, GHSL
1995 GISA2.0, GISA, GAIA, GAUD
2000 GISA2.0, GISA, GAIA, GAUD, GHSL, GlobeLand30
2005 GISA2.0, GISA, GAIA, GAUD
2010 GISA2.0, GISA, GAIA, GAUD, GlobeLand30, FROM-GLC
2015 GISA2.0, GISA, GAIA, GAUD, GHSL, FROM-GLC,
GLC_FCS30
2018 GISA2.0, GISA, GATA, GHSL, FROM-GLC, GLC _FCS30
1985 D 1990 D
1995 D ’ 2000_D ’
2005 D ’ 2010 D ’
L o i "
2015 D “ 2018 D ? -
Area (km? )-
A 0 100 300 500 700 1000 1200 1500 >1500
Fig. 12.  Spatial distribution of the disagreement and agreement regions for the

ISA products during 1985-2018. 1985_D represents the area of the disagreement
regions within 100 km x 100 km grid in 1985.

B. Disagreement of ISA Spatial Distribution

Here we analyzed the disagreement between the high-
resolution global ISA products at the global scale (see Fig. 13).
Since the eight products range in spatial resolution from 10 to
30 m, we resampled these datasets to the 30-m resolution by
the use of the nearest neighbor method. Table VI lists the global
ISA datasets used in the disagreement analysis. In this article,
the agreement regions are defined as the pixels identified as
ISA in all the maps used. For instance, there are seven datasets
considered in the disagreement analysis in 2015, and the pixels
that was classified as ISA in seven datasets are considered
as the agreement regions, otherwise the pixels are labeled as
disagreement ones.

According to Table VI, we calculated the area of the disagree-
ment pixels within 100 km x 100 km grid from 1985 to 2018 (see
Fig. 12). We found that the higher disagreement mainly occurs in
the ISA aggregation regions, e.g., eastern Asia, western Europe,
and eastern North America, which should be focused on in future
global ISA mapping. We also revealed that the disagreement is
higher in 2000, 2010, 2015, and 2018. This may be related to the
increase in the number of products (see Table VI). The release
of GlobeLand30, GLC_FCS30, and FROM-GLC increased the
disagreement between ISA products in these years.
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Moreover, we obtained the proportion of disagreement re-
gions in different continents to the total disagreement regions of
the global (see Fig. 13). During 1985-2018, the proportion of
disagreement shows higher values in Asia, Europe, and North
America than that in other continents. The total proportion of
disagreement regions in these three continents (Asia, Europe,
and North America) accounts for more than 78% of the total.
Specifically, Asia has the highest agreement (> 52%), which is
slightly larger than that for North America and Europe.

As shown in Fig. 13, the high disagreement regions are
mainly distributed in Asia, Europe, and North America (see
Fig. 14). Fig. 14(a) represents low-density ISA regions (e.g.,
towns, roads). Due to the limitation of spatial resolution of
remote sensing images and the number of training samples,
larger omission errors were found in low-density regions [40].
Fig. 14(b) was covered by high-albedo bare land, where bare
land generally exhibits similar spectral features with ISA, which
leads to a large number of misclassifications. In Fig. 14(c) where
the surface is covered by a large amount of vegetation, it can be
seen that the mixed pixels still affect the mapping results. In
general, the high disagreement regions are characterized by low
density ISA and complex spatial distributions (e.g., the [SA was
surrounded by high reflectance bare land or vegetation, where
the background of ISA shows complex characteristics). In future
work, the use of high spatial resolution remote sensing images,
the fusion of multisource features (e.g., spectral-SAR features),
and the increase of training samples in low-density ISA regions,
may help to alleviate the misclassifications in the disagreement
regions.

V. FUTURE RESEARCH DIRECTIONS

Based on the above analysis, comparison, and experiments,
the following suggestions are made for future directions of
global ISA mapping:

1) Cloud computing platforms: large-scale (national or
global) land-cover mapping involves the acquisition, stor-
age, and processing of huge amounts of data. Currently,
cloud computing platforms (e.g., AWS, Microsoft Azure
Cloud, PIE-Engine, GEE) offer new choices for rapid high
spatial resolution ISA mapping. The AWS platform offers
a range of machine learning and artificial intelligence
tools. The Microsoft Azure Platform also provides a series
of machine learning tools as well as construction, valida-
tion, displaying, and management for models and algo-
rithms. Notably, the AWS and Microsoft Azure platforms
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/

Disagreement regions Il Agreement regions Il

corresponding to (a)—(c), respectively.

2)

are pay-as-you-go platforms, where the users can create
their own data center [25], [28]. The PIE-Engine platform
is a free cloud service platform developed in China, with
abundant data (especially Gaofen and Fengyun satellite
images) as well as processing and analysis capabilities
[103]. However, to date, PIE-Engine has not been widely
used worldwide. GEE is also a public platform that pro-
vides a wide range of remote sensing data and pay-as-you-
go products. It was designed specifically for processing
and analyzing geospatial datasets, and offered data stor-
age, data analysis, machine learning tools, and mapping
services [28], [104]. GEE has been successfully used to
produce a large number of global land-cover products [27],
[105]. Nevertheless, cloud computing platforms are still
imperfect in many aspects, such as lack of convenient deep
learning tools and computing resources.

Data: Global high spatial resolution ISA products still
exhibit a large number of omission and commission
problems. In particular, the ISA detection accuracy is
poor in some areas, e.g., small urban, rural, and arid

3)

(¢)

Examples of disagreement regions. (a) Eastern China. (b) Spain. (c) Eastern United States. (d)—(f) represent Google Earth high-resolution images

regions, owing to the high spatial heterogeneity and
complexity of ISA in these regions. In future studies,
higher resolution remote sensing imagery, such as Planet,
WorldView, and ZY3 imagery, should have great poten-
tial for mapping these difficult regions, to mitigate the
erTors.

Method: The existing algorithms suffer from the classifi-
cation errors, which are mainly caused by the spectral con-
fusion between ISA and other similar land-cover classes,
e.g., sandy land, bare land, and other bright objects. In
order to solve this problem, multisource feature fusion
methods could be applied [40], [48], [74]. In addition,
deep learning algorithms, with their powerful feature ex-
pression capability, enable both low-level and high-level
feature learning, which is beneficial for boosting the ISA
classification performance in difficult regions. Currently,
there have been a few cases to apply deep learning models
to large-scale land-cover mapping [34], [42], [98]. This is
a new and promising trend in high-resolution global ISA

mapping.
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4) Time-series modeling: One of the challenges in global ISA
mapping is the reconstruction of long time-series land-
cover classification results. The common methods include
change detection [36] or ISA irreversibility constraints
[37]. The change detection method inevitably leads to
errors in the determination of the change breakpoint, while
the irreversible constraint approach does not make full
use of the multitemporal remote sensing image features.
Therefore, how to make better use of time-series rules is an
important direction in future global ISA mapping. Specifi-
cally, researchers could consider new time-series process-
ing methods, such as long short-term memory networks
[106], recurrent neural networks [107], and transformer
architectures [108], [109].

5) Samples: Samples are a key factor in the ISA mapping, and
influence the mapping accuracy. At the global scale, it is
very difficult to collect adequate, correct, representative,
and widely distributed samples. The current methods of
sample collection include manual selection, refining from
existing datasets, and selection from open-source data
(e.g., OSM). However, these approaches are still labor
intensive. In this context, the machine learning algorithms
(e.g., weakly supervised and self-supervised learning al-
gorithms), which can mine the characteristics of the data
with small-size samples, may become future research
directions [110], [111], [112].

6) Users: Production of global ISA products should be
more demand oriented. Researchers in the ecological
and environmental fields may require medium- or even
coarse-resolution ISA datasets (300 m to 1 km), while
very-high-resolution (e.g., finer than 5 m) ISA datasets
may be required by regional or local users. Therefore,
according to the needs of the users, global ISA products
should involve multiple resolutions or scales, where very
fine resolution ISA maps are generated when necessary.

VI. CONCLUSION

In recent years, high spatial resolution global ISA mapping
has become a spotlight issue. Advances in remote sensing
technology, methods, and data have motivated researchers to
pay more attention to the high spatial resolution global ISA
datasets. In this context, we conduct the first comprehensive and
in-depth analysis of the existing high-resolution global multiple
time-series ISA products.

The results show that, for long time-series maps (i.e., GISA
2.0, GISA, GAIA, GAUD, and GHSL), GISA 2.0 has the high-
est overall accuracy at global, arid and rural, and city scales.
Therefore, GISA 2.0 can be served as a baseline of global
ISA maps. Particularly, GAUD is more appropriate to reveal
temporal change pattern of global ISA, due to its high temporal
accuracy. In addition, GHSL pays attention on settlement points
(see Section III-D), thus, it provides important reference to the
study of human settlements.

We also obtained the disagreement regions for the existing
global ISA products, which can be considered as the difficult
and key regions for future ISA mapping. Last, we have provided
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an outlook on the future directions of global ISA mapping, in
terms of cloud computing platforms, data sources, methods,
time-series modeling, samples, and users.

APPENDIX
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