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A B S T R A C T   

Accurate building change detection is crucial for understanding urban development. Although fully supervised 
deep learning-based methods for building change detection have made progress, they tend to fuse temporal 
information only at a single level (e.g., input, feature, or decision levels) to mitigate the data distribution dif-
ferences between time-series images, which is highly prone to introduce a large number of pseudo changes. 
Moreover, these methods rely on a large number of high-quality pixel-level change labels with high acquisition 
costs. In contrast, available crowdsourced building data are abundant but are less considered for change 
detection. For example, OpenStreetMap (OSM), Google Map, and Gaode Map provide lots of available building 
labels, yet they usually contain noise such as false alarms, omissions, and mismatches, limiting their wide 
application. In addition, when the building extraction task is transferred to the building change detection task, 
the temporal and regional differences between different images may lead to undesired pseudo changes. Given 
these issues, we propose a full-level fused cross-task transfer learning method for building change detection using 
only crowdsourced building labels and high-resolution satellite imagery. The method consists of three steps: 1) 
noise-robust building extraction network pretraining; 2) uncertainty-aware pseudo label generation; and 3) full- 
level fused building change detection. We created building extraction and building change detection datasets. 
The former (building extraction dataset) contains 30 scenes of ZY-3 images covering 27 major cities in China and 
crowdsourced building labels from Gaode Map for training, while the latter (building change dataset) contains 
bi-temporal ZY-3 images in Shanghai and Beijing for testing. The results show that the proposed method can 
identify changed buildings more effectively and better balance false alarms and omissions, compared to the 
existing state-of-the-art methods. Further analysis indicates that the inclusion of samples from multiple cities 
with various spatial heterogeneities is helpful to improve the performance. The experiments show that it is 
promising to apply the proposed method to situations where true labels are completely lacking or limited, thus 
alleviating the issue of high label acquisition cost. The source code will be available at https://github.com/laura 
set/FFCTL.   

1. Introduction 

As the important places for human activities, urban areas are grad-
ually expanding, accompanied by building change (Grimm et al., 2008; 
Seto et al., 2012). Particularly in Asia and Africa, urban expansion is 
triggering the conversion of large amounts of arable land into building 
areas to better accommodate population growth (D’Amour et al., 2017; 
Liu et al., 2020). At the same time, a large number of building demoli-
tion and redevelopment projects are carried out within cities in order to 
make efficient use of limited land resources and promote sustainable 

urban development (He et al., 2020; Huang et al., 2017; Lai et al., 2021). 
Therefore, building change detection is vital for understanding urban 
development and has been effectively applied to geodatabase update 
(Matikainen et al., 2010), disaster assessment (Anniballe et al., 2018; 
Zheng et al., 2021), urban sprawl studies (Qin et al., 2015), and illegal 
building monitoring (Moghadam et al., 2015), among others. 

Remote sensing images, with various spectral, spatial, and temporal 
resolutions and wide coverage, are widely used for urban-related 
studies, such as medium-to-low resolution images (e.g. AVHRR, 
DMSP/OLS, VIIRS-DNB, MODIS, Landsat, and Sentinel-1/2) (Huang 
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et al., 2021; Li et al., 2018; Liu et al., 2020; Mertes et al., 2015; Stokes 
and Seto, 2019; Taubenböck et al., 2012; Voogt and Oke, 2003; Zhou 
et al., 2018). However, these images have relatively coarse spatial res-
olution, making it difficult to capture fine-scale ground objects within 
urban areas, e.g., buildings (Pesaresi et al., 2016; Zhang et al., 2022). 
Recently, there is a significant increase in the amount of available high- 
resolution satellite imagery (with a spatial resolution ≤5 m), such as 
WorldView, PlanetScope, ZY-3, GF-1/2, and TerraSAR-X, and their rich 
spatial details can support the change detection at the building scale 
(Gamba et al., 2011; Huang et al., 2020; Marin et al., 2015). Therefore, 
this study aims to use high-resolution optical satellite imagery to 
monitor urban building changes. 

Change detection methods, according to whether training samples 
are used, can be classified as unsupervised and supervised ones. Unsu-
pervised methods do not rely on training samples and are easy to 
implement, such as image differencing (Bruzzone and Prieto, 2000), 
change vector analysis (CVA) (Bovolo and Bruzzone, 2006), principal 
component analysis and k-means clustering (PCA-kmeans) (Celik, 
2009), and multivariate alteration detection (MAD) (Nielsen et al., 
1998). Note that these methods focus on changed and unchanged cat-
egories, rather than specific ground objects (e.g., buildings). A large 
number of studies have examined building change detection methods 
(Leichtle et al., 2017; Tang et al., 2013; Tian et al., 2014; Wang and Li, 
2020; Zhang et al., 2017). For instance, Huang et al. (2014) calculated 
the difference value of the bi-temporal morphological building index 
(MBI) (Huang and Zhang, 2012) to indicate the intensity of building 
change, and then combined it with spectral and shape conditions to 
obtain changed buildings by thresholding. For building change detec-
tion, the object-based analysis is popular (Chen et al., 2012). For 
instance, Leichtle et al. (2017) used the building footprint as the analysis 
unit to extract object-based spectral and textural features of bi-temporal 
images, and then employed principal component analysis and k-means 
clustering on these features to identify building changes. However, these 
unsupervised methods depend on handcrafted features, leading to the 
insufficient use of the prior knowledge of images, and they usually need 
to manually select the optimal threshold in the decision phase. 

Supervised methods, compared to unsupervised ones, can perform 
change detection by leveraging samples to train classifiers, e.g., random 
forest (RF) and support vector machine (SVM) (Huang et al., 2017). 
However, traditional supervised methods require domain-specific 
knowledge to manually design features, e.g., spectral, shape, and 
textural features (Dalla Mura et al., 2010; Pacifici et al., 2009). In recent 
years, deep learning, especially convolutional neural networks (CNNs), 
has been widely used for building change detection (Chen et al., 2022a; 
Fang et al., 2022b; Peng et al., 2019; Zhang et al., 2020a), since it can 
automatically learn discriminative and representative features from 
images. Building change detection usually uses the encoder-decoder 
structure, e.g., U-Net (Weng and Zhu, 2021), SegNet (Badrinarayanan 
et al., 2017), and PSPNet (Zhao et al., 2017). This structure encodes the 
input image to extract deep features, and then uses a decoder to recover 
the feature size and output the predicted result of the same size as the 
input image. In this case, each pixel on the input image is labeled as a 
changed or unchanged building. Due to the high cost of labeling, semi- 
supervised learning has been adopted for building change detection 
(Peng et al., 2021; Sun et al., 2022a). Under the supervision of a few 
labeled temporal images, semi-supervised learning for change detection 
can introduce unsupervised regularization on a large number of unla-
beled temporal images to improve the generalization performance of 
models (Zhang et al., 2018). In this way, semi-supervised learning can 
lower the dependence on pixel-level change labels. 

Given that change detection usually focuses on bi-temporal images, 
according to the bi-temporal image fusion stage, it can be divided into 
the input-level, feature-level, and decision-level fusion (Caye Daudt 
et al., 2018; Shi et al., 2020a):  

1) In the input-level fusion, bi-temporal images are stacked as a single 
image along the channel dimension before being passed into the 
network. For instance, Sun et al. (2020) first stacked bi-temporal 
images for feature extraction, and then adopted building extraction 
and change detection decoders to acquire buildings for each tem-
poral image and building changes, respectively. 

2) In the feature-level fusion, bi-temporal images are separately pro-
cessed by two identical encoders with shared weights (i.e., the Sia-
mese structure) to obtain bi-temporal features, and then these 
features are fused by differencing or stacking for detecting changes 
by the decoder. For instance, Liu et al. (2021) designed a dual-task 
constrained deep Siamese network to extract bi-temporal features 
and then applied the feature difference for predicting buildings for 
each temporal image and building changes. Chen et al. (2022a, 
2022b) proposed a transformer module to model the spatio-temporal 
context of bi-temporal features, and incorporated this module into 
the feature difference-based Siamese network for change detection.  

3) The decision-level fusion refers to the post-classification comparison 
strategy, where each image is classified and then the classification 
results of all images are directly compared to obtain changes 
(Aguirre-Gutiérrez et al., 2012; Ye et al., 2016). Although the 
decision-level fusion approach can obtain the change trajectories, it 
relies on the classification result of each image, which may suffer 
from error accumulation. Thus, in deep learning-based building 
change detection methods, the classification result of each image is 
usually taken as an auxiliary task to optimize the change detection 
task (Liu et al., 2021; Sun et al., 2022b). 

Note that these methods require lots of high-quality pixel-level 
change labels for mitigating the data distribution differences between 
time-series images at the input, feature, or decision levels, in order to 
highlight true changes while suppressing pseudo changes. However, due 
to the difference in imaging conditions, e.g., atmosphere, illumination, 
and viewing angle variations, color inconsistency still exists in the time- 
series images. Moreover, fusing temporal information at a single level (e. 
g., input, feature, or decision levels) may cause lots of pseudo changes. 
Meanwhile, although available images are abundant, it is time- 
consuming and labor-intensive to collect high-quality pixel-level 
change labels, which limits the application of these methods. 

As aforementioned, building change labels are typically expensive to 
collect. In contrast, available crowdsourced building data are abundant 
but are less considered for change detection. Commonly-used building 
data, such as the Massachusetts building dataset (Mnih, 2013), the Inria 
aerial image labeling dataset (Maggiori et al., 2017a), the WHU building 
dataset (Ji et al., 2019), the ISPRS Vaihingen and Potsdam datasets 
(Rottensteiner et al., 2014), and the SpaceNet challenge dataset (Van 
Etten et al., 2018), have significantly contributed to the development of 
deep learning-based building extraction methods (Hosseinpour et al., 
2022; Li et al., 2020b; Shi et al., 2020b; Zhu et al., 2021). However, these 
building data rely on the region-, time-, and sensor-specific images, 
which makes it difficult to transfer them to other images. Fortunately, 
crowdsourced data, e.g., OpenStreetMap (OSM) and public maps (e.g., 
Google Map, Gaode Map, and Baidu Map), provide a large number of 
available building labels with a great potential for building extraction. 
For example, Kaiser et al. (2017) applied the OSM building labels to 
train a building detection network and obtained satisfactory results. 
However, these crowdsourced building labels are usually not exactly 
matched with the images in space and time, resulting in noise such as 
false alarms, omissions, and mismatches (Mnih and Hinton, 2012). 
These noisy labels can significantly reduce the generalization perfor-
mance of the network (Zhang et al., 2021). Given the high cost of 
manually correcting noisy labels, researchers have proposed a range of 
automatic noisy label learning methods, such as transfer learning 
(Maggiori et al., 2017b) and noise-robust models (Ahmed et al., 2021; 
Mnih and Hinton, 2012; Zhang et al., 2020b). For instance, Maggiori 
et al. (2017b) first trained a building detection network with a large 

Y. Cao and X. Huang                                                                                                                                                                                                                          



Remote Sensing of Environment 284 (2023) 113371

3

number of imperfect building labels from OSM, and then fine-tuned the 
network with a small number of accurate labels to mitigate the inter-
ference of noisy labels. Zhang et al. (2020b) designed a noisy label 
adaptive layer at the end of the conventional building extraction 
network, in order to model the probabilistic propagation relationship 
between noisy and true labels. Notably, these approaches still rely on a 
number of accurate labels or a specific network structure. 

By courtesy of building data, building change detection can be per-
formed by the post-classification comparison method, which allows for 
the simple transferring of the building extraction task to the building 
change detection task. This method first trains the building extraction 
network with building data to obtain buildings for each temporal image, 
and then generates changed buildings by direct comparison. However, 
this method relies on the building extraction result of each temporal 
image, which may suffer from error accumulation and consequently 
cause a large number of pseudo changes. This kind of error mainly 
comes from temporal and regional differences. On the one hand, in 
contrast to the building extraction task, the building change detection 
task focuses more on building changes on different time-series images. 
However, the time-series images usually have different imaging condi-
tions, such as atmosphere and solar illumination variations. On the other 
hand, buildings in the study areas for both tasks may exhibit different 
spectral, contextual, and shape characteristics. A simple solution to 
mitigating these differences is to fine-tune the network using a small 
number of true labels from the study area (Maggiori et al., 2017b). 
However, the cost of collecting true labels is relatively high. In this 
context, some researchers adopt automatically generated change pseudo 
labels to replace true labels, and have successfully carried out change 
detection (Fang et al., 2022a; Gong et al., 2017, 2020; Tang et al., 2022). 
For example, Gong et al. (2017) employed a sparse autoencoder to learn 
temporal features, followed by fuzzy c-means (FCM) clustering to 
generate change pseudo labels, and finally used these labels to train a 
change detection network. Recently, Fang et al. (2022a) selected the 
consistent results of CVA and post-classification comparison methods as 
reliable pseudo labels, and then applied these labels to train a light-
weight change detection network. However, these methods focus on 
binary change types (i.e., changed and unchanged types), rather than 
the change of specific ground objects (e.g., buildings). Compared with 
vegetation and bare soil, buildings exhibit diverse colors and shapes and 
are not affected by phenological conditions. Thus, it is essential to design 
pseudo label generation methods specifically for building change 
detection, in order to mitigate the temporal and regional differences in 
cross-task transfer learning. 

In summary, although existing deep learning-based methods for 
building change detection have made progress, they still have the 
following limitations:  

1) Existing approaches usually rely on a large number of high-quality 
pixel-level labels with high acquisition costs.  

2) Existing approaches generally fuse temporal information only at a 
single level (e.g., input, feature, or decision levels) to mitigate the 
data distribution differences between time-series images, which may 
introduce lots of pseudo changes.  

3) Available open-source or crowdsourced building data are abundant 
but are less considered for change detection. Meanwhile, although 
these data provide a large number of available building labels, they 
contain lots of noise, e.g., false alarms, omissions, and mismatches, 
which can significantly reduce the generalization performance of the 
network.  

4) When the building extraction task is transferred to the building 
change detection task, the temporal and regional differences be-
tween different images may easily cause a large number of pseudo 
changes. 

Given these issues, we propose a full-level fused cross-task transfer 
learning method for building change detection using only crowdsourced 

building labels and high-resolution satellite imagery. The method con-
sists of three steps: 1) we first train a noise-robust building extraction 
network with crowdsourced building labels and high-resolution satellite 
imagery; 2) then, we apply the well-trained building extraction network 
to predict the building map for each temporal image, and design the 
uncertainty-aware analysis to obtain reliable change pseudo labels; 3) 
finally, we train a full-level fused building change detection network 
with the reliable change pseudo labels. The main contributions of this 
paper are summarized below:  

• Crowdsourced building labels from 27 Chinese cities are used for 
building change detection to reduce the high acquisition cost of 
pixel-level labels.  

• A noise-robust building extraction network is proposed to correct 
noisy labels, which can improve the generalization performance of 
the network across multiple cities.  

• An uncertainty-aware pseudo label generation method is designed to 
mitigate the temporal and regional differences in cross-task transfer 
learning.  

• A full-level fused building change detection network is developed to 
simultaneously reduce the data distribution differences between 
time-series images at the input, feature, and decision levels. 

The rest of this paper is organized as follows. Section 2 introduces the 
experimental datasets. Section 3 describes the proposed method. Sub-
sequently, the experimental results and discussions are given in Sections 
4 and 5, respectively. Finally, we conclude this paper in Section 6. 

2. Dataset description 

2.1. Building detection dataset 

To train the building extraction network, we created a building 
detection dataset. This dataset contains 30 scenes of ZY-3 images and the 
corresponding crowdsourced building labels (Table 1 and Fig. 1). It 
covers the 27 major cities in China and contains diverse buildings with 
different heights, shapes, sizes, and colors. ZY-3 images with less than 
10% cloud coverage and imaging time between 2014 and 2017 were 
collected from the Land Satellite Remote Sensing Application Center 
(LASAC) of China (http://www.cresda.com/). Note that the ZY-3 sat-
ellite is capable of providing both multispectral images (with blue, 
green, red, and near-infrared bands) and multi-view images (with nadir, 
+22◦ forward, and − 22◦ backward viewing angles) of the same area 
(Huang et al., 2017). We only collected multispectral images (with a 
spatial resolution of 5.8 m) and nadir-view images (2.1 m). All the im-
ages were preprocessed by radiometric correction and ortho- 
rectification (Liu et al., 2019), and were resampled to 2.5 m. Subse-
quently, image-to-image registration was applied to the nadir and 
multispectral images, and then they were fused by the Gram-Schmidt 
pan-sharpening algorithm (Laben and Brower, 2000) to enhance the 
spatial details of the multispectral images. Then, all the images were 
stretched to the range of [0, 255] (i.e., 8 bit) with the optimized linear 
stretch algorithm in ENVI software. Finally, we obtained 30 scenes of 
multi-spectral images at a spatial resolution of 2.5 m. 

Crowdsourced building vector labels were collected by manual 
interpretation and were publicly released by Gaode Map (https://ditu. 
amap.com/). However, these labels and the corresponding ZY-3 im-
ages may be not consistent in space and time, leading to lots of noise, e. 
g., false alarms, omissions, and mismatches. To reduce the mismatch 
noise, we spatially registered each ZY-3 image and the corresponding 
crowdsourced building vector labels by the spatial adjustment tool in the 
ArcGIS software. Then, we converted the matched vector labels into the 
raster ones with the same resolution as ZY-3 images, i.e., 2.5 m (Fig. 1). 
Note that with these pre-processing steps, crowdsourced building labels 
still contain noise that needs a lot of time and labor to correct. To alle-
viate this issue, we propose an automatic noise correction method to 
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train a noise-robust building extraction network (see Section 3.1). To 
train this network, we cropped all ZY-3 images and the crowdsourced 
building labels into patches of 256 × 256 pixels without overlapping, 
and obtained 34,616 samples, each of which contains an image patch 
and the corresponding building labels (Table 1). We randomly selected 
90% of the samples for training and the remaining 10% for validation. 

2.2. Building change detection dataset 

To evaluate the proposed change detection method, we created the 
building change detection dataset in Shanghai and Beijing. Each region 
contains bi-temporal ZY-3 images (Fig. 2). The bi-temporal ZY-3 images 
of Shanghai were acquired on September 18, 2012 and September 30, 
2018, while those of Beijing were acquired on October 11, 2012 and 
October 6, 2018. These images were preprocessed in the same way as 
mentioned in Section 2.1. Through image clipping, we obtained the ZY-3 
images of Shanghai and Beijing with dimensions of 8681 × 10,965 pixels 
and 9916 × 11,122 pixels, respectively. Finally, we used the pseudo- 
invariant features method (Schott et al., 1988) to reduce the radio-
metric difference between bi-temporal images. 

To test the accuracy of change detection, we manually interpreted 
the changed buildings by randomly selecting 10 sample patches (1024 
× 1024 pixels for each patch) in each region (Fig. 2), aided by the Google 
Earth high-resolution historical images and ZY-3 time-series images. 
These sample patches are randomly distributed, and cover residential, 
commercial, and industrial areas. They mainly contain newly-built and 
demolished buildings, which is suitable for evaluating the generalization 
performance of the proposed method. It should be noted that all of these 
building change labels are used for testing the accuracy of the algo-
rithms. To train the change detection network, we cropped the ZY-3 
images of each region into patches of 256 × 256 pixels, and obtained 
3575 samples (in patches) in Shanghai and 6300 samples (in patches) in 
Beijing after excluding the test sample patches. Note that the training set 
for the change detection is totally based on the pseudo labels that are 
generated from the crowdsourced building data (see the methodology 
section for details). This approach greatly alleviates the problem of the 
high label acquisition cost. 

3. Methodology 

The proposed building change detection method consists of three 
steps: 1) noise-robust building extraction network pretraining (Section 
3.1); 2) uncertainty-aware pseudo label generation (Section 3.2); and 3) 
full-level fused building change detection (Section 3.3). The workflow is 
presented in Fig. 3. Details of each step are given below. 

3.1. Noise-robust building extraction network pretraining 

We proposed a noise-robust building extraction method (i.e., step 1 
in Fig. 3) that was pretrained on crowdsourced building labels from the 
27 major cities in China, to mitigate the interference of label noise. The 
method includes three steps: 1) network initialization; 2) noisy label 
correction; and 3) network retraining. 

Firstly, we initialized the building extraction network using the 
original crowdsourced building labels (Section 2.1). The structure of the 
building extraction network is displayed in Fig. 4. Particularly, the 
encoder was set to the standard residual neural network, ResNet-50 (He 
et al., 2016), considering its powerful feature extraction capability and 
wide range of applications. Notice that deep networks tend to learn 
correctly labeled samples first in the early stage and start to learn mis-
labeled samples later (Arazo et al., 2019). Therefore, after initialization, 
the building extraction network already has building feature extraction 
capability. Secondly, to further optimize the network parameters while 
avoiding the interference of noisy labels, we used the initialized network 
as a starting point for subsequent building prediction and noisy label 
correction. In detail, for the current epoch (t), the supervision of the 
network comes from the original labels and the corrected ones that are 
the network predictions of the previous epoch (t-1). Finally, we obtained 
clean labels for retraining the building extraction network from scratch. 

The loss function of the network training is formulated as follows: 

Lnoise = λ⋅Linitial(q, p)+ β⋅Lupdate(q̂, p) (1)  

where q denotes the original building label, q̂ is the corrected building 
label, and p is the probability value of the network prediction. The loss 
functions Linitial and Lupdate are both the sum of the binary cross-entropy 
loss and the dice coefficient loss to alleviate the class imbalance problem 
(Peng et al., 2019). The parameters λ and β are the loss weights of the 
original and corrected labels, respectively. In the network initialization 
phase, we used only the original crowdsourced building labels, i.e., λ = 1 
and β = 0. Note that the parameters of the network were initiated by the 
pretrained weights from ImageNet (Jia Deng et al., 2009). To avoid the 
network fitting noise, the learning rate was fixed at 0.001 and the total 
number of epochs for training was set to 20. In the noisy label correction 
phase, we considered both the original and corrected labels. To reduce 
the interference of the noise introduced by the original labels, we 
selected the parameters λ = 0.2 and β = 1. To avoid overfitting, the 
number of epochs was set to 10 and the learning rate was fixed at 0.001. 
Finally, we retrained the network with only the corrected labels, i.e., λ =
0 and β = 1. To fully optimize the network, the learning rate was initially 
set to 0.001, with a drop of 0.1 every 20 epochs, and the total number of 
epochs for training was set to 50. For all phases, the optimizer was set to 
Adam (Kingma and Ba, 2014). The batch size, i.e., the number of image 
patches for training in each iteration, was set to 32, due to the GPU 

Table 1 
Composition of the building detection dataset. The total number of samples is 34,616, each of which contains an image patch (256 × 256 pixels) and the corresponding 
building labels. All cities were classified into four geographic regions, i.e., east, west, south, and north.  

City #Sample Imaging date Region City #Sample Imaging date Region 

Changzhou 1619 20,140,406 East Yinchuan 666 20,170,706 West 
Hefei 1717 20,160,828 East Yulin 247 20,140,903 West 
Jinan 453 20,170,824 East Changsha 1287 20,171,029 South 
Jinan 1529 20,170,530 East Foshan 1433 20,150,414 South 
Nanjing 1196 20,140,520 East Guangzhou 1604 20,150,414 South 
Wuxi 352 20,170,429 East Haikou 380 20,160,506 South 
Yantai 718 20,150,410 East Huizhou 454 20,170,216 South 
Chengdu 1783 20,170,513 West Nanning 1024 20,150,413 South 
Chengdu 2246 20,170,508 West Zhengzhou 546 20,160,604 South 
Kunming 1104 20,170,406 West Beijing 3518 20,170,515 North 
Lhasa 183 20,140,603 West Harbin 404 20,170,529 North 
Lanzhou 341 20,170,809 West Shijiazhuang 1124 20,170,816 North 
Urumqi 824 20,160,603 West Shijiazhuang 1529 20,171,217 North 
Xi'an 2749 20,150,512 West Tianjin 2034 20,150,414 North 
Xining 563 20,160,726 West Taiyuan 989 20,150,423 North  
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memory limitation (11G for a single GeForce GTX 1080ti). In this study, 
the data augmentation includes random rotation, randomly horizontal 
and vertical flipping, and random grid shuffle, to improve the general-
ization performance of the network. For the network training, each band 
of images was linearly stretched to the range of [0,1] by the minimum 
and maximum values of each band. The validity of noisy label correction 
is discussed in Section 5.1. 

3.2. Uncertainty-aware pseudo label generation 

We designed an uncertainty-aware pseudo label generation algo-
rithm (i.e., step 2 in Fig. 3) to alleviate the temporal and regional dif-
ferences in cross-task transfer learning. The algorithm includes three 
steps: 1) single-temporal building prediction; 2) object-to-pixel multi- 

temporal comparison; and 3) uncertainty-aware analysis for reliable 
pseudo label generation. 

Step 1. Single-temporal building prediction. We applied the well- 
trained building extraction network that was pretrained from the 27 
major cities of China in Section 3.1 to generate the building probability 
map (with a data range of [0,1]) for each temporal image. According to 
the existing literature (Ji et al., 2019), each pixel with a building 
probability greater than 0.5 is assigned as building, otherwise it is non- 
building. 

Step 2. Object-to-pixel multi-temporal comparison. Firstly, we 
selected the building objects of each temporal image as the analysis unit 
for extracting the change objects. Specifically, for each building object 
(O1) at one time, we searched for the building object (O2) at another 
time that spatially overlaps with O1. If the overlap degree (i.e., the ratio 

Fig. 1. The building detection dataset. (a) Spatial distribution of ZY-3 images. Each region from Tianjin (b), Xi'an (d), and Changsha (f), includes the ZY-3 images (30 
km × 30 km) and the corresponding crowdsourced building labels. Each enlarged view (c, e, and g) has a spatial extent of 1.28 km × 1.28 km (i.e., 512 × 512 pixels). 
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of intersection and union) between O1 and O2 is greater than a threshold 
(0.5 in this study), the two objects are classified as “non-change”, and as 
“change” otherwise. Subsequently, for changed objects (e.g., O1 and 
O2), we calculated the pixel-level change region, i.e., the non- 
overlapping region of the two objects. Taking Fig. 5 as an example, a 
and d are the same building and are considered unchanged due to their 
high overlap degree; c and f have not any spatial overlapping objects and 
thereby are assigned as changed buildings; b and e are spatial counter-
parts with low overlap degree, so the pixel-based comparison is further 
used to obtain the changed building region g. Note that object-based 

comparison can suppress the residual matching errors and the imaging 
condition difference between bi-temporal images, while the further 
pixel-based comparison of the changed objects can detect the specific 
change region. An in-depth analysis of the object-to-pixel comparison is 
presented in Section 5.2. Note that we did not use the objects from image 
segmentation as the analysis unit. The reason is that for the image 
segmentation techniques (Blaschke, 2010), the scale is a key parameter 
that influences the segmentation performance and usually needs to be 
set manually. By contrast, we directly obtained objects from the well- 
trained building extraction network, which has the capability of 

Fig. 2. The building change detection dataset, including bi-temporal ZY-3 images and the corresponding building change labels in Shanghai (a) and Beijing (c). The 
spatial extent of the ZY-3 image is 8681 × 10,965 pixels for Shanghai (a) and 9916 × 11,122 pixels for Beijing (c). Each enlarged view (b and d) has a spatial extent of 
1024 × 1024 pixels. 
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identifying buildings without the need of selecting the scale parameter. 
Step 3. Uncertainty-aware analysis for reliable pseudo label gener-

ation. Based on the pseudo labels generated by the object-to-pixel 
comparison (Step 2), we further obtained reliable pseudo labels by the 
uncertainty-aware analysis. In detail, we calculated the absolute dif-
ference of bi-temporal building probability maps (see Step 1) as the 
building change probability (P) with a data range of [0,1]. A larger P 
indicates a higher change probability. We set the change probability 
threshold to 0.7 to filter out the uncertain region (i.e., 1-T < P < T) and 
retain the more reliable region (i.e., P ≥ T or P ≤ 1-T) for subsequent 
change detection. The sensitivity of the change probability threshold is 
analyzed in Section 5.2. 

3.3. Full-level fused building change detection 

We developed a full-level fused building change detection network 
(i.e., step3 in Fig. 3) to simultaneously mitigate the data distribution 
differences between time-series images at the input, feature, and deci-
sion levels. Without the need for manually labeled change samples, the 
network can rely merely on the automatically generated reliable pseudo 
labels (Section 3.2) built on the building extraction network (Section 
3.1), which was fully pretrained on crowdsourced building labels 
covering the 27 major cities of China. The network consists of three 
parts: 1) color transfer at the input level; 2) layer-wise temporal differ-
ence at the feature level; and 3) simultaneous extraction of changed and 

Fig. 3. The workflow of the proposed method. “Sub & Abs” in Step 3 means the absolute difference of bi-temporal features.  
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unchanged buildings at the decision level. 
Part 1. Color transfer at the input level. We applied the color transfer 

method (Xiao and Ma, 2006) to migrate the color space of one temporal 
image to another in order to reduce the difference in imaging conditions 
(e.g., atmosphere and illumination) between time-series images. This 
method is originally applied to natural images with red (R), green (G), 
and blue (B) bands, while in this study, we applied it to high-resolution 
satellite images with RGB and near-infrared (NIR) bands. Specifically, 
we first calculated the mean value of each band for both the source 
image (Is) and the target image (It). We used the symbols Ri, Gi, Bi, Ni to 
denote the mean values of the R, G, B, and NIR bands, respectively, with 
i ∈ {Is, It}. Next, we calculated the covariance matrix (Covi) between all 
the four bands for both the source and target images, and then per-
formed singular value decomposition (SVD) on Covi as follows: 

Covi = Ui⋅Λi⋅VT
i , i ∈ {Is, It} (2)  

where Ui and Vi denote orthogonal matrices. Λi is a diagonal array with 
diagonal elements being the eigenvalues of Covi, i.e., λi

R, λi
G, λi

B and λi
N in 

sequence. Based on the mean values and the covariance matrices, we 
defined the rotation Ri, translation Ti, and scaling Si parameters as 
follows: 

Ri =

{
Ui, i = Is

U− 1
i , i = It

(3)  

Ti =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 tR
i

0 1 0 0 tG
i

0 0 1 0 tB
i

0 0 0 1 tN
i

0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, tj
i =

{
ji, i = Is
− ji, i = It

, j ∈ {R,G,B,N} (4)  

Si =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sR
i 0 0 0 0
0 sG

i 0 0 0
0 0 sB

i 0 0
0 0 0 sN

i 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, sj
i

=

⎧
⎨

⎩

λj
i, i = Is

1
/ ̅̅̅̅

λj
i

√

, i = It
, j ∈ {R,G,B,N} (5) 

Finally, we transformed the color space of the target image to that of 
the source image using the following equation: 

Ît = TIs ⋅RIs ⋅SIs ⋅SIt ⋅RIt ⋅TIt ⋅It (6) 

For the color transfer between bi-temporal images, each temporal 
image can be used as the source or target image. An illustration of the 
color transfer is presented in Fig. 6. In this study, we chose the pre- 
temporal image (T1) as the target and the post-temporal image (T2) as 
the source, i.e., pre-temporal to post-temporal transfer (T1 to T2). In 
Section 5.3, we discussed the sensitivity of the color transfer direction, 

Fig. 4. The structure of the building extraction network. The sign “k × k, c” represents the convolution layer with the kernel size of k and the number of channels of c.  

Fig. 5. Illustration of the object-to-pixel analysis.  
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including “T1 to T2” and its opposite direction “T2 to T1”. 
Part 2. Layer-wise temporal difference at the feature level. First, we 

employed the same feature encoder to extract multi-layer features for 
each temporal image. Then, we computed the absolute difference of bi- 
temporal features layer by layer (i.e., “Sub & Abs” in Fig. 7). Note that 

the feature difference is considered to suppress pseudo changes and 
highlight true changes. Moreover, the two encoders for feature extrac-
tion share parameters during training so that they can learn features 
from different temporal images simultaneously. This setting facilitates 
the network to learn general building features (e.g., shape and size) that 

Fig. 6. Illustration of the color transfer in regions (a-c). “T1 (T2) to T2 (T1)” means that the color space of T1 (T2) images is transferred to that of T2 (T1) images. 
Each image has a spatial extent of 256 × 256 pixels. 

Fig. 7. Illustration of the layer-wise temporal difference at the feature level. “Sub & Abs” means the absolute difference of bi-temporal features. Orange arrows 
represent weight sharing. 
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are not limited to a specific imaging condition, thus improving the 
generalization performance of the network. The structure of the encoder 
was set to ResNet-50 with initialization parameters from Section 3.1. It 
is worth noting that in current studies, the network parameters are 
usually initialized by random generation or using the pretrained weights 
from natural image datasets, such as ImageNet (Jia Deng et al., 2009), 
and then are fine-tuned using high-quality true change labels. However, 
the true change labels are expensive and limited, which hinders the 
performance improvement of the network. In this context, this study 
leverages the pretrained building extraction network (Section 3.1) for 
parameter initialization, which can greatly reduce the network's reliance 
on a large number of manually labeled labels. 

Part 3. Simultaneous extraction of changed and unchanged buildings 
at the decision level. At the decision level, we used three decoders with 
shared weights (consistent with the decoder of Section 3.1) to extract 
buildings for each temporal image and changed buildings. Subsequently, 
we computed the union of bi-temporal buildings (i.e., “Add” in the step 3 
of Fig. 3), and then removed the changed buildings (i.e., “Sub” in the 
step 3 of Fig. 3) to obtain the unchanged buildings. The change detection 
network can simultaneously identify both changed and unchanged 
buildings, which is helpful for the decoder to perceive all the buildings 
in time-series images. The loss function is defined as: 

Lcd = Lc
(
qr

c, pc
)
+Lu

(
qr

u, pu
)

(7)  

where qc
r and qu

r denote the reliable changed and unchanged building 
labels (see Section 3.2), respectively, while pc and pu represent the 
probabilities of changed and unchanged buildings predicted by the 
network, respectively. The loss functions Lc and Lu are both the sum of 
the binary cross-entropy loss and the dice coefficient loss. 

When training the network, we set the initial learning rate to 0.001 
and reduced the learning rate by a factor of 0.1 at the 10th and 15th 
epochs. The total number of epochs was set to 20 and the batch size was 
set to 16. We selected Adam as the optimizer (Kingma and Ba, 2014). 
The data augmentation is consistent with Section 3.1. Besides, in Section 
5.3, we analyzed the performance of the three parts of the proposed 
network. Notice that compared with the building extraction network in 
Section 3.1, the proposed change detection network does not introduce 
any new parameters, and directly migrates the well-trained parameters 
of the former, lowering the reliance on a large number of high-quality 
true labels. Moreover, to alleviate the temporal and regional differ-
ences in cross-task transfer learning, we further leveraged the reliable 
change pseudo labels (see Section 3.2) to fine-tune the change detection 
network, without resorting to true labels. In this way, the high acqui-
sition costs for the true labels of the buildings as well as their changes 
can be significantly lowered. The performance of the pseudo labels is 
evaluated by comparing them with the true labels in Section 5.4. 

3.4. Accuracy assessment 

We used the building change samples (Section 2.2) to evaluate the 
proposed method, and calculated five accuracy metrics, including 
overall accuracy (abbreviated OA), intersection over union (IoU), F1- 
score (F1), precision (Prec), and recall (Rec). These metrics are 
commonly used for building change detection (Liu et al., 2021; Sun 
et al., 2022b) and are defined as follows: 

OA =
TP + TN

TP + FP + TN + FN
(8)  

IoU =
TP

TP + FP + FN
(9)  

F1 − score = 2×
Precision × Recall
Precision + Recall

(10)  

Precision =
TP

TP + FP
(11)  

Recall =
TP

TP + FN
(12)  

where TP (true positive) is the number of pixels correctly predicted as 
changed buildings, FP (false positive) is the number of pixels incorrectly 
predicted as changed buildings, TN (true negative) is the number of 
pixels correctly predicted as non-changed buildings, and FN (false 
negative) is the number of pixels incorrectly predicted as non-changed 
buildings. OA represents the precision of all classes (including 
changed and non-changed buildings), and IoU denotes the overlap de-
gree of predicted and referenced changed buildings. Higher precision 
means fewer false alarms, and higher recall indicates fewer omissions. 
F1 balances the precision and recall of changed buildings, and out-
performs OA in the case of class imbalance. 

4. Results 

4.1. Comparison with existing methods 

To verify the effectiveness of the proposed method, we compared ten 
state-of-the-art change detection methods, including Deep CVA (Saha 
et al., 2019), Deep IRMAD (Nielsen, 2007), Deep PCA-Kmeans (Celik, 
2009), FC-EF (Caye Daudt et al., 2018), FC-Siam-con (Caye Daudt et al., 
2018), FC-Siam-diff (Caye Daudt et al., 2018), L-UNet (Papadomanolaki 
et al., 2021), SNUNet (Fang et al., 2022b), BIT (Chen et al., 2022b), and 
CSA-CDGAN (Wang et al., 2022b). For a fair comparison, the first three 
methods take the last layer of features of the trained building extraction 
network (Section 3.1) as input, while the last seven methods utilize the 
generated reliable pseudo labels (Section 3.2) to fine-tune the network 
parameters. In addition, for FC-EF, FC-Siam-con, and FC-Siam-diff, their 
network structures are consistent with the building extraction network 
(Section 3.1) used in this study. These methods are briefly introduced as 
follows:  

1) Deep CVA. Deep change vector analysis (CVA) (Saha et al., 2019) 
takes a pretrained network as a feature extractor to obtain the 
features for each temporal image, and then applies the CVA al-
gorithm (Bovolo and Bruzzone, 2007) on automatically selected 
features to detect changes.  

2) Deep IRMAD. The iteratively reweighted multivariate alteration 
detection (IR-MAD) (Nielsen, 2007) adopts canonical correlation 
analysis (CCA) to calculate the difference of canonical variates 
and then iteratively assigns different weights to observations to 
identify changes. Note that we adopt the last layer of the trained 
building extraction network (Section 3.1) as the input of the 
traditional IR-MAD (Nielsen, 2007), and call this method “Deep 
IRMAD”.  

3) Deep PCA-Kmeans. PCA-Kmeans (Celik, 2009) applies principal 
component analysis (PCA) on the difference of bi-temporal im-
ages to extract the feature vector, and then uses the k-means 
clustering algorithm to partition the feature vector into changed 
and unchanged regions.  

4) FC-EF. Fully convolutional early fusion (FC-EF) (Caye Daudt 
et al., 2018) stacks bi-temporal images along the channel 
dimension at the input level and then feeds them into a encoder- 
decoder network to identify changes.  

5) FC-Siam-con. Fully convolutional Siamese-concatenation (FC- 
Siam-con) (Caye Daudt et al., 2018) adopts two encoders with the 
same structure and shared weights, i.e., the Siamese structure, to 
extract features for each temporal image, and then stacks bi- 
temporal features into a decoder for change detection.  

6) FC-Siam-diff. Fully convolutional Siamese-difference (FC-Siam- 
diff) (Caye Daudt et al., 2018) is similar to FC-Siam-con. The 
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difference between them is that the former uses the absolute 
difference of the bi-temporal features as the input to the decoder.  

7) L-UNet. L-UNet (Papadomanolaki et al., 2021) is built on a deep 
multitask learning framework that can perform both semantic 
segmentation and change detection. In particular, it incorporates 
fully convolutional long short-term memory (LSTM) blocks into 
every level of the encoder to capture the temporal relationship of 
spatial features from bi-temporal images. 

8) SNUNet. SNUNet (Fang et al., 2022b) is a densely connected Si-
amese change detection network. It can maintain high-resolution 
features by densely connecting the encoder and the decoder, and 
employs an ensemble channel attention module to capture the 
most representative features for change detection.  

9) BIT. Bi-temporal image transformer (BIT) (Chen et al., 2022b) 
uses the Siamese network to extract the features for each tem-
poral image, then applies the transformer for modeling the 
spatio-temporal context and refining the bi-temporal features, 
and finally, the difference of the refined bi-temporal features is 
used to predict change regions.  

10) CSA-CDGAN (Wang et al., 2022b) adopts an encoder-decoder 
network with a channel self-attention module as a generator to 
produce a change map, and then applies a discriminator to 
distinguish the change map and the ground truth. The generator 
and the discriminator compete with each other, such that the 
former can obtain a more accurate change map. 

We tested the performance of these methods on the building change 
detection dataset (Section 2.2), and obtained quantitative (Table 2) and 
qualitative (Fig. 8) results. Table 2 shows that our method consistently 
outperforms others in terms of overall metrics, i.e., OA, IoU, and F1. This 
is mostly due to the fact that our method fully leverages change pseudo 
labels to optimize the network parameters, and simultaneously miti-
gates the data distribution differences between bi-temporal images at 
the input, feature, and decision levels. Moreover, we find that, Deep 
CVA, Deep IRMAD, and Deep PCA-Kmeans, do not leverage pseudo la-
bels to optimize network parameters and perform significantly worse 
than other methods using pseudo labels. 

Fig. 8 displays the visualization results of different change detection 
methods in dense and sparse building areas, respectively. Overall, by 
using only pseudo labels, our method can identify changed buildings 
more effectively and better balance false alarms and omissions, 
compared with other methods. In addition, we can observe that these 
methods that do not use pseudo labels (i.e., Deep CVA, Deep IRMAD, and 
Deep PCA-Kmeans) produce lots of false alarms in unchanged regions (e. 
g., Fig. 8(c) and (d)), while other methods using pseudo labels effectively 
suppress these false alarms. Moreover, it can be observed that all 
methods successfully detect most of changed buildings, thanks to the 
utilization of the building extraction network (Section 3.1) that was 
pretrained on crowdsourced building labels from the 27 major Chinese 
cities. 

4.2. Results on the whole study areas 

Fig. 9 shows the whole prediction results of our method on the 
building change detection dataset (Section 2.2). Fig. 9(b) and (d) display 
multiple changed buildings, such as newly-built, demolished, and 
reconstructed buildings. Overall, by courtesy of crowdsourced building 
labels from the 27 major Chinese cities, our method effectively identifies 
most building change types and suppresses pseudo changes in un-
changed areas, such as the color change of the same building (Fig. 9(e)) 
and the illumination change in multi-temporal images (Fig. 9(f)). 

5. Discussions 

5.1. Performance of noisy label correction 

To verify the effectiveness of the noisy label correction module, we 
compared the results with and without this module on two aspects, 
namely building change pseudo labels (obtained by the object-to-pixel 
multi-temporal comparison in Section 3.2) and building change detec-
tion (Section 3.3). As shown in Table 3, for both aspects, the noisy label 
correction module can significantly improve the overall metrics (i.e., 
OA, IoU, and F1), indicating its effectiveness. Furthermore, the overall 
accuracy is higher in the task of change detection than that in the task of 
generating pseudo labels, since the change detection results are further 
optimized and refined through the pseudo labels. This finding further 
confirms the necessity of fine-tuning the network using the pseudo la-
bels, which is also reflected in Table 2. 

Fig. 10 presents the original and corrected crowdsourced building 
labels. We can observe that, due to the inconsistency of the acquisition 
time with ZY-3 images, the original labels miss the newly-built buildings 
(e.g., Fig. 10(a-d)), and still retain the demolished buildings (e.g., Fig. 10 
(e-f)). However, after noisy label correction, these omissions and false 
alarms are effectively removed. The corrected labels are relatively clean, 
which helps to improve the robustness of the network to label noise. 

Fig. 11 displays the proportion of building pixels before and after 
noisy label correction (NLC), and the change proportion of building 
pixels after NLC for each training sample. We can see that for most 
samples, the proportion of building pixels increases after NLC, indi-
cating that original samples suffer a lot from omissions. This phenom-
enon is also reflected in Fig. 10(a-d). Besides, we also calculated the 
average change proportion of building pixels (Paverage) over all the 

training samples i.e., Paverage = 1
N
∑N

i=1

(
Pi

after − Pi
before

)
, where Pbefore

i and 

Pafter
i denote the proportion of building pixels of the i-th training sample 

before and after NLC, respectively, and N is the number of training 
samples. As is shown in Fig. 11(b), Paverage is 4.91% for those samples 
with (Pafter

i − Pbefore
i )>0, and 1.02% for those samples with (Pafter

i −

Pbefore
i )<0. 

Table 2 
Accuracies of building change detection with different methods. The highest value for each metric is marked in bold.  

Method Shanghai    Beijing     

OA IoU F1 Pre Rec OA IoU F1 Pre Rec 

Deep CVA 0.950 0.452 0.622 0.504 0.814 0.921 0.517 0.681 0.558 0.876 
Deep IRMAD 0.950 0.453 0.623 0.505 0.813 0.921 0.517 0.682 0.558 0.876 
Deep PCA-Kmeans 0.950 0.460 0.630 0.506 0.834 0.918 0.509 0.674 0.548 0.875 
FC-EF 0.978 0.627 0.770 0.820 0.727 0.962 0.671 0.803 0.807 0.799 
FC-Siam-Con 0.974 0.599 0.749 0.736 0.763 0.942 0.577 0.732 0.659 0.823 
FC-Siam-Diff 0.977 0.630 0.773 0.786 0.761 0.952 0.626 0.770 0.716 0.833 
BIT 0.976 0.605 0.754 0.780 0.729 0.949 0.613 0.760 0.703 0.827 
LUNet 0.973 0.574 0.729 0.735 0.724 0.950 0.611 0.759 0.708 0.817 
SNUNet 0.975 0.598 0.749 0.761 0.737 0.948 0.606 0.755 0.690 0.833 
CSA-CDGAN 0.978 0.629 0.772 0.817 0.732 0.963 0.674 0.806 0.811 0.800 
Ours 0.979 0.644 0.783 0.820 0.750 0.964 0.691 0.817 0.796 0.840  
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5.2. Performance of uncertainty-aware pseudo label generation 

To evaluate the performance of the uncertainty-aware pseudo label 
generation method, we discussed the impact of three aspects on the 

building change detection results: 1) the multi-temporal comparison 
based on different analysis units (i.e., pixel, object, and object-to-pixel); 
2) the inclusion of the uncertainty-aware analysis; and 3) the threshold 
selection for the uncertainty-aware analysis. 

Fig. 8. Results of different change detection methods on two test samples (1024 × 1024 pixels for each) from Shanghai (a) and Beijing (b), respectively.  
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Fig. 9. Results of the proposed method on the building change detection dataset from Shanghai (a) and Beijing (c). Each enlarged view (b and d) has a spatial extent 
of 1024 × 1024 pixels. 

Table 3 
Accuracies of building change pseudo labels and building change detection with and without (w/o) noisy label correction (NLC). The highest value for each metric is 
marked in bold.  

Task NLC Shanghai Beijing   

OA IoU F1 Pre Rec OA IoU F1 Pre Rec 

Pseudo labels w/o 0.959 0.431 0.602 0.592 0.613 0.901 0.384 0.555 0.491 0.637  
with 0.974 0.603 0.752 0.737 0.768 0.951 0.625 0.769 0.709 0.841 

Change detection w/o 0.970 0.441 0.612 0.896 0.465 0.945 0.454 0.625 0.926 0.471  
with 0.979 0.644 0.783 0.820 0.750 0.964 0.691 0.817 0.796 0.840  
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Table 4 records the quantitative results of the first two aspects. In 
terms of the analysis unit, the object-to-pixel unit performs the best, 
followed by the object unit, and the worst is the pixel unit. Based on the 
object-to-pixel multi-temporal comparison, we further introduced the 
uncertainty-aware analysis to generate reliable pseudo labels for change 
detection. The results in Table 4 indicate that the inclusion of the 
uncertainty-aware analysis significantly improves overall metrics, i.e., 
the OA, IoU, and F1 values of building change detection, demonstrating 
its superiority. 

Fig. 12 shows the building change pseudo labels generated by 
different analysis units and with and without the uncertainty-aware 
analysis. We can observe that the pixel-based comparison is suscepti-
ble to the residual matching errors and the imaging condition difference 
between bi-temporal images, thereby introducing undesired pseudo 
changes, e.g., Fig. 12(a). By contrast, the object-based comparison can 
reduce these pseudo changes. However, limited by the spatial resolution 
of ZY-3 images (2.5 m) and the quality of the crowdsourced building 
labels (containing noise, e.g., false alarms, omissions, and mismatches), 
the boundaries of buildings may not be accurately identified. This issue 
makes it difficult for the object-based comparison to well distinguish the 
changed and unchanged regions within dense building areas, e.g., 
Fig. 12(b). Fortunately, the proposed object-to-pixel comparison can 
effectively alleviate this issue. However, affected by the temporal and 
regional differences in cross-task transfer learning, pseudo labels may 
still contain some noise. The use of all pseudo labels for training tends to 
degrade the generalization performance of the network. Thus, we 
further designed the uncertainty-aware analysis to eliminate the un-
certain labels (e.g., the gray areas in Fig. 12(c)) and trained the network 
with only the reliable labels. 

The key parameter of the uncertainty-aware analysis is the change 
probability threshold (Section 3.2), and its influence on the results of 
building change detection is presented in Fig. 13. It can be seen that, as 
the threshold increases, the precision tends to increase, indicating a 
decrease in false alarms; but meanwhile, the recall tends to decrease, 
representing an increase in omissions. In order to better balance false 

alarms and omissions, the threshold was set to 0.7 in this study, since 
this value can obtain the satisfactory F1-score values in both study areas. 

5.3. Performance of full-level fused building change detection 

To validate the effectiveness of the full-level fused building change 
detection method, we analyzed the building change detection results 
under four conditions: 1) without color transfer at the input level; 2) 
without layer-wise temporal difference at the feature level; 3) without 
unchanged building extraction at the decision level; and 4) with 
different color transfer directions, including the pre-temporal (T1) to 
post-temporal (T2) transfer (i.e., T1 to T2) and its opposite direction (T2 
to T1). As displayed in Table 5, the proposed method that considers the 
modules from all levels (i.e., the first three conditions) performs the best, 
where the feature-level module (i.e., layer-wise temporal difference) 
contributes the most. We can also observe that the color transfer di-
rection has little influence on the results. Besides, it is possible to use the 
widely-used Wallis filter method (Li et al., 2006; Li et al., 2020c) for 
color transfer. The Wallis filter method can linearly transfer the mean 
value (μ) and standard deviation (σ) of source image (xs) to those of 
target image (xt), and obtain the transferred image (xts) by the equation: 

xts = σ(xs)
(

xt − μ(xt)
σ(xt)

)
+ μ(xs). The performance of the Wallis filter is 

recorded in Table 5. We can observe that the Wallis filter obtains 
competitive results compared to the color transfer method used in this 
study. This result again verifies the necessity of considering the differ-
ence in imaging conditions (e.g., atmosphere and illumination) between 
time-series images at the input level. Note that when the number of 
available time-series images is more than two, we can consider some 
established color consistency correction methods for multiple images to 
mitigate the data distribution difference at the input level (Li et al., 
2020a; Li et al., 2022). 

Fig. 14 presents the visualization results under the aforementioned 
four conditions. We can find that the method without the module at any 
level (i.e., input, feature, or decision levels) introduces lots of pseudo 
changes (e.g., Fig. 14(c-h)), especially when the feature-level module is 

Fig. 10. Examples of the noisy label correction on regions (a-f). Each image has a spatial extent of 256 × 256 pixels.  
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removed. These pseudo changes are mainly caused by the data distri-
bution differences between bi-temporal images. By contrast, the pro-
posed method with the modules from all levels suppresses these pseudo 
changes better while ensuring high completeness, verifying its effec-
tiveness. In addition, the prediction results of different color transfer 
directions are similar, indicating the low sensitivity of the color transfer 
to the direction. 

5.4. Comparison between pseudo and true labels 

Pseudo labels are the core of cross-task transfer learning, and are 

built on the building extraction network pretrained with crowdsourced 
building labels from the 27 major Chinese cities. This greatly mitigates 
the workload for manually labeling the buildings and their change 
samples. To investigate the performance of pseudo labels, we compared 
them with true labels. Specifically, for each study area, we randomly 
selected five patches (1024 × 1024 pixels for each patch) from the test 
samples as the training set (i.e., true labels) and the remaining patches as 
the testing set. For a fair comparison, we trained the change detection 
network under three settings: 1) using only true labels for training; 2) 
using only pseudo labels for training; and 3) first using pseudo labels for 
pretraining and then using true labels for fine-tuning. The experimental 

Fig. 11. (a) The proportion of building pixels before and after noisy label correction (NLC) for each training sample. (b) The change proportion of building pixels 
after NLC for each training sample. 

Table 4 
Accuracies of building change detection with different analysis units and with/without the uncertainty-aware analysis (UAA). The highest value for each metric is 
marked in bold.  

Unit UAA Shanghai    Beijing      

OA IoU F1 Pre Rec OA IoU F1 Pre Rec 

Pixel √ 0.976 0.610 0.758 0.774 0.743 0.955 0.645 0.784 0.727 0.851 
Object √ 0.977 0.628 0.772 0.787 0.756 0.960 0.672 0.804 0.769 0.841 
Object-to-pixel × 0.977 0.629 0.772 0.766 0.779 0.955 0.651 0.788 0.729 0.858  

√ 0.979 0.644 0.783 0.820 0.750 0.964 0.691 0.817 0.796 0.840  
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results are recorded in Table 6. We can find that the method using only 
pseudo labels significantly outperforms that using only true labels, while 
the method using both labels performs slightly better than the former. 
The main reason for this phenomenon is that the number of available 
pseudo labels is much higher than that of true labels, which helps to 
sufficiently optimize the network parameters and improve the general-
ization performance of the network. These results confirm that pseudo 
labels hold great potential in situations where true labels are lacking or 
limited, thus mitigating the high acquisition cost of true labels. 

Fig. 15 presents the predicted changed buildings using true labels, 

pseudo labels, and their combination. We can see that the method using 
only true labels is prone to miss the changed buildings (e.g., Fig. 15(c)), 
due to the limitation of label size, and meanwhile it is vulnerable to the 
imaging condition differences between time-series images, leading to 
the incorrect identification of unchanged areas (e.g., Fig. 15(d)). In 
contrast, the method using only pseudo labels can better balance the 
omissions and false alarms, and obtains more satisfactory results in 
building change detection. This phenomenon can be attributed to the 
full use of large-scale crowdsourced building labels. 

Fig. 12. Pseudo labels generated with different analysis units (i.e., pixel, object, and object-to-pixel) and with the uncertainty-aware analysis (UAA). Each image has 
a spatial extent of 512 × 512 pixels. 

Fig. 13. Accuracies of building change detection with different thresholds for the uncertainty-aware analysis in Shanghai (a) and Beijing (b).  

Table 5 
Accuracies of building change detection without (w/o) input-, feature-, and decision-level modules and with two directions of color transfer (i.e., T1 to T2 and T2 to 
T1). “Full” indicates the modules from all levels. “Wallis” represents the Wallis filter for color transfer. The highest value for each metric is marked in bold.  

Module Shanghai     Beijing      

OA IoU F1 Pre Rec OA IoU F1 Pre Rec 

w/o input-level 0.978 0.636 0.777 0.815 0.743 0.951 0.626 0.770 0.709 0.842 
w/o feature-level 0.946 0.426 0.598 0.481 0.787 0.920 0.507 0.673 0.555 0.853 
w/o decision-level 0.978 0.635 0.777 0.790 0.764 0.963 0.690 0.817 0.792 0.843 
Full (T1 to T2) 0.979 0.644 0.783 0.820 0.750 0.964 0.691 0.817 0.796 0.840 
Full (T2 to T1) 0.979 0.640 0.781 0.822 0.743 0.963 0.690 0.817 0.791 0.844 
Wallis (T1 to T2) 0.978 0.638 0.779 0.805 0.754 0.966 0.702 0.825 0.818 0.831  
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5.5. Effect of the spatial heterogeneity of samples 

In this study, considering that buildings in different cities may have 
different sizes, shapes, and colors, we used crowdsourced building labels 
from the 27 major cities in China to enhance the generalization per-
formance of the network. In this section, we further explored the effect 
of the spatial heterogeneity of samples across multiple cities on change 
detection. Specifically, we divided these cities into four geographic 

regions across China: east, west, south, and north (Fig. 1). For noisy 
building samples, in each region (i.e., east, west, south, and north), we 
randomly selected 6000 patches (256 × 256 pixels for each patch) for 
training and 600 patches for validation, to train the building extraction 
network for a fair comparison. To test the accuracy of change detection, 
we collected bi-temporal ZY-3 images in four cities from different 
geographic regions, i.e., Shanghai (east), Kunming (west), Shenzhen 
(south), and Beijing (north). For each city, we manually interpreted 

Fig. 14. Results of building change detection without (w/o) input-, feature-, and decision-level modules and with two directions of color transfer (i.e., T1 to T2 and 
T2 to T1) in areas from Shanghai (a) and Beijing (b). Each image has a spatial extent of 512 × 512 pixels. 

Table 6 
Accuracies of building change detection trained with pseudo labels, true labels, and their combination. The highest value for each metric is marked in bold.  

Training labels Shanghai    Beijing     

OA IoU F1 Pre Rec OA IoU F1 Pre Rec 

True 0.965 0.503 0.669 0.816 0.567 0.939 0.498 0.665 0.817 0.561 
Pseudo 0.974 0.642 0.782 0.835 0.735 0.957 0.675 0.806 0.789 0.823 
Pseudo + True 0.976 0.651 0.789 0.856 0.731 0.962 0.699 0.823 0.821 0.824  
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changed buildings in 10 random patches (1024 × 1024 pixels for each 
patch) as test samples (Fig. 2 and Fig. 16). To train the building change 
detection network, we used all samples except test samples in four cities 
(i.e., Shanghai, Beijing, Kunming, and Shenzhen). The experimental 
results are presented in Fig. 17 and Fig. 18. Overall, it can be found that 
samples from different geographic regions has a significant influence on 
change detection. With respect to the overall metrics (i.e., OA, IoU, and 
F1), the method using samples from all regions has the best performance 

in the four test cities, indicating the necessity of adopting samples across 
multiple cities. Among the four geographic regions (i.e., east, west, 
south, and north), the methods using samples from eastern and western 
regions performs better than those using samples from southern and 
northern regions. This phenomenon may be attributed to the diversity of 
samples in eastern and western regions, which increases the spatial 
heterogeneity of samples and thus improves the generalization capa-
bility of the network. 

Fig. 15. Results of building change detection trained with true labels, pseudo labels, and their combination in areas from Shanghai (a) and Beijing (b). Each image 
has a spatial extent of 1024 × 1024 pixels. 
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6. Conclusions 

This study is concerned with building change detection using bi- 
temporal high-resolution satellite imagery, which is important for un-
derstanding urban development. Although fully supervised deep 
learning-based methods for building change detection have made 
progress, they tend to fuse temporal information only at a single level 
(input, feature, or decision levels) to mitigate the data distribution dif-
ferences between time-series images, which is highly prone to introduce 
a large number of pseudo changes. Moreover, these methods rely on a 
large number of high-quality pixel-level change labels with high 
acquisition costs. In contrast, available crowdsourced building data are 

abundant but are less considered for change detection. For example, 
OpenStreetMap (OSM), Google Map, and Gaode Map provide lots of 
available building labels, yet they usually contain noise such as false 
alarms, omissions, and mismatches, limiting their wide application. 
When the building extraction task is transferred to the building change 
detection task, the temporal and regional differences between different 
images are highly likely to introduce a large number of pseudo changes. 
To mitigate these limitations, we proposed a full-level fused cross-task 
transfer learning method, which can perform building change detec-
tion using only a large number of crowdsourced building labels and 
high-resolution satellite images. The method consists of three parts: 1) 
noise-robust building extraction network pretraining; 2) uncertainty- 

Fig. 16. Bi-temporal ZY-3 images and the corresponding building change labels in Kunming (a) and Shenzhen (c). The spatial extent of the ZY-3 image is 18,881×
11,413 pixels for Kunming (a) and 15,857 × 17,621 pixels for Shenzhen (c). Each enlarged view (b and d) has a spatial extent of 1024 × 1024 pixels. T1 and T2 in 
Kunming are Feb. 9, 2013 and Jan. 17, 2016, respectively, while T1 and T2 in Shenzhen represent Dec. 23, 2013 and Feb. 11, 2017, respectively. 
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aware pseudo label generation; and 3) full-level fused building change 
detection. 

We collected the building detection dataset, which contains ZY-3 
images and the corresponding crowdsourced building labels from the 
27 major cities in China. This dataset is merely used for pretraining the 
building extraction network. In this study, we collected bi-temporal ZY- 
3 images of Beijing and Shanghai for testing the proposed method. The 
experimental results showed that our method can identify changed 
buildings more effectively and better balance false alarms and omis-
sions, compared with the existing state-of-the-art methods. Through 
further analysis, we summarized five major conclusions:  

1) The noisy label correction module can effectively remove noise (e.g., 
false alarms and omissions) contained in crowdsourced building la-
bels, thus improving the accuracy of building change pseudo labels 
and building change detection.  

2) For the uncertainty-aware pseudo label generation method, the 
object-to-pixel comparison not only can reduce the pseudo changes 
introduced by the pixel-based comparison, but also can alleviate the 
difficulty of the object-based comparison in identifying changes 
within dense building areas. In addition, the uncertainty-aware 
analysis can enhance the generalization performance of the 
network using only reliable labels. 

3) The full-level fused building change detection method can simulta-
neously mitigate the data distribution differences between time- 
series images at the input, feature, and decision levels.  

4) Pseudo labels hold great potential to be applied in situations where 
true labels are completely lacking or limited, thus alleviating the 
high acquisition cost of true labels.  

5) By considering the spatial heterogeneities, samples from different 
geographic regions has a significant influence on change detection, 

and results show that it is necessary to consider samples from mul-
tiple cities to improve the performance of change detection. 

There still exist three limitations in this study. The first point is the 
data quality. The data available in this study include crowdsourced 
building labels and ZY-3 images, and they have the advantage of wide 
coverage and low acquisition cost. However, the former may contain 
noise, e.g., false alarms, omissions, and mismatches, while the latter, 
limited by the spatial resolution (2.5 m), cannot delicately portray the 
building boundaries within dense building areas like aerial images or 
unmanned aerial vehicle image (UAV) images. These factors constrain 
the further improvement of building change detection accuracy. A 
possible strategy is to employ the subpixel mapping techniques (He 
et al., 2021) for improving the spatial resolution of predicted results and 
the edge-enhanced network modules (Xie et al., 2020) for optimizing the 
boundaries of predicted results. The second point is the uncertainty of 
pseudo labels. Due to the lack of true labels, pseudo labels were used to 
supervise the change detection network, which may lead to error 
accumulation. For example, for the missed buildings in the pseudo la-
bels, the change detection network may also ignore them. In this regard, 
domain adaptation techniques (Tsai et al., 2018; Wang et al., 2022a) can 
be explored to alleviate this issue. The third point is the change 
dimension. This study focuses on the planar changes of buildings, such 
as demolition and expansion, while does not explore their vertical 
changes, e.g., height variation. Building heights reflect the vertical form 
of the city and can be obtained from Light Detection and Ranging 
(LiDAR), radar, and stereo or multi-view optical imagery (Cao and 
Huang, 2021; Esch et al., 2022). Note that the ZY-3 satellite can provide 
both multispectral and multi-view images of the same area, and this 
property allows us to detect both planar and height changes of buildings 
at a low cost of image acquisition. In future work, we plan to further 

Fig. 17. Accuracies of building change detection using crowdsourced building labels from eastern, western, southern, northern, and all regions in four test cities, i.e., 
Shanghai (a), Kunming (b), Shenzhen (c), and Beijing (d). 
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improve the accuracy of building change detection and estimate the 
height change of buildings using time-series multi-view ZY-3 images. 
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Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., Dech, S., 2012. Monitoring 
urbanization in mega cities from space. Remote Sens. Environ. 117, 162–176. 
https://doi.org/10.1016/j.rse.2011.09.015. 

Tian, J., Cui, S., Reinartz, P., 2014. Building change detection based on satellite stereo 
imagery and digital surface models. IEEE Trans. Geosci. Remote Sens. 52, 406–417. 
https://doi.org/10.1109/TGRS.2013.2240692. 

Tsai, Y.-H., Hung, W.-C., Schulter, S., Sohn, K., Yang, M.-H., Chandraker, M., 2018. 
Learning to adapt structured output space for semantic segmentation. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 7472–7481. 

Van Etten, A., Lindenbaum, D., Bacastow, T.M., 2018. SpaceNet: A Remote Sensing 
Dataset and Challenge Series arXiv Prepr. arXiv1807.01232.  

Voogt, J.A., Oke, T.R., 2003. Thermal remote sensing of urban climates. Remote Sens. 
Environ. 86, 370–384. https://doi.org/10.1016/S0034-4257(03)00079-8. 

Wang, J., Ma, A., Zhong, Y., Zheng, Z., Zhang, L., 2022. Cross-sensor domain adaptation 
for high spatial resolution urban land-cover mapping: from airborne to spaceborne 
imagery. Remote Sens. Environ. 277, 113058 https://doi.org/10.1016/j. 
rse.2022.113058. 

Wang, X., Li, P., 2020. Extraction of urban building damage using spectral, height and 
corner information from VHR satellite images and airborne LiDAR data. ISPRS J. 
Photogramm. Remote Sens. 159, 322–336. https://doi.org/10.1016/j. 
isprsjprs.2019.11.028. 

Wang, Z., Zhang, Y., Luo, L., Wang, N., 2022. CSA-CDGAN: channel self-attention-based 
generative adversarial network for change detection of remote sensing images. 
Neural Comput. Appl. https://doi.org/10.1007/s00521-022-07637-z. 

Weng, W., Zhu, X., 2021. INet: convolutional networks for biomedical image 
segmentation. In: IEEE Access. Springer, pp. 16591–16603. https://doi.org/ 
10.1109/ACCESS.2021.3053408. 

Xiao, X., Ma, L., 2006. Color transfer in correlated color space. In: Proceedings - VRCIA 
2006: ACM International Conference on Virtual Reality Continuum and Its 
Applications, pp. 305–309. https://doi.org/10.1145/1128923.1128974. 

Xie, Y., Zhu, J., Cao, Y., Feng, D., Hu, M., Li, W., Zhang, Y., Fu, L., 2020. Refined 
extraction of building outlines from high-resolution remote sensing imagery based 
on a multifeature convolutional neural network and morphological filtering. IEEE 
JSel. Top. Appl. Earth Obs. Remote Sens. 13, 1842–1855. 

Ye, S., Chen, D., Yu, J., 2016. A targeted change-detection procedure by combining 
change vector analysis and post-classification approach. ISPRS J. Photogramm. 
Remote Sens. 114, 115–124. https://doi.org/10.1016/j.isprsjprs.2016.01.018. 

Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O., 2021. Understanding deep 
learning (still) requires rethinking generalization. Commun. ACM 64, 107–115. 
https://doi.org/10.1145/3446776. 

Zhang, C., Yue, P., Tapete, D., Jiang, L., Shangguan, B., Huang, L., Liu, G., 2020. A deeply 
supervised image fusion network for change detection in high resolution bi-temporal 
remote sensing images. ISPRS J. Photogramm. Remote Sens. 166, 183–200. https:// 
doi.org/10.1016/j.isprsjprs.2020.06.003. 

Zhang, W., Lu, X., Li, X., 2018. A coarse-to-fine semi-supervised change detection for 
multispectral images. IEEE Trans. Geosci. Remote Sens. 56, 3587–3599. https://doi. 
org/10.1109/TGRS.2018.2802785. 

Zhang, X., Xiao, P., Feng, X., Yuan, M., 2017. Separate segmentation of multi-temporal 
high-resolution remote sensing images for object-based change detection in urban 
area. Remote Sens. Environ. 201, 243–255. https://doi.org/10.1016/j. 
rse.2017.09.022. 

Zhang, Y., Chen, G., Myint, S.W., Zhou, Y., Hay, G.J., Vukomanovic, J., Meentemeyer, R. 
K., 2022. UrbanWatch: a 1-meter resolution land cover and land use database for 22 
major cities in the United States. Remote Sens. Environ. 278, 113106 https://doi. 
org/10.1016/j.rse.2022.113106. 

Zhang, Z., Guo, W., Li, M., Yu, W., 2020. GIS-supervised building extraction with label 
noise-adaptive fully convolutional neural network. IEEE Geosci. Remote Sens. Lett. 
17, 2135–2139. https://doi.org/10.1109/LGRS.2019.2963065. 

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proc. 
- 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017. https://doi.org/ 
10.1109/CVPR.2017.660. 

Zheng, Z., Zhong, Y., Wang, J., Ma, A., Zhang, L., 2021. Building damage assessment for 
rapid disaster response with a deep object-based semantic change detection 
framework: from natural disasters to man-made disasters. Remote Sens. Environ. 
265, 112636 https://doi.org/10.1016/j.rse.2021.112636. 

Zhou, Y., Li, X., Asrar, G.R., Smith, S.J., Imhoff, M., 2018. A global record of annual 
urban dynamics (1992–2013) from nighttime lights. Remote Sens. Environ. 219, 
206–220. https://doi.org/10.1016/j.rse.2018.10.015. 

Zhu, Q., Liao, C., Hu, H., Mei, X., Li, H., 2021. MAP-net: multiple attending path neural 
network for building footprint extraction from remote sensed imagery. IEEE Trans. 
Geosci. Remote Sens. 59, 6169–6181. https://doi.org/10.1109/ 
TGRS.2020.3026051. 

Y. Cao and X. Huang                                                                                                                                                                                                                          

https://doi.org/10.1109/LGRS.2020.2988032
https://doi.org/10.1109/LGRS.2020.2988032
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192246470660
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192246470660
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192246470660
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192246470660
https://doi.org/10.1109/TGRS.2016.2612821
https://doi.org/10.1109/TGRS.2014.2363548
https://doi.org/10.3390/rs2051217
https://doi.org/10.1016/j.rse.2014.09.023
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192247044228
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192247044228
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192247295512
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192247295512
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192247295512
https://doi.org/10.5194/isprsarchives-XL-1-W5-387-2015
https://doi.org/10.1109/TIP.2006.888195
https://doi.org/10.1016/S0034-4257(97)00162-4
https://doi.org/10.1016/S0034-4257(97)00162-4
https://doi.org/10.1016/j.rse.2009.02.014
https://doi.org/10.1016/j.rse.2009.02.014
https://doi.org/10.1109/TGRS.2021.3055584
https://doi.org/10.1109/TGRS.2021.3055584
https://doi.org/10.1109/TGRS.2020.3011913
https://doi.org/10.1109/TGRS.2020.3011913
https://doi.org/10.3390/rs11111382
https://doi.org/10.3390/rs11111382
https://doi.org/10.3390/rs8040299
https://doi.org/10.3390/rs8040299
https://doi.org/10.1007/s11769-014-0728-8
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192241531006
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192241531006
https://doi.org/10.1109/TGRS.2018.2886643
https://doi.org/10.1016/0034-4257(88)90116-2
https://doi.org/10.1016/0034-4257(88)90116-2
https://doi.org/10.1073/pnas.1211658109
https://doi.org/10.3390/rs12101688
https://doi.org/10.3390/rs12101688
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192252422699
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192252422699
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192252422699
https://doi.org/10.1016/j.rse.2019.111430
https://doi.org/10.1016/j.rse.2019.111430
https://doi.org/10.3390/rs14122801
https://doi.org/10.1109/LGRS.2020.3018858
https://doi.org/10.1109/LGRS.2020.3018858
https://doi.org/10.1109/TGRS.2021.3106381
https://doi.org/10.1109/TGRS.2021.3106381
https://doi.org/10.1109/LGRS.2012.2228626
https://doi.org/10.1016/j.rse.2011.09.015
https://doi.org/10.1109/TGRS.2013.2240692
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192249515338
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192249515338
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192249515338
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192249515338
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192250156232
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192250156232
https://doi.org/10.1016/S0034-4257(03)00079-8
https://doi.org/10.1016/j.rse.2022.113058
https://doi.org/10.1016/j.rse.2022.113058
https://doi.org/10.1016/j.isprsjprs.2019.11.028
https://doi.org/10.1016/j.isprsjprs.2019.11.028
https://doi.org/10.1007/s00521-022-07637-z
https://doi.org/10.1109/ACCESS.2021.3053408
https://doi.org/10.1109/ACCESS.2021.3053408
https://doi.org/10.1145/1128923.1128974
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192243131251
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192243131251
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192243131251
http://refhub.elsevier.com/S0034-4257(22)00477-1/rf202211192243131251
https://doi.org/10.1016/j.isprsjprs.2016.01.018
https://doi.org/10.1145/3446776
https://doi.org/10.1016/j.isprsjprs.2020.06.003
https://doi.org/10.1016/j.isprsjprs.2020.06.003
https://doi.org/10.1109/TGRS.2018.2802785
https://doi.org/10.1109/TGRS.2018.2802785
https://doi.org/10.1016/j.rse.2017.09.022
https://doi.org/10.1016/j.rse.2017.09.022
https://doi.org/10.1016/j.rse.2022.113106
https://doi.org/10.1016/j.rse.2022.113106
https://doi.org/10.1109/LGRS.2019.2963065
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1016/j.rse.2021.112636
https://doi.org/10.1016/j.rse.2018.10.015
https://doi.org/10.1109/TGRS.2020.3026051
https://doi.org/10.1109/TGRS.2020.3026051

	A full-level fused cross-task transfer learning method for building change detection using noise-robust pretrained networks ...
	1 Introduction
	2 Dataset description
	2.1 Building detection dataset
	2.2 Building change detection dataset

	3 Methodology
	3.1 Noise-robust building extraction network pretraining
	3.2 Uncertainty-aware pseudo label generation
	3.3 Full-level fused building change detection
	3.4 Accuracy assessment

	4 Results
	4.1 Comparison with existing methods
	4.2 Results on the whole study areas

	5 Discussions
	5.1 Performance of noisy label correction
	5.2 Performance of uncertainty-aware pseudo label generation
	5.3 Performance of full-level fused building change detection
	5.4 Comparison between pseudo and true labels
	5.5 Effect of the spatial heterogeneity of samples

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


