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ABSTRACT 

 

Hyperspectral remote sensing could acquire hundreds of 

bands to cover a complete spectral interval, which deliver 

more information and allow a whole range of new and more 

precise applications. But vast data volume can cause trouble 

in computer processing and data transmission. Too many 

bands may cause interference for image processing and 

endmember variability is inevitable in hyperspectral data, 

which will affect the accuracy of interpretation. Band 

selection for hyperspectral image data is an effective way to 

mitigate the curse of dimensionality. In this paper, one 

hyperspectral band selection method based on endmember 

dissimilarity is proposed. This method used Mahalanobis 

distance as class separability criterion, and the spectral 

signature for each class is proposed by endmember 

extraction method automatically. Experiments on both 

synthetic and real hyperspectral data sets indicate that the 

proposed method outperformed the Minimum Estimated 

Abundance Covariance (MEAC) and Uniform Spectral 

Spacing (USS) method. 

 

Index Terms— hyperspectral image, band selection, 

unmixing 

 

1. INTRODUCTION 

 

Dozens or hundreds of narrow, adjacent spectral bands 

represent unique material in hyperspectral remote sensing 

image. Due to more information contained in hyperspectral 

data, it allows a whole range of new and more precise 

applications. But, one question is whether all of the 

wavebands are actually necessary for a particular application. 

For example, one task to distinguish grass and water, red 

wavelengths and near infrared wavelengths is enough. Much 

more bands may interfere with the classification results. 

Secondly, when performing supervised classification, it is 

important that the number of training samples must larger 

than number of bands. It is often hard to attain when using 

hyperspectral data. Thirdly, neighboring bands in 

hyperspectral data are generally strongly correlated and 

some bands may contain less discriminatory information 

than others. At last, spectral variability which is inevitable in 

hyperspectral image will affect the accuracy of interpretation 

Dimensionality reduction is one widely used way to 

overcome above problems. Methods of dimensionality 

reduction can be achieved by a transform-based approach, 

such as PCA, or a band-selection method. However, these 

transform-based methods usually change the physical 

meaning of the original data. Band-selection methods select 

a subset of the original bands without losing their physical 

meaning. In this paper, we limit the discussion on band 

selection. 

Band selection can be either supervised or 

unsupervised. Supervised band selection can be seen as an 

optimization problem associated with some criteria, such as 

a class separability measure [1]–[3]. It only works when the 

the class knowledge is known as a priori. However, in many 

real applications, there is often very little a priori knowledge 

available. Unsupervised band selection does not require a 

priori knowledge. They usually rely on the basic idea of 

finding the most informative bands that are distinctive from 

others [4]–[6]. Discrimination criteria in unsupervised band 

selection methods were commonly universal, but it maybe 

not the best choice for a certain task. 

In this paper, we proposed a band selection method 

based on endmember dissimilarity. It is a supervised band 

selection method without any priori. This method used 

Mahalanobis distance as class separability criterion, and the 

spectral signature for each class is proposed by endmember 

extraction method automatically. What is more, through the 

final results, we also could estimate the number of 

endmembers accurately. 

The rest of the paper is organized as follows. Section II 

describes a band selection method based on endmember 

dissimilarity. Section III presents a comparison of proposed 

method, MEAC and USS with both simulated and real data 

sets. Section IV concludes the paper and introduces the 

future research. 

 

2. METHOD 
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In this section, a band selection method based on 

endmember dissimilarity is described detailed. In order to 

select the most distinctive and informative bands, water 

absorption and low SNR bands need to be preremoved. This 

is because they can be very distinctive but not informative. 

A. Endmember extraction 

In a supervised band selection where class signatures are 

known, band-selection process can be greatly simplified. If 

there is no priori information, endmember extraction method 

can be used for class signatures extraction. In this paper, 

VCA is used for endmember extraction [8]. It also can be 

replaced by other endmember extraction methods [9][10]. 

VCA algorithm models the data as a positive cone, 

whose projection onto a properly chosen hyperplane is a 

simplex, with vertices being the endmembers. After 

projecting the data onto the selected hyperplane, then 

projects all the pixels to a random direction and uses the 

pixel with the largest projection as the first endmember. The 

other endmembers are identified by iteratively projecting the 

data onto a direction orthogonal to the subspace spanned by 

the endmembers already determined. The new endmember is 

then selected as the pixel corresponding to the extreme 

projection. 

For VCA methods, the number of endmember should 

be known in advance. In experiments, we set an initial 

number and make adjustments according to the results. 

Details will be discussed in the experiments part. 

B. Band selection method based on endmember dissimilarity 

In order to select the most dissimilar bands, a similarity 

metric needs to be designated. The widely used metrics 

include distance, correlation, etc. Endmember dissimilarity 

based on Mahalanobis distance is used here. 

Assume that there are p classes present in an image 

scene. Let the endmember matrix extracted by VCA be 

1 2[ , ,..., ]pS s s s , then the endmember dissimilarity function 

can be defined as [11]: 
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where ( , )i jD s s  means the Mahalanobis distance between 

,i js s
: 
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(2) 

where   is the covariance of whole data. 

The Mahalanobis distance is a measure of the distance 

between a point P and a distribution D, introduced by P. C. 

Mahalanobis [12]. It is also effective to calculate the 

similarity between two points under the same distribution. 

Unlike Euclidean distance, it considers the influence of 

overall variation (variance), and scale independent. 

The proposed method’s basic steps can be described as 

follows: 

1) Calculate ( ) 1,2,...,ig S i L  using each band, and L is 

the number of bands. 

2) The first selected band
1 {B1}S  ： 

B1 arg max( ( )) 1,2,...,
i

i
B

g S i L   (3) 

3) Calculate ( )ig S  using
1{ , }iS S

iB    

1,2,..., B1i L and i  , and L is the number of bands. The 

first selected band 
2 {B1,B2}S   according to Eq. (3). 

4) Repeat step 3) until the desired number of bands has been 

added to  . 

From the above flow, we can see that this method does 

not need a large number of training samples; does not need 

to do classification to each combination, and there's no need 

to separate the initial band selection. We only need the 

spectral information that can be extracted by the endmember 

extraction algorithm. 

 

3. EXPERIMENT 

 

This section describes the experiments conducted on both 

simulated and real hyperspectral data, to allow a 

comprehensive analysis of the proposed method compared 

with USS and MEAC. Because we cannot obtain enough 

training samples to calculate statistics of each class, JM-

based method and Bhattacharyya-distance-based method 

cannot achieve well results, which are not used here. What is 

more, unmixing results were used to evaluate band selection 

results. 

The RMSE metric, which is widely used in the study of 

hyperspectral unmixing, is used to evaluate the unmixing 

results. Because all the endmembers and the corresponding 

abundances in the simulated image are known in advance, 

root-mean-square error (RMSE) is taken to evaluate the 

similarity of true versus estimated abundances: 
1
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where: p is the number of endmembers, L is the number of 

pixels. 

In real data experiments, we do not know the true 

abundances in advance, so the difference of image versus 

reconstructed image is used to evaluate, which is also named 

RMSE: 
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(5) 

where: B is the number of bands; L is the number of pixels; 

y is spectrum in image data. 

A. Synthetic Hyperspectral Image 

In this experiment, we derive a subset of six endmembers 

from the USGS spectral library [13] (shown in fig. 1) and 

use them to generate a simulated hyperspectral image with 
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100×100 pixels covering 224 bands. The abundance maps 

are illustrated in Fig. 2. There are pure pixels regions as well 

as mixed pixel regions. The synthetic hyperspectral image is 

implanted with noise (SNR=40). 

 
Fig. 1 Six endmembers from the USGS spectral library 

   

   
Fig. 2 Abundance maps for the series of simulated scenes 

 

1) the number of endmembers analysis 

In synthetic hyperspectral image, there are 6 endmembers. 

We tested how the endmember dissimilarity function g(S) 

changed with the number of bands selected increase when 

the number of endmembers is set blow or above 6 (shown in 

fig. 3). 

 
Fig. 3 the number of endmembers analysis 

From fig. 3, we can see that: 1) If the number of 

endmembers in VCA is less than or equal to the real value, 

g(S) tend to be stable after a certain point; 2) If the number 

of endmembers in VCA is larger than the real number, g(S) 

will always increase after the certain point (the number of 

endmembers) at the speed of visible growth. 

 

2) Unmixing results 

Unmixing results were used to evaluate band selection 

results. And the number of selected bands changed from the 

number of endmembers to 50. Unmixing results using 

different bands are shown in fig.4. From fig.4, we can see 

that the proposed method outperformed the MEAC and USS 

with the smallest RMSE using 10bands and 25bands. What 

is more, the number of endmember is not the best number of 

bands to choose. 

 
Fig. 4 Comparison between proposed method and MEAC, USS on 

unmixing accuracy 

B.  Real Data 

The real data set covering the Cuprite scene was captured by 

AVIRIS (Airborne Visible Infrared Imaging Spectrometer), 

and is shown in Fig. 5. There are 182 bands in the data, with 

a size of 250×190, covering the wavelength range of 0.5−2.5 

μm. The data set has become a popular benchmarking data 

set for algorithm evaluation, due to the extensive ground 

truth spectra available for the scene from the USGS. 

 
Fig. 5. The AVIRIS Cuprite subscene 

1) the number of endmembers analysis 

In real hyperspectral image, we do not know the number of 

endmembers. The number of endmembers is changed from 

10 to 20 in experiments to get different g(S) curves under 

different endmember numbers. Five representative curves 

are shown in fig. 6. According to the conclusion in above 

experiments about endmember number analysis, the number 

of endmembers in real data is determined to 14. Because 

when the number of endmembers set is larger than the real 
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number, the value of g(S) will always increase after the 

certain point (the number of endmembers) at the speed of 

visible growth. 

 
Fig. 6. The number of endmembers analysis 

2) Unmixing results 

The number of selected bands changed from the number of 

endmembers 14 to 50. Unmixing results with different bands 

are shown in fig.7. From fig.7, we can see that the proposed 

method outperformed the MEAC and USS with the smallest 

RMSE using 25bands. It is strange that there is no rule for 

the line chart in fig.7. 

 
Fig. 7 Comparison between proposed method and MEAC, USS on 

unmixing accuracy 

 

4. CONCLUSION 

 

We developed new supervised band selection algorithms for 

hyperspectral imagery. The major contributions are the 

following: 1) employing the ideas of endmember 

dissimilarity as measurement without any priori; 2) from the 

endmember dissimilarity function curves we also could 

estimate the number of endmembers. 
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