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ABSTRACT 

 
This paper presents a new semi-supervised method for land 

cover classification using Sentinel-2 time-series images, 

which can deal with the problem of unclear observations. 

First, the MCCR method, which is constituted by the matrix 

completion (MC) of unclear observations and feature-

adaptive collaborative representation (CR) based classifier, 

is adopted to handle the data quality problem. Second, by 

fusing RF, AdaBoost, and MCCR, a tri-training process is 

proposed to iteratively select the semi-labeled samples, 

considering the difference of classification certainty in 

different classifiers and classes. Experiments on two sets of 

Sentinel-2 images are conducted to validate the effectiveness 

of the proposed semi-supervised method.   

 

Index Terms—Sentinel-2, tri-training, time series 

images, land cover classification 

 

1. INTRODUCTION 

 

Accurate land cover mapping is of great importance to our 

understanding of coupled human-environment systems. 

Remote sensing data provide a valuable source for land 

cover mapping. Compared with single-date images, time 

series imagery is more advantageous in discriminating land 

cover types, especially for the classes that exhibit different 

characteristics during different time periods.  However, it is 

difficult to obtain clear, i.e., complete and uncontaminated 

time series images from optical remote sensing platforms, 

due to the existence of clouds/cloud shadows and snow/ice 

cover. 

To cope with the unclear observations, some studies 

generated best-available-pixel (BAP) composites from time 

series imagery. However, the criterion for the construction 

of BAP needs to be carefully designed in advance [1].  Zhu 

et al. used all the clear time-series observations to build a 

model for each pixel and then took the model coefficients 

and root mean square error as features to identify land cover 

types. However, it is not always guaranteed that there are 

sufficient clear observations for model initialization [2]. In 

contrast to the methods that totally ignore the unclear 

observations, approaches that adopt dense time series data 

investigate discriminative information from the unclear 

observations. Furthermore, it has been demonstrated that the 

random forest (RF) classifier outperforms other state-of-the-

art classifiers, e.g., support vector machine (SVM), when 

dealing with observations with contamination [3]. The RF 

classifier has the ability to tolerate noisy observations, 

ascribed to the random selection of samples and features. 

The AdaBoost classifier can also handle the data quality 

problem by reweighting each training sample in the iterative 

learning process. However, these methods do not fully 

consider the different usability of clear and contaminated 

observations.  

In this paper, a new semi-supervised land cover mapping 

approach is proposed. First, the benefit of recovering unclear 

observations in the classification is investigated based on the 

combination of matrix completion (MC) and collaborative 

representation (CR) classifier. The similarity among the 

training samples from each class enables the recovery of 

unclear elements through MC technology. Furthermore, by 

taking the different mechanisms of the three base classifiers 

into considerations, a tri-training paradigm is proposed to 

improve the classification accuracy. According to the 

different predictions of the three classifiers on unlabeled 

samples, informative and reliable samples are iteratively 

selected as newly added semi-labeled samples to retrain the 

classifiers, and then improve the final classification 

performance. The Sentinel-2 imagery are widely used as 

time-series data source due to the high revisit time (5 days at 

the equator) and multi-spectral bands (13 bands that cover 

the visible, near infrared, and shortwave infrared domains). 

In addition, research on the classification of the dense time-
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series Sentinel-2 images with unclear observations is rare. In 

this study, we adopt the Sentinel-2 images as unclear time 

series data to investigate the performance of the proposed 

semi-supervised approach.  

 

2. PROPOSED METHOD 

 

The proposed approach (see Fig. 1) is composed of two 

main parts, 1) the construction of an MCCR classifier and 2) 

the selection of semi-labeled samples by a tri-training 

learning process.  

 
Fig. 1.  Methodology flowchart. 

 

2.1. The construction of MCCR classifier  

 

The locations of unclear observations in Sentinel-2 data are 

first obtained by the cloud displacement index (CDI) 

algorithm, which has been integrated into the Fmask 4.0 

software [4]. Observations that are recognized as clouds, 

cloud shadows or snow are all taken as contaminated. The 

feature vector of each sample is then formed by a time series 

stacking of multi-spectral bands, and hence the features of 

training samples with the same label should be in a lower 

dimensional space. Suppose Di denotes the dictionary 

composed of all the training samples from class i, the matrix 

Di should be the low-rank if all the matrix elements are 

reliable. Therefore, the unclear elements in Di can be 

recovered by MC technology.  

For a completely clear unlabeled sample y, it can be 

linearly represented by the dictionary D = [D1, D2, ..., Dp], 

according to the general CR model [5]. However, it is 

difficult to ensure that all the elements in a feature vector are 

reliable. Let y is composed of two parts, i.e., clear sub-

feature (yc), and unclear sub-feature (yuc), the sub-feature yc 

can be linearly represented via: 

yc = Dcα +εc (1) 

Through the flexible selection of clear sub-features, the 

crisp (label) and soft (class posterior probability) outputs of 

each unlabeled sample are determined based on the 

representation coefficient and model residual error [6]. In 

this way, an MCCR classifier has the potential to deal with 

the unclear features. 

 

2.2 The tri-training selection of semi-labeled samples 

 

Similar to the MCCR, the RF and AdaBoost classifier can 

also handle contaminated features. However, they have 

different mechanisms in the classification procedures, 

resulting in different crisp and soft predictions of each 

unlabeled sample. In the tri-training algorithm, three base 

classifiers are initially trained with the pre-collected training 

samples, and the next step is to select the qualified semi-

labeled samples from the unlabeled ones, and the semi-

labeled samples are then fed into each classifier to retrain 

the models. The selection of semi-labeled samples is 

iteratively implemented until the predefined maximum 

number is reached. Finally, the prediction of each sample is 

determined by the probability fusion of each classifier.  

In order to improve the discrimination capability of each 

classifier, it is needed to select samples that are 1) correctly 

labeled and 2) different from the existing training samples. 

For each unlabeled sample, the difference between the two 

highest posterior probabilities is used to measure the 

classification certainty (Cer). Generally, samples with lower 

classification certainty are more liable likely to be 

mislabeled, but if the predicted label is correct, these 

samples can be more informative to the classifier [7]. 

Therefore, the above two criteria are actually conflicting, 

and it is necessary to set a tradeoff strategy [8]. The detailed 

selection procedure is described as follows: 

1) Generation of a candidate set (Ƥ): An unlabeled sample 

can be reliably labeled to some extent, when the crisp 

predictions of the three classifiers are identical. Therefore, 

the candidate set Ƥ is generated by these samples. 

2) Tradeoff selection (Ƥtrim): The samples in set Ƥ are not   

absolutely correct owing to the small size of the training 

samples and unclear observations. Therefore, further 

selection from Ƥ is needed. Taking into account the 

difference in the certainty of different classes and classifiers, 

the threshold for a further selection is set as: 

Tik = β× mean(Cerk(Ƥi)) (2) 

where Ƥi  denotes the samples in Ƥ that are labeled as class i, 

Cerk  means the certainty generated by the classifier k, and β 

is the tradeoff parameter that balances the reliability and 

diversity of samples. The unlabeled samples y whose 

certainties are higher than the corresponding thresholds are 

first merged class-by-class, and the samples of each 

classifier are then intersected to form the trimmed semi-

labeled sample set: 

Ƥtrim = ∩k[∪i(Cer(y)>Tik)] (3) 

The confidence that a sample in Ƥtrim is correctly-labeled 

is higher with a larger β, while the diversity of samples in 

Ƥtrim is larger with a smaller β. The samples in Ƥtrim are 

respectively divided into three parts, i.e., Ƥtrim
k, where k = 
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{RF, AdaBoost, MCCR}, and the rule is that, if the certainty 

of a sample in classifier k is lower than that in the other two 

classifiers, this sample will be partitioned into Ƥtrim
k. 

3) Reduction of selected samples: To further select 

representative samples from a large number of semi-labeled 

samples, the k-means method is adopted with the cluster 

number is set as 20% of the current number of training 

samples in each class, and the resulting center patterns are 

then taken as semi-labeled samples.   

 

3. EXPERIMENT AND ANALYSIS 

 

3.1 Dataset and experimental setup 

 

In this study, we selected the Sentinel-2 (S2) images located 

in the two cities of China (Beijing and Guangzhou) as the 

datasets. All the available Level-1C top-of-atmosphere 

(TOA) images acquired in 2017 with less than 60% 

contaminated observations were downloaded from the 

USGS website. They were corrected to Level-2A bottom-of-

atmosphere (BOA) reflectance using Sen2Cor plugin 

provided by the European Space Agency. In the Beijing (BJ) 

dataset, 20 Sentinel-2 images were stacked to construct the 

features, and 11 Sentinel-2 images were stacked for 

Guangzhou (GZ) dataset. In each city, a subset of size 

2000×2000 was clipped as the study area (Fig. 2). For each 

image. the bands 2-8, 8A, 11 and 12 were used to produce 

10-band feature at 20 m resolution [9].   

 
Fig. 2. The two Sentinel-2 datasets covering 40 km × 40 

km (R: 8a; G: 4; B: 3). (a) Beijing in 20171005 (b) 

Guangzhou in 20171027. 

 

The reference samples for each dataset are randomly 

collected in polygon by manually interpreting S2 time series 

images together with Google Earth imagery of the same 

period respectively. Half of the reference polygons are 

selected for training and the others are taken for test. One 

sample was randomly chosen from each polygon to generate 

the training and test set, and the experiment for each dataset 

was carried out five times independently. The numbers of 

training/test pixels for each dataset are listed in Table I.  

The parameters in all the base classifier are optimized by 

10-fold cross validation based on the training samples. The 

maximum iteration number in the proposed tri-training 

approach is set as 3, and the tradeoff parameter β is 1.0 in 

the two datasets. 

 
TABLE I  THE NUMBERS OF TRAINING&TEST SAMPLES 

  Built-up Cropland Forest Water Soil 

BJ 

Training 217 135 89 110 50 

Test 217 135 89 110 50 

GZ 

Training 172 112 150 143 125 

Test 172 112 150 142 125 

 

3.2 Results and analysis 

 

The classification results of the RF, AdaBoost, MCCR, and 

the tri-training method for the two datasets are presented in 

Table II, in terms of the average accuracies for the 5 

experiments. In addition to the three base classifiers, the 

probability fusion of each classifier (each pixel is assigned 

to the label with the maximum sum of the class probability 

of the three classifiers) is also selected as comparisons 

(hereafter referred to as ‘Fuse’).   

 
TABLE II  THE CLASSIFICATION RESULS OF THE THREE 

BASE CLASSIFIERS AND TRI_TRAINING METHOD. 

  
RF AdaBoost MCCR Fuse 

Tri-

training 

OA 

(%) 

BJ 89.58 89.26 90.07 90.42 92.35 

GZ 93.71 93.44 93.58 94.31 95.28 

KC 
OA 0.866 0.863 0.869 0.871 0.899 

KC 0.922 0.920 0.921 0.926 0.939 

 

With respect to the overall accuracy (OA), all the three 

base classifiers achieve relatively good results in the BJ and 

GZ datasets, indicating their capability in dealing with the 

observation noise (clouds/cloud shadows, snow/ice, etc.) in 

S2 multi-temporal images. The three classifiers also perform 

similar to each other, both in terms of OA and the Kappa 

coefficient (KC). The ‘Fuse’ classifier slightly outperforms 

each individual classifier with an increase of about 0.005 in 

KC. It is important note that the difference between the 

‘Fuse’ classifier and the tri-training approach only originates 

from the introduction of the iterative semi-labeled samples 

based on classification certainties of diverse classifiers. It 

can be seen that the OA and KC values of the tri-training 
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method in both experiments are higher than the ‘Fuse’ 

method. For the BJ dataset, OA values are increased by 

nearly 2.0% and the KC values improves by 0.028. The 

improvement in GZ is slightly lower, with about 1.0% and 

0.013 in terms of OA and KC, respectively.  

The semi-labeled samples are selected according to the 

classification certainties of different classifiers and classes. 

With different values of the tradeoff parameter β, the 

balance between the confidence and information of selected 

sample varies, thus leading to different classification results. 

Taking the GZ dataset as an example, Fig. 3 displays the 

impacts of different β (ranging from 0.4 to 1.6 with a step of 

0.2) on the results in regard to the OA.   

 

 
Fig. 3.  The effect of the parameter β to overall accuracy of 

the GZ datasets.  

 

Compared with the benchmark accuracy obtained by 

probability fusion (the dashed line in Fig. 2), the tri-training 

module has the ability to further improve the classification 

performance with a moderate β value (e.g., from 0.8 to 1.2). 

When the value of β is small, the high confidence of the 

selected semi-labeled samples cannot be guaranteed, and 

hence the classification accuracy decreases. For large β 

values, the similarity between the selected samples and the 

initial manual training samples are too high for each 

classifier to improve the classification capability. Therefore, 

in this study, the adaptive threshold for each class and 

classifier is suggested as the average certainty of the 

candidate unlabeled samples in each class and classifier. 

 

4. CONCLUSIONS 

 

In this paper, a new semi-supervised land cover mapping 

approach with Sentinel-2 time-series imagery is introduced. 

Considering existing contaminated observations, a method 

(MCCR), combined with the recovery of unclear 

observations and feature-adaptive collaborative 

representation based classifier, is developed to handle the 

unreliable observations. Moreover, a tri-training paradigm 

based on the three classifiers (RF, AdaBoost, and MCCR) is 

proposed to improve the classification accuracy, considering 

their complement and diversity. The semi-labeled samples 

are iteratively selected according to the adaptive thresholds 

for each class and classifier. The effectiveness of our method 

was validated on two datasets.   
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