
SEMI-SUPERVISED SPARSE RELEARNING REPRESENTATION 

CLASSIFICATION FOR HIGH-RESOLUTION REMOTE SENSING IMAGERY 
 

Jiayi Li, Xin Huang, and Liangpei Zhang* 

 
The State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, and the School of 

Remote Sensing and Information Engineering , Wuhan University, P. R. China 

Corresponding author: zlp62@whu.edu.cn 

 

ABSTRACT 

In this article, we proposed a novel semi-supervised sparse 

representation classification for high resolution remote sensing 

image. First, collaborative representation mechanism that 

exploits the help from whole training information rather than 

from only the potential associated class can enhance the class 

recognition ability. Second, by taking advantage of spatial 

occurrence and alignment of class label, the adoption of the 

relearning can gradually learn the flexible class-oriented spatial 

pattern from the label space with alleviated computational 

complexity to enhance the original spectral characteristics. Third, 

inspired by the spatial smoothing phenomenon when spatial 

feature stacked, a novel stable self-learning method can be 

designed to automatically select informative unlabeled sample to 

help the limited supervised set. Experiments on two 

hyperspectral and high-spatial resolution images validated the 

effectiveness and robustness of the proposed algorithm 
 

Index Terms—Sparse representation, relearning, 

self-learning, spatial co-occurrence pattern, remote sensing 

image classification 
 

1. INTRODUCTION 
 

Recent high resolution remote sensing imagery (HRRS), 

known as its subtle spectral characteristics that spanning the 

visible to infrared spectrum with hundreds of contiguous and 

narrow spectral bands and the abundant spatial structure, pattern 

description, allows for the detailed analysis of the surface of the 

Earth. As a general framework of classification consists of 

feature acquisition and classifier designing, there are still some 

obstacles for the classification of pixels in HRRS image.  

First of all, despite such fine discriminative spatial 

information, constructing axillary spatial feature from such high 

dimensional signal should inevitably get stuck in the 

computational burden problem. Meanwhile, current 

classification methods [1], [2] are still a difficult task due to the 

unbalance between the high dimensionality of the data and the 

limited availability of labeled training samples in real analysis 

scenarios. In addition, the classification methods originally 

developed for the labeling of low-dimensional datasets, i.e. 

multispectral images, generally perform poorly when applied to 

HRRS, particularly in the case of limited training samples. 

Furthermore, the unstable spectral signature of the classes in the 

complex spatial domain of the scene can lead to an incomplete 

description of the different ground-object classes. Current 

studies focusing on dealing with limited supervised prior 

obstacle can be categorized as dimensionality reduction，sparse 

learning, active learning, semi-supervised learning (SSL) [6], [7], 

transfer learning, kernel methods and  the spatial smoothing [3].  

In this article, the proposed algorithm proposed a novel 

semi-supervised framework to combine the superiorities of these 

techniques. First, in view of the given training information, 

collaborative representation (CR) mechanism [4], [5] that 

exploits the assistance from whole training information rather 

than from only the potential associated class can improve the 

recognition ability. Second, by taking advantage of spatial 

occurrence and alignment of class label, the adoption of the 

relearning [8] can gradually learn the flexible class-oriented 

spatial pattern from the label space with alleviated computational 

complexity to enhance the original spectral characteristics. 

Finally, inspired by the spatial smoothing phenomenon when 

spatial feature stacked, a novel stable self-learning method can 

be designed to automatically select informative unlabeled sample 

to help the limited supervised set. Details about the proposed 

work can be seen in Section 2, and experiments in Section 3 

should indicate the effectiveness of the proposed framework, 

followed by some conclusion word in last section. 

 

2. PROPOSED FRAMEWORK 
 
2.1. CR: Posterior Probability via a Sparse Transform 

In the sparse representation model, we stack the given 
i

N   

training pixels from the thi  class of a dictionary iA , then the 

overcomplete dictionary A  is constructed by combining all the 

sub-dictionaries  
1, ,i i M

A . In this way, the pixel js  which 

belongs to the thi  class can be sparsely represented as a linear 

combination of all the given training samples: 
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where   is a sparse coefficient vector, in which only the 

entries of 
i  are assumed to be nonzero, and j

  is the 

random noise. The coefficient vector   can be obtained by 

solving the following optimization problem: 
2

2 0 i
N  argmin A . .s s t    (2) 
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There are two effective ways of solving such a problem: the 

greedy pursuit based algorithms and the 
1

-norm convex 

relaxation algorithms. 

After obtaining the sparse coefficient vector  , the posterior 

probability can be defined with respect to the residuals 

associated with each label. In other words, the label with least 

residual  , 2
min mini j j ir  As   has the most probability 

to be labeled than other classes, as the principle of the maximum 

posterior probability. It is likely to point out that the posterior 

probability  , |i j jp y s is inversely proportional to the ,i jr , i.e.,  

 ,

,

1
|i j j

i j

p y
r 

s  (3) 

where 
,i jy  refers to class i  for the pixel 

js , and 
,

1
M

m jm
r

 


. 

More detailed can be seen in [9].  

 

2.2. Relearning: primitive co-occurrence matrix (PCM) 

The relearning is referred as a label refinement in the iteration 

processing of sequential categorizing, which can gradually 

infuse the specific spatial co-occurrence to enhance the 

description ability of current feature. The PCM, inspired by the 

well-known spatial texture descriptor GLCM [10], records the 

spatial arrangement of the current class label for relearning, that 

is, next classification iteration. Analogous to the GLCM, the 

calculation of PCM can be described as four steps in briefly. 

1. Quantization: hard labeling whole scene into M  class 

based on the maximum posterior probability (MAP) 

mentioned above. 

2. Co-occurrence statistic: Courting the number of times that 

the class i  and j  occur with distance dis  (set as 1 by 

default and simplicity) and direction dir  at the 

coordinate  # ,i j  of a M M  matrix. 

3. Multi-direction summation: 

   
dir

pcm w,dis pcm w,dis,dir  (4) 

4. Multi-scale assembling:  

 
w

PCM pcm w,dis  (5) 

where w  stands for size of window, and more detailed can be 

seen in [8]. 

 

2.3. SSL: self-learning to select informative unlabeled 

samples 

The main assumption of SSL techniques is that the new 

(unlabeled) training samples [6] can be obtained from a (limited) 

set of available labeled samples without significant effort/cost. 

For remote sensing image classification, it is well-accepted that 

the most confusing and informative pixels are likely located at 

the edge of a land parcel. Meanwhile, it is noted that the major 

superiority of PCM without direction prior information refers to 

the spatial smoothing for the inner part of a land parcel, while 

the edge pixels should get stuck in the over-smoothing problem.  

 In view of this, the self-learning that iteratively selects the 

unlabeled samples on the edge can be implemented as follows. 

After 1k   iteration, we first take regard the unlabeled pixels 

tested as same class from 1thk   and thk iteration, which were 

implemented by stacking associated PCM features with original 

spectral feature into classifier as candidate informative ones, and 

followed with the judgement as： 

IF    1k p k pThr Map Map  s s  

THEN 
ps  should be selected 

where 
kMap  and 

1kMap 
 stands for the Map for pixel 

ps  at 

thk  and 1thk   classification iteration, respectively, and Thr  

refers to the lower bound to ensure the correction labeling for 

this pixel. 

In this proposed self-learning strategy, the Map decline 

indicates the information gain which cannot be fully represented 

by current training information, while the consisted label ensures 

the fidelity of the unlabeled samples. 

 

3. EXPERIMENTS AND ANALYSIS 
 

3.1. Data Sets 

The first image was an airborne hyperspectral data flight line 

over the Washington DC Mall, which was acquired by the 

Hyperspectral Digital Image Collection Experiment (HYDICE) 

sensor, and was provided with the permission of the Spectral 

Information Technology Application Center of Virginia, who 

was responsible for its collection. The sensor system used in this 

case measured the pixel response in 210 bands in the 0.4 to 

2.4 m  region of the visible and infrared spectrum. Bands in 

the 0.9 and 1.4 m regions where the atmosphere is opaque 

have been omitted from the dataset, leaving 191 bands. As seen 

in Fig. 1(a), this image consists of 1280 307 pixels, with 19332 

labeled pixels for model validation. This image contains seven 

reference classes, as shown in Table I. This dataset is 

challenging due to its complicated spatial distribution and some 

similar spectral response between several land-covers, such as 

water-shadow, trees-grass, and roofs-trails-roads. 

The second scene was acquired by the Reflective Optics 

Systems Imaging Spectrometer (ROSIS) sensor over Pavia 

University, northern Italy. It consists of 610 610  pixels and 

115 spectral reflectance bands. We selected 103 of the bands and 

cut a patch sized 610 340 . The false-color composite of the 

Pavia University image is shown in Fig. 2(a). The geometric 

resolution of this image is 1.3 m. This image contains nine 

reference classes, and details of the quantities and the 

corresponding visual map are shown in Table III and Fig. 4(b), 

respectively. 

 

3.2. Experimental Setting 

For the dataset, we randomly selected 10 pixels for each class 

as the training samples, and the rest as the test samples from the 

reference data to validate the performances. Each parameter of 

basic classifier was selected by cross-validation from a 

reasonable range, while the confident threshold Thr  was set as 

0.5 for all experiments, which is considered reasonable in real 

cases and the multi-scale window size of PCM was set under the 

suggestion given in [8]. The classification accuracies were 

averaged over 10 runs for each classifier to reduce the possible 

bias induced by the random sampling. All the experiments, 

except for the SVM-related work (accelerated by C++), were 

carried out using MATLAB R2015B on a work-station with one 

2.80 GHz processer and 64.0 Gb of RAM. 

In this experimental part, four benchmark algorithms and the 

proposed algorithm can be list as follows: 

1) SVM: SVM with radial basis function (RBF) kernel [1] 

2) RL-SVM: relearning-PCM with SVM in 1), which is same 

as that in [8]. 
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3) SRC: classical sparse representation classification as in [11]. 

4)  RL-SRC: relearning-PCM with SRC in 3) 

5) SRL-SRC: the proposed semi-relearning algorithm taking 

SRC in 1) as basic classifier. 

 

3.3. Experimental Results 

 

The thematic maps of the various classifiers are visually 

shown in Figs. 1 and Fig. 2, respectively. In Tables I and Table II, 

the best results for each quality index are labeled in bold, and the 

sub-optimal results for each quality index are underlined. For the 

latter three relearning based frameworks, the visual classification 

maps as well as the quantitative evaluation results were taken on 

10
th

 iteration as an agent. In the evaluation tables, the average 

accuracy for each class, the average overall accuracy (OA), and 

the average kappa coefficient ( ) with their standard deviations 

for the different classifiers are shown in sequence.  
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(a) (b) (c) (d) (e) (f) (g)    
Fig. 1. Classification results for the Washington DC Mall Image: (a) false-color image (R: 63, G: 52, B: 36), (b) SVM, (c) SRC, (d) RL-SVM (10), (e) RL-SRC (10), (f) 

SRL-SRC (10) and  (g) reference map. 
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(a) (b) (c) (d) (e) (f) (g)  
Fig. 2. Classification results for the Pavia University Image: (a) false-color image (R: 57, G: 27, B: 17), (b) SVM, (c) SRC, (d) RL-SVM (10), (e) RL-SRC (10), (f) 

SRL-SRC (10) and  (g) reference map. 
 

For Washington DC image, it can be observed from Table I 

that the proposed method yields the best accuracy and the most 

stable performance. With the relearning strategy, it is believed 

that the PCM spatial prior, which is utilized to stabilize the 

signal and alleviate the “salt-and-pepper” phenomenon, is 

effective. Compared with taking SVM as basic classifier, it is 

noted that the SRC with CR mechanism is more superior, as both 

the quantitative evaluation and the thematic map indicated.  

Meanwhile it is still noted that RL-SVM and RL-SRC should get 

stuck in the “over-smoothing” problem, even continue to slide 

with the growth of iteration, and the proposed framework with 

the SSL technique not only keeps stable accuracy, but also 

maintains the dedicated spatial structure, as visually compared to 

the rest thematic map.  

The second Pavia University data shows more spatial 

homogenous than the above, and all three thematic maps related 

to relearning technique had the “over-smoothing” problem to 

some extent, while the proposed work was less serious than the 

other two. Although the general evaluation indices as well as the 

iteration performance show some superiority of RL-SRC over 

the proposed SRL-SRC, the average accuracy for each class for 

four categories still show the effectiveness of the proposed work. 

In addition, it is noted that the almost validation samples are 

selected at the inner part of land-parcel, and the evaluated result 

cannot illustrate the full story in this case.  

2620



 
TABLE I 

REFERENCE INFORMATION, CLASSIFICATION ACCURACY (%) FOR 

THE WASHINGTON DC MALL IMAGE WITH THE TEST SET 

 CLASS  
SVM SRC 

RL-SV

M 

RL-SR

C 

SRL-S

RC 
  

No. 

Name 
Num. 

1 roads 3334 96.43 94.66 94.63  93.06  96.00  

2 grass 3075 90.25 90.57 79.07  87.60  90.01  

3 Trails 1034 90.19 95.18 93.28  95.81  98.01  

4 trees 2047 98.12 96.27 98.69  95.18  98.74  

5 shadow 1093 93.16 97.45 87.39  97.25  99.23  

6 roofs 5867 71.37 76.61 77.36  88.87  86.32  

7 water 288 91.28 98.19 90.99  98.49  99.48  

OA 
86.47 89.42 85.72 92.28 93.06 

±2.90 ±2.16 ±2.92 ±3.93 ±3.25 

  
0.835 0.870 0.826 0.905 0.915 

±0.034 ±0.026 ±0.035 ±0.048 ±0.040 

 
TABLE II 

REFERENCE INFORMATION, CLASSIFICATION ACCURACY (%) FOR 

THE PAVIA UNIVERSITY IMAGE WITH THE TEST SET 

 CLASS  
SVM SRC 

RL-SV

M 

RL-SR

C 

SRL-S

RC 
  

No. 
Name Num. 

1 Asphalt 6631 57.98  36.55  89.42  87.38  81.83  
2 Meadows 18649 68.63  75.94  72.33  82.47  82.90  

3 Gravel 2099 68.15  76.77  70.02  85.70  89.64  

4 Trees 3064 88.77  90.89  91.59  93.02  94.54  

5 Metal sheet 1345 97.82  99.76  95.80  99.73  100.00  

6 Bare soil 5029 52.21  50.17  84.89  98.23  90.35  
7 Bitumen 1330 84.43  75.92  98.79  99.23  98.83  
8 Brick 3682 68.11  29.89  92.17  84.90  75.45  
9 Asphalt 6631 98.22  72.74  91.65  85.65  87.24  

OA 
68.47 64.62 81.41 87.33 85.25 
±2.93 ±3.70 ±6.23 ±4.12 ±4.11 

  
0.601 0.547 0.766 0.838 0.811 

±0.031 ±0.036 ±0.071 ±0.050 ±0.050 

 

4. CONCLUSION 

Fusing the collaborative representation for MAP estimation, 

spatial co-occurrence and alignment description and spatial 

smoothing inspired self-learning,  this article proposed a novel 

semi-supervised classification framework to the HSSR image 

with hundreds of spectral bands and abundant spatial 

information. By PCM construction in the label space, more 

class-level spatial pattern can be gradually obtained in the 

relearning iteration. Experiments on several HSSR dataset have 

witnessed effectiveness of the proposed semi-supervised 

algorithm. In further agenda, more flexible spatial co-occurrence 

pattern should be searched. 
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Fig. 3. Iteration analysis for (a) Washington DC image, and (b) Pavia University 
image 
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