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Abstract—Due to the rapid process of urbanization, there 

is an urgent need for accurate and detailed change detection 

in urban areas. Ziyuan-3 (ZY-3), as China’s first civilian 

high spatial resolution satellite, carrying the three-line array 

camera, enables the acquisition of in-track stereo images. 

The characteristics of multi-angle imaging and high-spatial 

resolution are fully exploited to explore subtle urban change 

information. In this study, a multi-level (pixel-grid-block) 

change detection framework using stereo images was 

conducted to detect information related to land cover 

transitions, changed hotspots, and multi-temporal 

landscape. The experimental results reveal some interesting 

and informative findings: (1) our proposed multi-level 

method is effective in detecting change details, with kappa 

coefficient reaching 0.81 at the pixel level and correctness 

being 95% at the grid level; (2) the block-level landscape 

analysis indicate that there was greater fragmentation and 

spatial heterogeneity of building landscape during the 

urbanization process; (3) the mean nearest neighbor 

distance between building patches decreases by about 1.0 m 

during 2012 and 2013. 

I. INTRODUCTION 

RBANAZATION is taking place at an unprecedented rate 

around the world in terms of scale and pace. The remote 

sensing techniques hold the great potential for monitoring urban 

changes. A large set of works have been dedicated to urban 

monitoring by utilizing coarse or moderate resolution data, e.g. 

MODIS and Landsat [1-3]. However, the subtle urban dynamics, 

such as building construction or removal, which are more 

important for urban planning and management, can be neglected 

in the previous work. Fortunately, the increase of spatial 

resolution in satellite imagery enables us to detect subtle 

changes at a very fine scale. 

Despite the advantages of the improved spatial resolution, 

change detection using high-spatial resolution images suffers 

from some problems, e.g., uncertainty of the spectral 

information (i.e., intra-class variance increase and inter-class 

variance decrease) [4] and spatial heterogeneity in the multi-

temporal domain (e.g., spatial mis-registration, parallax 

distortion for high architectures, different viewing angles) [5].  
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Consequently, higher resolutions do not guarantee superior 

detection capability. In this regard, there have been techniques 

proposed for improving change detection capability. On one 

hand, it is widely acknowledged that the incorporation of spatial 

features can improve the interpretation of high-spatial resolution 

images [6, 7]. On the other hand, the stereo capability of recent 

satellite sensors, such as IKONOS, WorldView, and ZY-3, 

make it possible to generate multi-temporal orthographic 

images, so as to minimize the spatial inconsistency as much as 

possible. Considering the above mentioned aspects, we 

attempted to incorporate the characteristics of multi-angle 

imaging and high-spatial resolution to explore subtle urban 

change information. 

In this study, we proposed a multi-level (pixel-grid-block) 

change detection framework using multi-view ZY-3 satellite 

data. At the pixel level, the detailed change trajectories are 

detected. Secondly, the pixel-based land cover maps are 

aggregated to the grid level, which can highlight the changed 

hotspots and reduce the pepper and salt effect. Finally, the 

landscape composition and configuration at the block level are 

analyzed to indicate urban landscape spatiotemporal change 

patterns. 

II. STUDY AREA AND DATASETS 

The study area is the downtown area of Wuhan, Hubei. It 

covers an area of approximately 375 km2. Wuhan, situated at the 

conjunction of Yangtze River and Han River, is one of the 

biggest metropolises in the central China, and has favorable 

geographical advantages of linking the eastern and western 

regions. With these geographical advantages, Wuhan has been 

well known as “thoroughfare to nine provinces”, which provides 

favorable conditions for rapid development of the city. In this 

study, the ZY-3 images of Wuhan acquired in 2012 and 2013 

were used. The orthographic image for the study area is shown 

in Fig. 1. 

III. METHODS 

The objective of our proposed framework is to analyze 

change information related to land cover trajectories, hotspots, 
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and landscape during the urbanization process. The key steps of 

the proposed method are: (1) orthographic image and DSM 

generation; (2) building height retrieval; (3) multi-temporal land 

cover mapping; (4) multi-level change detection. 

A. Orthographic image and DSM generation 

The fundamental for automatic generation of orthographic  

image and DSM using multi-view imagery is image matching. 

Here we adopted semi-global matching [8] as dense matching 

technique in the photogrammetric derivation. Semi-global 

matching was considered due to good tradeoff between runtime 

and performance. 

B. Building height retrieval 

DSMs are potential to provide the height values of the main 

urban structures, i.e., buildings. Here, the performance of 

building height retrieval from ZY-3 stereo imagery was 

evaluated in order to determine how to use the DSMs in the 

following change detection procedure. Firstly, the normalized 

DSMs (nDSMs), describing height attribute of land surface 

features, is calculated using top-hat filter by reconstruction [9]. 

Subsequently, the random forest classifier that combines 

spectral bands, normalized difference vegetation index, 

morphological building/shadow index [10, 11] and nDSM is 

applied for building extraction. Finally, estimated building 

heights from nDSM are validated by actual height obtained from 

the urban planning department. 

C. Multi-temporal land cover mapping 

To guarantee the effectiveness and efficiency of the proposed 

change detection framework, the multi-temporal land cover 

mapping framework that integrates multi-classifier ensemble 

approach and multi-temporal sample mitigation strategy is 

proposed. For land cover mapping framework, each classifier 

with stacked spectral bands and different spatial features (i.e., 

textural, morphological, and multiple indexes features) is fused 

at the decision level, the details of which can be refereed in [4]. 

In order to further refine the initial result, semantic relationship 

between different land cover categories (e.g., spatial adjacency 

between buildings and shadow) and larger height attributes for 

above-ground structures  (i.e., buildings and trees) are 

considered in the post-processing steps. Additionally, it should 

be noted that there is a great deal of time and labor devoted to 

samples collection in each classification in multiple time series. 

To resolve this problem, a sample migration strategy, reusing 

sampling positions that were not changed during the time span, 

is proposed. In this way, only one set of training samples is 

required for the whole multi-temporal land cover mapping.  

D. Multi-level change detection 

The multi-level (pixel-grid-block) change detection 

framework (Fig. 2) aims at analyzing change information in 

different aspects. At the pixel level, land cover trajectories are 

analyzed by focusing “from-to” information for each pixel. At 

the gird level, changed areas (i.e., changed hotspots) are focused 

by analyzing the class frequencies in a local region. At the city-

bock level, landscape metrics (both landscape composition and 

landscape configuration) are calculated to reveal general trend 

of landscape evolution in each city-block. 

At the pixel level, land cover trajectories can be acquired 

through post-classification comparison based on multi-temporal 

land cover maps. Post-classification comparison method can 

produce “from-to” change information by directly comparing 

class labels pixel by pixel. At the grid level, each grid is further 

divided into a series of non-overlapping cells (3 × 3 cells in this 

paper); and the frequencies of land cover types in each cell are 

used to characterize land cover component and its spatial 

distribution [12]. In this way, the significantly changed areas 

(i.e., hotspots) can be distinguished in terms of land cover and 

their spatial arrangement. It should be noted that the grid size of 

51 pixels was considered suitable and reasonable due to the best 

balance between change detection accuracy and details 

preservation. At the city-block level, a set of metrics, i.e., 

building coverage ratio (BCR), largest patch index (LPI), edge 

density (ED), mean and standard deviation of patch area (MPA 

and SPA), mean shape index (MSI), mean and standard 

deviation of nearest neighbor distance (MNN and SMN), patch 

density (PD), and cohesion index (CI) are adopted to measure 

landscape composition and configuration [13]. Here, the city-

block networks are generated from road networks (both primary 

and secondary) of open street map. It should be noted that each 

metric is calculated as city-block being the basic unit, thus 

making the local landscape pattern in urban areas being fully 

understood. 

 
Fig. 1.  Orthographic image for the study area of Wuhan. 

 
Fig. 2.  Framework for multi-level change detection. 

 



 

 

 

IV. RESULTS AND DISCUSSION 

A. Accuracy for building height retrieval 

For accuracy assessment of the building height retrieval, 400 

building were randomly selected. By comparing the building 

heights estimated by nDSM and their actual values, some 

interesting conclusions can be summarized: (1) nDSM serves  
 

as an important feature in the supervised buildings extraction 

procedure with feature importance being 0.37; (2) ZY-3 derived 

nDSM can achieve satisfactory performance for building height 

smaller than 50 m with root mean square error below 4 m; (3) 

estimated values for building height larger than 50 m can be 

seriously underestimated due to large disparity and occlusion for 

high buildings in the epipolar image.  

B. Pixel-level change detection result 

For accuracy assessment of pixel-level change detection 

result, we computed a confusion matrix (Table I) using 30 

randomly selected testing points per change trajectory. 

Generally, satisfactory performance can be achieved with 

overall accuracy being 84.4% and Kappa coefficient reaching 

up 0.81. Additionally, producer’s accuracy and user’s accuracy 

for most change trajectories are larger than 85.0%. The 

satisfactory accuracy indicate that our prosed multi-temporal 

land cover mapping framework with sample migration strategy 

is effective. 

C. Grid-level change detection result 

The result of grid-level change detection is shown in Fig. 3. 

The map shows that changes occur both in urban core and fringe, 

suggesting rapid urbanization accommodating with 

infrastructure construction and urban renovation. Furthermore, 

the changed hotspots are assessed quantitatively. Firstly, the 

map of changed hotspots was acquired by setting a threshold via 

minimum cross entropy [14]. Subsequently, identified changed 

hotspots are checked via careful visual inspection. For 

quantitative accuracy assessment, 1885 blocks out of 1984 ones 

are correctly detected, achieving a satisfactory correctness of 

95.0%. 

D. Block-level change detection result 

For landscape composition analysis, maps of building 

coverage ratio (BCR) are shown in Fig. 4, as well as some 

representative examples for significantly changed city-blocks. 

As can be seen from the figure, most city-blocks with high BCR 

values are located in the old city area along the Yangtze River, 

indicating dense buildings covered in these city-blocks. 

The changes of BCR values are related to demolition of old 

urban villages (Fig. 4(a)) or residential buildings (Fig. 4(b)), and 

new buildings construction (Fig. 4(c)). 

For landscape configuration analysis, the mean values for a 

series of configuration metrics are calculated (Table II). A 

decrease of the LPI coupled with increase of the PD is indicative 

of greater fragmentation and more spatial heterogeneity. 

Meanwhile, MSI retained a slight downward trend; the value 

decreased approximately 0.1, revealing smaller shape 

complexity for the newly constructed buildings. The patch area 

related metrics, i.e., MPA and SDPA, are decreased. This 

finding can be attributed to smaller-than-average buildings (e.g., 

detached and high apartments) construction or bigger-than-

average buildings (e.g., dense and compact residential area) 

demolition during urbanization process. Moreover, the measure 

of average nearest neighbor distance, MNN, decreased 1.0 m 

from 2012 to 2013. 

V. CONCLUSIONS 

In this study, a novel multi-level (pixel-grid-block) change 

detection framework using ZY-3 stereo imagery was proposed. 

The pixel, grid, and city-block level analysis focus on change 

trajectories, hotspots pattern, and landscape evolution. Thus, a 

comprehensive and systematic monitoring is ensured to guide 

the urban management and planning. At the pixel level, the 

integration of multi-classifier ensemble, samples migration, and 

post-classification comparison is presented to derivate change 

trajectories. At the grid level, hotspots are identified to analyze 

the spatial pattern of urban renovation and the quantitative 

accuracy assessment was conducted. At the block level, both 

landscape composition and configuration are analyzed. The 

proposed framework was successfully implemented in the 

downtown area of Wuhan with satisfactory performance. 
 

 

TABLE II 

MEAN VALUES FOR LANDSCAPE METRICS OF BUILDINGS 

 LPI ED MPA SDPA MSI SSI MNN SMN PD CI 

WH12 34.1 644 0.28 0.99 1.69 1.28 10.8 7.7 342 97.7 

WH13 32.5 699 0.21 0.79 1.59 1.17 9.8 6.6 448 97.3 

 

 
Fig. 3.  Result of grid-level hotspot detection. 
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TABLE I 
CONFUSION MATRIX FOR PIXEL-LEVEL CHANGE DETECTION RESULT 

Classified data Reference data  Total User’s Acc. (%) 

soil->buil buil->soil soil->grass grass->soil water->grass nochange  

soil->buil 23 0 0 0 0 0 23 100.0 

buil->soil 1 23 0 0 0 0 24 95.8 
soil->grass 0 0 26 0 0 0 26 100.0 

grass->soil 0 0 0 20 0 0 20 100.0 

water->grass 0 0 2 0 30 0 32 93.8 
nochange 6 7 2 10 0 30 55 54.6 

Total 30 30 30 30 30 30 180  

Producer’s Acc. (%) 76.7 76.7 86.7 66.7 100.0 100.0   
Overall classification accuracy (%) 84.4      

Kappa coefficient 0.81      

 

 
Fig. 4.  Multi-temporal analysis of building coverage ratio with some representative cases ((a)-(c)). 

 


