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Abstract—As a powerful and promising statistical signal mod-
eling technique, sparse representation has been widely used in var-
ious image processing and analysis fields. For hyperspectral image
classification, previous studies have shown the effectiveness of the
sparsity-based classification methods. In this paper, we propose a
nonlocal weighted joint sparse representation classification (NLW-
JSRC) method to improve the hyperspectral image classification
result. In the joint sparsity model (JSM), different weights are uti-
lized for different neighboring pixels around the central test pixel.
The weight of one specific neighboring pixel is determined by the
structural similarity between the neighboring pixel and the cen-
tral test pixel, which is referred to as a nonlocal weighting scheme.
In this paper, the simultaneous orthogonal matching pursuit tech-
nique is used to solve the nonlocal weighted joint sparsity model
(NLW-JSM). The proposed classification algorithm was tested on
three hyperspectral images. The experimental results suggest that
the proposed algorithm performs better than the other sparsity-
based algorithms and the classical support vector machine hyper-
spectral classifier.

Index Terms—Classification, hyperspectral imagery, joint
sparse representation, nonlocal weight.

I. INTRODUCTION

E VERY pixel in a hyperspectral image (HSI) is represented
by hundreds of values, and each value corresponds to a

different narrow wavelength [1]. These values constitute a high-
dimensional vector with more dedicated spectral information.
This property of HSI has opened up avenues for new remote
sensing applications in various fields, such as precision agricul-
ture [2], environmental protection [3], [4] and so on. Supervised
HSI classification, which aims at categorizing the pixels in the
image into one of several land-cover classes with representa-
tive training samples, is an important application. To date, a lot
of different HSI classification techniques have been proposed,
including independent component analysis (ICA) [4], decision
trees (DT), and artificial neural networks (ANN) [2]. Among
these approaches, the support vector machine (SVM) [5], [6],
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which aims at discriminating two classes by fitting an optimal
separating hyperplane to the training data within a multi-dimen-
sional feature space, has shown excellent performance in super-
vised HSI classification. In recent years, many extended algo-
rithms based on SVM have been proposed to improve the clas-
sification result. For example, Tsang et al. [7] presented a core
vector machine (CVM) method which can optimize both the
time and space complexities of the standard SVM algorithm for
a large-scale data set; Bruzzone et al. [8] introduced a semi-su-
pervised SVM-based classification method which exploits both
labeled and unlabeled pixels; and Zhang et al. [9] proposed a
hybrid of SVM and the KNN scheme.
In recent years, the sparsity of signals, which assumes that

natural signals can be compactly represented by only a few co-
efficients that carry the most important information in a cer-
tain basis or dictionary, has become a powerful and promising
statistical signal modeling tool for image processing and anal-
ysis. Sparse representation classification (SRC), first proposed
by Wright et al. [10] for face recognition, has been widely used
in various pattern recognition applications. Recently, Chen et al.
[11] applied the SRCmethod to HSI classification and proposed
the joint sparse representation classification (JSRC) method.
This approach incorporates the spatial contextual information
by the assumption of a joint sparsity model (JSM) [12], in that
all the neighboring pixels around the central test pixel share a
common sparsity pattern with different sets of coefficients. By
incorporating the spatial neighborhood information in the clas-
sification process of the central test pixel, the JSRC method can
achieve improved classification results. However, this method
considers an equal contribution for any neighborhood pixel in
the classification process of the central test pixel, which is more
appropriate for pixels in a homogeneous area, and less reason-
able for heterogeneous pixels, especially around image edges.
In view of this, in this paper, we propose a nonlocal weighted

joint sparse representation classification (NLW-JSRC) method
for hyperspectral imagery. The main contribution of this paper
is that we consider different contributions for the neighboring
pixels in the classification process of the central test pixel. That
is, different weights are utilized for different neighboring pixels
in the joint sparsity model (JSM). The weight of one specific
neighboring pixel is determined by the structural similarity be-
tween the neighboring pixel and the central test pixel, which is
referred to as a nonlocal weighting scheme, and has been widely
used in image denoising applications [13]. With the self-simi-
larity of the local structure [14] that the image itself offers, the
nonlocal weighting scheme not only compares the spectrum at a
single point but also the geometrical configuration of the whole
neighborhood area [13]. After all the weights of the pixels in
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the neighborhood are determined, in this paper, we set up the
nonlocal weighted joint sparsity model (NLW-JSM). The pro-
posed NLW-JSRC method aims to ensure that the pixels which
are similar to the central test pixel contribute more to the clas-
sification process, with a larger weight, and vice versa, which
supports an improved hyperspectral image classification perfor-
mance.
The remainder of this paper is organized as follows. Section II

introduces the joint sparse representation classification method.
Section III proposes the nonlocal weighted joint sparse rep-
resentation classification algorithm for hyperspectral imagery.
The experimental results of the proposed classification algo-
rithm with three hyperspectral images are given in Section IV.
Finally, Section V concludes the paper.

II. JOINT SPARSE REPRESENTATION CLASSIFICATION

A. Sparse Representation

In a sparsity model, it is assumed that a signal can be ap-
proximated by a sparse linear combination of elements from a
basis set. We construct a matrix with ,
and the compact signal can be approximately repre-
sented by multiplying the dictionary with a sparse vector ,
in which only a few entries colored in grey are non-zero. The
sparse vector can be obtained by solving the following opti-
mization problem:

(1)

where is the model noise vector. It is clear that (1) is a NP-hard
combinatorial search problem. Generally, there are two effec-
tive ways of solving this problem: the greedy pursuit based al-
gorithms [15], and the -norm convex relaxation algorithms
[16].

B. Sparse Representation Classification (SRC) and Joint
Sparse Representation Classification (JSRC)
As an important application of sparse representation, SRC,

which was first proposed by Wright et al. [10] for face recog-
nition, has been widely used in various pattern recognition
applications. For HSI classification, suppose that we have
distinct classes and stack the given

training pixels from the th class as columns of a dictionary
, where denotes a

linear low-dimensional space, and refers to the number of
bands of the HSI. The hyperspectral pixel which belongs to
the th class can be compactly represented as a linear combina-
tion of the given training samples, and .
As the identity of the signal is initially unknown before

classification, in order to linearly represent it, we define a new
matrix , which includes all the
training samples, and is considered as a sub-matrix of ,
where . Signal can be described as:

(2)

Ideally, is a coefficient vector whose entries are all
close to zero, except for those associated with the class to which
the signal belongs. We consider as an -sparse vector,
where .
As the hyperspectral signals from the same class often span

the same low-dimensional subspace that is constructed by the
corresponding training samples, which involves the non-zero
entries of the sparse vector, the class of the hyperspectral signal
can be directly determined by the characteristics of the recov-
ered sparse vector . With the sparse approximation result, we
classify by assigning it to the object class that minimizes the
residual :

(3)

For a hyperspectral image, the neighboring pixels in a small
patch often consist of similar materials. All the pixels with sim-
ilar spectra in the neighborhood can be linearly represented in
the same low-dimensional feature subspace
with different compact coefficients. With this assumption, Chen
et al. [11] applied SRC to hyperspectral imagery and proposed
a joint sparse representation classification method with the joint
sparsity model (JSM), the superiority of which was clearly
demonstrated in [17] and [18]. In the JSM model, all the neigh-
boring pixels around the central test pixel are assumed to share
a common sparsity pattern with different sets of coefficients.
Both the central test pixel and the neighboring pixels are all
stacked into the joint signal matrix and sparsely represented by
a row-sparse coefficient matrix, which effectively reflects the
class property of the central test pixel.
Consider that the single signal that is located at position

can be sparsely represented by a structured dictionary
. Let the neighborhood window size be set as , and the hy-

perspectral image patch is stacked to construct the joint signal
matrix , with the size of , whose first
column is the test pixel located in the center of the hyperspec-
tral image patch, and the rest of the columns are the neighboring
pixels around the test pixel. As shown in Fig. 1, it is assumed
that all the columns share a common sparsity pat-
tern, and then the joint signal matrix can be represented by the
JSM:

(4)

where is the set of all the sparse coefficient vectors
, which correspond to all the hyperspectral pixels

in the neighborhood window, and are assumed to share the same
low-dimensional sub-dictionary with different coefficients.
is the model noise matrix corresponding to the joint signal
matrix . The optimization model corresponding to (4) can be
expressed as:

(5)

where denotes the numbers of non-zero rows of .
The optimal solution is a row-sparse matrix with non-zero
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Fig. 1. Joint sparse representation classification (JSRC) of the central test pixel.
On the left is a patch of the Moffett Field AVIRIS data from 1997. The top of
the cube is a color composite (shown in grayscale) of the three spectral bands.
To the right of this is the joint sparse representation flowchart. The input signal
has been extended from a 1D vector to a 2D matrix. The first column of the joint
signal matrix is the test pixel located in the center of this patch of the image, and
the rest of the columns are the neighboring pixels around the test pixel.

Fig. 2. Weight distributions for classification. (a) Ground truth of a small patch.
Pixels in luminous yellow belong to class A, and pixels in ochre yellow belong
to class B. (b) The weight distribution for JSM. (c) The ideal distribution for
W-JSM.

rows. For the different solutions to the optimization model (5),
please refer to [17], [18].
Once the sparse coefficient matrix is obtained, in a similar

way to SRC, we label the central test pixel of the image patch
by the minimal residual:

(6)

where denotes the portion of the recovered sparse coefficient
matrix corresponding to the training samples in the th class.

III. NONLOCAL WEIGHTED JOINT SPARSE REPRESENTATION
CLASSIFICATION FOR HYPERSPECTRAL IMAGERY

A. Weighted Joint Sparsity Model

It is noted that in heterogeneous areas, especially around the
image edges, neighboring hyperspectral pixels often consist of
different materials, which goes against the assumption of the
JSM. Therefore, in these cases, it is not fair to take all the neigh-
boring pixels into the joint signal matrix and consider them as
equal contributions to the classification process of the central
test pixel. We illustrate the limitations of JSRC by taking Fig. 2
as an example.
In order to label the central test pixel, we choose a neigh-

borhood window of size 7 7 for the joint sparse represen-
tation classification. Fig. 2(a) denotes the ground truth of the

small patch, where luminous yellow pixels belong to class A,
and ochre yellow pixels belong to class B. According to (4),
each pixel in the window contributes equally to the classifica-
tion process of the central pixel, as shown in Fig. 2(b). However,
it is obvious that not all the pixels in the neighborhood satisfy
the assumption of the joint sparsity model. In fact, the pixels
colored in luminous yellow are all dissimilar to the central test
pixel and can be regarded as invalid pixels for the classifica-
tion process. Only the ochre yellow pixels are valid ones. In the
ideal case, the contributions of the neighboring pixels should be
assigned as shown in Fig. 2(c), to fulfill the assumption of the
JSM. That is, the invalid pixels should be discarded in the clas-
sification process of the central test pixel.
In order to approach this, we extend the JSM to a weighted

joint sparsity model (W-JSM) by weighting all the neighboring
pixels of the joint signal matrix. We therefore apply different
spatial neighborhood contributions into the joint sparsity model
by extending (6) to:

(7)

where is a diagonal matrix, and
each entry on its main diagonal denotes the contribution of the
corresponding neighboring pixel to the classification process of
the central test pixel.

B. Nonlocal Weighting Scheme

Our next task is assigning the appropriate weights to every
neighboring pixel of the central test pixel. It is noted that the
weight should reflect the correlation between the neighboring
pixel and the central test pixel. In this paper, the weights are de-
termined by a nonlocal weighting scheme which aims at explic-
itly exploiting the self-similarities in images. This approach has
been widely used in sparse signal processing [19], [20]. The su-
periority of the nonlocal weighting scheme over other neighbor-
hood weighting methods is that it not only compares the spec-
tral similarity at the single pixel level, but also the geometrical
configuration of the whole neighborhood patch. This weighting
scheme addresses the issue of structural preservation to improve
the representation performance.
Let the test pixel be denoted as , and a neighboring pixel is

referred to as . The nonlocal weighting scheme can be mathe-
matically expressed as:

(8)

where denotes the similarity measure between
the two hyperspectral image patches, which are sized as
and centered at and , respectively. can be
expressed as follows:

(9)

where and represent the digital value vector of the
image patches centered at and at the th band, respectively.
is the convolution operator, and is a spatial convolution

kernel which measures the weights of the corresponding pixels
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in the image patch. The convolution kernel is a Gaussian blur
kernel.

denotes the kernel function, which determines the
effectiveness of the nonlocal weighting scheme, one important
task of which is to establish an appropriate kernel function for
computing the weighting factors, which controls the quality of
the image processing result [21]. In this paper, an improved
Tukey weight function is employed as the kernel function:

(10)

where the parameter is the factor used to adjust the decay of the
kernel function. Here, we consider the pixel which satisfies the
expression as the most dissimilar point
to the central test pixel in the neighborhood window, and the

as the local and adaptive kernel parameter
. In this way, we can adaptively calculate the weight of each
neighboring pixel in each image patch.
The main aim of our method is to discriminate the valid

pixels from the invalid neighboring pixels, as shown in
Fig. 2(c). However, the weight we get from (10) is a fractional
probability of the contribution that the neighboring pixel
offers. Because of the complexity of hyperspectral pixels, it
is inappropriate to binarize the weight with a threshold to
absolutely discard all the pixels whose weights are smaller
than the threshold. We therefore make some modifications to
the weighting scheme:

(11)

where and are the two parameters used to judge valid and
invalid neighboring pixels. For the pixels with a weight larger
than , we regard them as being very similar to the central test
pixel, and they are therefore valid pixels. The weights of these
pixels are therefore reset to 1. The pixels with weights smaller
than are considered as highly dissimilar pixels, and are dis-
carded as invalid pixels in the classification process of the cen-
tral test pixel. The pixels with weights between and are
partially similar to the central test pixel, and their corresponding
weights remain unchanged. In this way, when compared with
the JSRC method, the impact of the dissimilar pixels is reduced
or even eliminated in the classification process of the central test
pixel.
Substituting (10) and (11) into (7), we get:

(12)

where refers
to the nonlocal weighted matrix, and each main diagonal
entry of can be obtained via (10) and (11). The
objective function (12) can be solved by a generalized greedy
optimization method named simultaneous orthogonal matching

pursuit (SOMP), which is described in detail in [17]. We label
the identity of the central pixel by minimizing the residual:

(13)

where denotes the portion of the recovered nonlocal
weighted sparse coefficient matrix corresponding to the
training samples in the th class.

C. Procedure of NLW-JSRC

By incorporating the nonlocal spatial structure information,
the implementation details of the proposed NLW-JSRC algo-
rithm are summarized in Algorithm 1.

IV. EXPERIMENTS

In this section, we investigate the effectiveness of the pro-
posed NLW-JSRC algorithm with three hyperspectral images.
The classical classifiers of SVM with radial basis function
(RBF) kernel [8], OMP-S (OMP with Laplacian smoothing)
[11], and JSRC (referred to as SOMP in [11]) are used as
benchmarks in this paper. In addition, the OMP method and
the homotopy algorithm [22] for -norm convex relaxation,
which are used to solve the SRC problems, are also included
in the comparisons. We set the size of the nonlocal weighting
patch as , as recommended in the work of [13].
The weighting factor for OMP-S is fixed to 1, as recommended
in [11]. We set and for the final pro-
posed NLW-JSRC algorithm. For the JSRC and NLW-JSRC
algorithms, the sparsity level is chosen between
and , and the neighborhood window size is chosen
between 3 3 and 13 13 . All the
experiments were conducted using MATLAB R2011b on a
3.50 GHz machine with 8.0 Gb RAM.

Algorithm 1. The NLW-JSRC procedure for HSI.
1. Input: 1) A dictionary of training samples

for classes; 2) A
data set, in which each pixel located at is represented as

; 3) The neighborhood window size and the
nonlocal image patch size

2. Initialization: Construct the dictionary with the
training samples in the hyperspectral image, and
normalize the columns of to have unit -norm

3. For each pixel in the hyperspectral image:
1) Construct the initial joint signal matrix

, where
locates at the center of the neighborhood window, and
normalize the columns of to have unit -norm

2) Calculate the nonlocal weight matrix , and set

3) Calculate the sparse coefficient matrix from
(12)

4) Compute the residuals and label the test pixel by
(15)

5) Turn to the next test pixel
End For

4. Output: A 2-D matrix which records the labels of the
all pixels
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Fig. 3. Classification results with the Indian Pines image: (a) false color image (R:57, G:27, B:17), (b) training set, (c) test set, (d) SVM, (e) , (f) OMP, (g) OMP-S,
(h) JSRC, (i) NLW-JSRC.

A. AVIRIS Data Set: Indian Pines Image

This scene was gathered by the Airborne/Visible Infrared
Imaging Spectrometer (AVIRIS) sensor over the Indian Pines
test site in northwestern Indiana, and consists of 145 145
pixels and 224 spectral reflectance bands in the wavelength
range 0.4–2.5 m. The false color composite of the Indian Pines
image is shown in Fig. 3(a). We also reduced the number of
bands to 200 by removing bands covering the regions of water
absorption: 104–108, 150–163, and 220 [23]. In the reference
data with 16 classes, we randomly sampled 9% of the labeled
data as the training samples, and the remainder as the test
samples. The numbers of the training and test sets are shown
in Table I, and the visual maps are shown in Fig. 3(b) and (c),
respectively. We stack all the training samples as columns of
the dictionary in every sparsity-based algorithm
for this data set.
The optimal parameter settings for the proposed NLW-JSRC

were and , while the corresponding op-
timal parameters for JSRC were and . The
classification maps of the various classification methods are
shown in Fig. 3(d)–(i), respectively. The quantitative evalu-
ation results, which include the classification accuracies for
every class, the overall accuracy, and the kappa coefficient,
are shown in Table II. It can be seen that, for most classes,
the three sparsity-based algorithms with spatial information
(OMP-S, JSRC, and NLW-JSRC) outperform the others, and
the NLW-JSRC algorithm shows the best performance. It can
be seen that by incorporating the nonlocal spatial information,
the proposed NLW-JSRC algorithm leads to a better classifica-
tion map than JSRC.

TABLE I
THE SIXTEEN GROUND-TRUTH CLASSES OF THE AVIRIS INDIAN PINES DATA

SET, AND THE TRAINING AND TEST SETS FOR EACH CLASS

We next demonstrate the impact of the two parameters
and on the classification result of the Indian Pines image.
We conducted 64 experiments by ranging from 0.76 to 0.9,
and from 0.1 to 0.24. The curved surface in yellow shows the
result of the proposed NLW-JSRC method, and the blue surface
which is parallel to the horizontal plane refers to that of JSRC,
as shown in Fig. 4. It can be clearly seen that the setting of
and has a certain positive effect on the classification result
of NLW-JSRC, which outperforms the JSRC method for any
parameter setting within an appropriate range.
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TABLE II
CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES IMAGE

WITH THE TEST SET

Fig. 4. The impact of the parameters and on the Indian Pines image.

We then demonstrate the effects of the neighborhood size
and sparsity level on the performances of JSRC and NLW-
JSRC. In Fig. 5, the size of the neighborhood ranges from 3 3

to 13 13 . The horizontal axis indicates
the neighborhood size , and the vertical axis shows the corre-
sponding optimal overall accuracy (%) of the different neigh-
borhood sizes. It can be seen that the classification result of the
proposed method is slightly better than that of JSRC for most
neighborhood sizes. After reaching the extreme point, the accu-
racy curve of the proposed method is more stable than that of
the JSRC method. It can also be concluded that NLW-JSRC is
more robust than JSRC with regard to different neighborhood
sizes. Fig. 6 shows the optimal results under different spar-
sity levels, which range from 5 to 80. Both the plots rise quickly
and reach a maximum point, then remain relatively stable with
only a tiny decline. It can be seen that the proposed NLW-JSRC
algorithm outperforms JSRC at most sparsity levels.
Table III shows the running times for the sparsity-based

algorithms when reaching their optimal classification perfor-
mances. For the single signal oriented algorithms, the running
time for the greedy pursuit based algorithm (i.e., OMP) is faster

Fig. 5. The classification results versus different neighborhood sizes .

Fig. 6. The classification results versus different sparsity levels .

TABLE III
SPEEDWITH THE INDIAN PINES IMAGE FOR THE SPARSITY-BASED ALGORITHMS

than the -norm convex relaxation algorithm, as the latter is
far more sophisticated than the greedy algorithms [24]. For the
three sparsity-based algorithms with spatial information, it can
be seen that JSRC is the fastest, and the proposed algorithm
requires more computing time, due to the nonlocal weighting
scheme increasing the computational load. It is, however, rea-
sonable to believe that with the rapid development in computer
hardware, the time cost of the proposed method will no longer
be an issue.

B. ROSIS Urban Data: Pavia University, Italy

This scene was acquired by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor during a flight campaign
over Pavia University, northern Italy. The number of spectral
bands is 103 and the image size is 610 610 pixels. We cut a
patch sized 610 340 from the original image. The geometric
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Fig. 7. Classification results of the Pavia University image: (a) false color image (R:102, G:56, B:31), (b) training set, (c) test set, (d) SVM, (e) , (f) OMP,
(g) OMP-S, (h) JSRC, (i) NLW-JSRC.

TABLE IV
THE NINE GROUND-TRUTH CLASSES OF THE ROSIS PAVIA UNIVERSITY DATA

SET, AND THE TRAINING AND TEST SETS FOR EACH CLASS

resolution is 1.3 m. The false color composite of the Pavia Uni-
versity image is shown in Fig. 7(a). As Table IV shows, this
image contains nine ground-truth classes. We randomly sam-
pled 9% of the data in each class as the training samples and
the remainder as the test samples. The training and test sets are
visually shown in Fig. 7(b) and (c). All the training samples
are stacked as the columns of the dictionary
in every sparsity-based algorithm for this data set.
The optimal parameter settings for the proposed NLW-JSRC

method were and , and for JSRC they were
and . For the high spatial resolution of this

image, even pixels belonging to the same class in a spatial
window may show some variance, which results in the optimal
spatial window size being smaller than in the experiments in

TABLE V
CLASSIFICATION ACCURACY (%) FOR THE PAVIA UNIVERSITY IMAGE

WITH THE TEST SET

Section IV-A. The classification results for the various different
classifiers are visually displayed in Fig. 7(d)–(i), respectively.
The quantitative evaluation results, which include the classifi-
cation accuracies for each class, the overall accuracy, and the
kappa coefficient, are shown in Table V. It can be seen that the
proposed NLW-JSRC method yields the best overall accuracy,
kappa coefficient, and classification accuracy for most classes.
For the Pavia University data set with high spatial resolution,

the optimal neighborhood size tends to be smaller than with the
last data set, and the running time of the JSRC method is close
to that of the OMP method. It is, however, still observed that the
proposed NLW-JSRC method spends the most time, with more
computational burden.



2064 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 7, NO. 6, JUNE 2014

Fig. 8. Classification results of the Washington DC image: (a) false color image (R:63, G:52, B:36), (b) training set, (c) test set, (d) SVM, (e) , (f) OMP,
(g) OMP-S, (h) JSRC, (i) NLW-JSRC.

TABLE VI
SPEED WITH THE PAVIA UNIVERSITY IMAGE FOR

THE SPARSITY-BASED ALGORITHMS

TABLE VII
THE SEVEN GROUND-TRUTH CLASSES OF THE HYDICE WASHINGTON DC
MALL DATA SET, AND THE TRAINING AND TEST SETS FOR EACH CLASS

C. HYDICE Data Set: Washington DC Image

This image is a part of an airborne hyperspectral data flight
line over the Washington DC Mall, which was acquired by the
Hyperspectral Digital Image Collection Experiment (HYDICE)
sensor, and is providedwith the permission of the Spectral Infor-
mation Technology Application Center of Virginia, who was re-
sponsible for its collection. The sensor system used in this case
measured a pixel response in 210 bands in the 0.4 to 2.4 m
region of the visible and infrared spectrum. Bands in the 0.9
and 1.4 10 m region, where the atmosphere is opaque, have
been omitted from the data set, leaving 191 bands. The data set
contains 280 scan lines, with 307 pixels in each scan line. The
false color composite of the Washington DC image is shown in
Fig. 8(a). This image contains six ground-truth classes. We ran-
domly sampled around 5% of the labeled pixels in each class for
training, and the rest were used for testing. The training and test
sets are visually shown in Fig. 8(b) and (c), respectively. In ad-
dition, the numbers of training and test samples are also shown
in Table VII. The size of the dictionary for this experiment
was 191 495.

TABLE VIII
CLASSIFICATION ACCURACY (%) FOR THE WASHINGTON DC MALL IMAGE

WITH THE TEST SET

TABLE IX
SPEED WITH THE WASHINGTON DC MALL IMAGE FOR

THE SPARSITY-BASED ALGORITHMS

The optimal parameter settings for the NLW-JSRC method
were and . The corresponding optimal param-
eters for JSRC were and . The classification
results are shown in Fig. 8(d)–(i), respectively. The quantitative
evaluation results, which include the classification accuracies
for every class, the overall accuracy, and the kappa coefficient,
are shown in Table VIII. The running times of every sparsity-
based algorithm are given in Table IX. From Tables VIII and
IX, it can be seen that the proposed NLW-JSRC method yields
the best overall performance, but is slower than the others.

V. CONCLUSION

In this paper, we propose a new nonlocal weighted joint
sparse representation classification (NLW-JSRC) method for
hyperspectral imagery, to support improved classification ca-
pabilities. In the classification process of the central test pixel,
different neighboring pixels are assigned different weights,
which are determined by the structural similarity between the
neighboring pixels and the central test pixel. The nonlocal
weighted joint sparsity model is solved by the simultaneous
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orthogonal matching pursuit (SOMP) technique. The main
advantage of the proposed NLW-JSRC method is that the
nonlocal weighted joint sparsity model exploits the different
contributions of the neighboring pixels to the classification
process of the central test pixel by incorporating nonlocal
spatial structure information. The proposed nonlocal weighted
joint sparse representation classification method was tested on
three hyperspectral images. The extensive experimental results
clearly indicate that the proposed NLW-JSRC method can
achieve competitive classification results.
However, the proposed algorithm still has room for improve-

ment. For example, other improved weighting methods with a
reduced computational burden could be introduced to improve
the computational efficiency. Furthermore, another task on our
agenda is to seek the optimal neighborhood window size for
each pixel adaptively in the whole image. These issues will be
the main focus of our future work.
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