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Abstract 
The 2014 Data Fusion Contest, organized by the Image 
Analysis and Data Fusion (IADF) Technical Committee of the 
IEEE Geoscience and Remote Sensing Society, involved two 
datasets acquired at different spectral ranges and spatial 
resolutions: a coarser-resolution long-wave infrared (LWIR, 
thermal infrared) hyperspectral data set and fine-resolution 
data acquired in the visible (VIS) wavelength range. In this ar-
ticle, a novel multi-level fusion approach is proposed to fully 
utilize the characteristics of these two different datasets to 
achieve improved urban land-use and land-cover classifica-
tion. Specifically, road extraction by fusing the classification 
result of the TI-HSI dataset and the segmentation result of the 
VIS dataset is first proposed. Thereafter, a novel gap inpaint-
ing method for the VIS data with the guidance of the TI-HSI 
data is presented to deal with the swath width inconsistency, 
and to facilitate an accurate spatial feature extraction step. 
The experimental results with the 2014 Data Fusion Contest 
datasets suggest that the proposed method can alleviate 
the multi-spectral-spatial resolution and multi-swath width 
problem to a great extent, and achieve an improved urban 
classification accuracy. 

Introduction
Large remote sensing datasets for the study of urban land-use 
and land-cover are very important for the study of human ac-
tivities and urbanization progress monitoring. Remote sensing 
data processing and analysis for urban areas often benefits from 
the integration of different information, such as different spec-
tral and spatial resolutions for image pan-sharpening (Guo et 
al., 2014), different spatial and spectral features for land-cover 
classification (Huang and Zhang, 2011), and different temporal 
observations for surface change detection (Huang et al., 2014).

Among the above-mentioned fusion tasks, urban surface 
land-cover and land-use classification has been the subject 
of a great deal of interest. First, a lot of meaningful spatial 
features have been designed to alleviate the discriminative 
limitation of the spectral interpretability (Dalla Mura et al., 
2010). Based on the multiple features, both feature-level fu-
sion (Li et al., 2014) and decision-level fusion (Huang and 
Zhang, 2011), frameworks can be built for urban surface 
classification. Second, object-oriented analysis techniques 
utilizing the fusion of pixel-level labeling and a segmenta-
tion map can enhance the performance and stability in a 

homogenous parcel, as well as speeding up the classification 
progress (Hay and Blaschke, 2010; Li et al., 2014). Meanwhile, 
most of the current data fusion methods focus on utilizing 
passive optical remote sensing data ranging from the visible 
to the near-infrared (that is, from 400 nm to 1100 nm) (Zhang 
et al., 2012). The radiant energy collected by a thermal infra-
red sensor can also contribute meaningful complementary 
information to urban remote sensing land-cover classification. 
The superiority of thermal infrared imagery is down to the 
all-weather and all-time capability. Recently, a new airborne 
measurement combination, involving thermal infrared hy-
perspectral imagery (TI-HSI) (ranging from 780nm to 1150 nm) 
and a simultaneously acquired VIS dataset, was released by 
the Image Analysis and Data Fusion (IADF) Technical Commit-
tee of the IEEE Geoscience and Remote Sensing Society (GRSS) 
for the 2014 Data Fusion Contest (http://cucciolo.dibe.unige.
it/IPRS/IEEE_GRSS_IADFTC_2014_Data_Fusion_Contest.htm). 
These datasets are suitable for urban land-use and land-cover 
classification because the thermal infrared data can describe 
surface-emitted energy differences caused by human activity 
(Rodríguez-Galiano et al., 2012); meanwhile, the drawback of 
the coarse spatial resolution can be overcome by integration 
with the very high spatial resolution (VHSR) VIS data.

With the aforementioned datasets released by the IADF 
Technical Committee, this article proposes a new fusion 
framework for urban surface land-cover and land-use classifi-
cation. Among the recent state-of-the-art research, the win-
ners of the classification task in the 2014 Data Fusion Contest 
designed a feature fusion approach by combining several of 
the top principal components (PCs) of the TI-HSI data and some 
of the spectral and spatial features of the VIS imagery. The run-
ners-up in the contest utilized various spectral-spatial features 
as a filter to extract the urban land-use and land-cover classes 
one by one. Details of the processing strategies of the other top 
results can be found on the website of the Data Fusion Contest 
(http://cucciolo.dibe.unige.it/IPRS/IEEE_GRSS_IADFTC_2014_
Classification_Contest_Results.htm). It is notable that most 
of these methods directly take the spectral information of the 
TI-HSI data into a supervised machine learning procedure, 
without considering the specific discriminability of the differ-
ent urban objects in the thermal infrared spectral domain.

Interpretation of this new dataset combination with dif-
ferent resolutions and different swath widths is quite chal-
lenging. In view of this, the following issues must be taken 
into consideration in the data analysis process. With regard 
to the TI-HSI data: (a) the low energy and low signal-to-noise 
ratio (SNR) in each band significantly affect the extraction of 
discriminative features (Zhang et al., 2014); (b) the high inter-
band correlation reveals significant spectral redundancy (Yan 
and Niu, 2014); (c) there can be spectral variation in the same 
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land-cover object collected at different times, which is also 
aggravated by human activity in man-made objects (especially 
for land-use and land-cover classes in urban areas) (Mili-
aresis, 2014); and (d) ambiguous boundaries of land objects 
are caused by heat diffusion (Rodríguez-Galiano et al., 2012), 
which seriously affects the classification performance at a fine 
spatial resolution (0.2 m in this study). As for the VIS dataset, 
interpretation is also difficult due to the fact that VHSR imagery 
exhibits severe intra-class variations. As for the combination of 
these two datasets, the swath width of the TI-HSI data is greater 
than that of the VIS data, which results in large image gaps 
within the VIS data. In our proposed approach, an effective 
inpainting method is proposed to undertake the gap filling.

Based on this analysis of the two datasets, ambigu-
ous boundaries are ubiquitous in the TI-HSI data, while the 
boundaries in the VIS data with a fine spatial resolution are 
very clear. The significant intra-class variations and relatively 
low inter-class separability of the VIS data also limits the 
classification performance. In addition, roads in the TI-HSI 
data are significantly different from the other classes, and the 
rest of the classes can be effectively distinguished in light of 
the fine spatial details of the VIS data. In order to tackle the 
aforementioned problems, a multi-level fusion framework for 
land-use and land-cover classification is proposed to integrate 

the complementary and discriminative features of the two 
datasets. The major contributions of this article are: (a) a full 
analysis of the challenges posed by the newly released dataset 
combination is presented; and (b) a novel framework that fully 
considers the challenges of the classification task is proposed.

The rest of this paper is organized as follows. The next 
section introduces the datasets and analyzes the problems en-
countered when dealing with this classification task, followed 
by the details for the proposed multi-level fusion framework. 
The experimental results and analysis are then described 
leading to our conclusions.

Challenges and Analysis
As this airborne dataset combination is newly released, an 
introduction to the datasets and an analysis of the problems 
encountered in their integration are needed.

Introduction to the Datasets
The airborne TI-HSI data consist of 84 spectral bands in the 
868 to 1280 cm−1 region (7.8 to 11.5μm), at a spectral reso-
lution of 6 cm−1 (full-width-half-maximum) and with an 
approximately 1.0 m spatial resolution. The data have been 
calibrated to at-sensor spectral radiance in W/(m2srcm–1). The 
VIS data were acquired almost simultaneously, and have been 
resampled to a 0.2 m spatial resolution. In view of this, clas-
sifying the urban land-use and land-cover types at the 0.2 m 
spatial resolution level is a multi-resolution fusion task. The 
average height of the sensor platforms was 807 m.

The grayscale map of the red band of the VIS data and the 
grayscale map of the first band of the TI-HSI data are visually 
shown in Figure 1a and 1b, respectively. The two datasets 
cover an urban area near Thetford Mines in Québec, Canada, 
on 21 May 2013, between the time 22:27:36 to 23:46:01 UTC. 
A nearby meteorological station, located at geographic coor-
dinates 46°02'57.002"N and 71°15'58.004"W and, and 430.0 m 

(b)

(a) (c)
Figure 1. Datasets and labeled sample locations of the study area: (a) The red band of the VIS data; there are five strips in the image - 
the width of the gaps between two neighboring strips is large; (b) The first spectral band of the TI-HSI data, showing the obvious intensity 
discrepancy across the flight direction; and (c) Labeled sample locations of the study area, which are all in the fourth strip. The class label 
grayscale bar applies to all the figures. It should be noted that the spatial ratio between these two datasets is 5:1, but the sizes of the 
sub-figures here do not follow this ratio, which should not affect the readability.

Table 1. Environmental Data During Acquisition of the Two Datasets. The 
Variations Clearly Influence the Radiant Energy of the TI-HSI dataset, as can 

be Visually Seen in Figure 1b

UTC date and time
Temperature

[°C]

Dew point 
temp.
[°C]

Rel. 
hum. 
[%]

Pressure
[kPa]

21 May 2013, 22:00:00 14.2 9.6 74 96.41

21 May 2013, 23:00:00 13.1 9.4 78 96.48

22 May 2013, 00:00:00 12.5 9.3 81 96.43
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elevation, recorded the environmental data during image 
acquisition, as shown in Table 1.

Challenges for Classification
Classification with such a subtle spectral resolution in the 
thermal infrared range and with such high spatial resolution 
datasets certainly poses some challenges.

Challenges Posed by the TI-HSI Dataset
A. Low Energy, Low SNR, and High Inter-band Correlation
Figure 2a shows the representative spectral curves of each 
class in the original TI-HSI dataset, where the horizontal axis 

records the number of bands, and the vertical axis represents 
the radiant energy. It can be seen in Figure 2a that the radiant 
energy is quite limited, as the maximum vertical value is less 
than 0.12. Furthermore, there is significant linear correlation 
between the radiant energies in different bands, which means 
that high spectral redundancy exists in the dataset. For the 
noise issue, taking the 80th spectral band shown in Figure 2b 
as an example, it can be seen that the noise is non-negligible. 
In addition, Figure 2c displays the uninformative 82nd band of 
the TI-HSI data, which contains little useful information.

B. Spectral Variation and the Over-fitting Issue
As can be seen in Figure 1, five sequentially acquired strips 
make up the whole scene. Compared with the VIS data, the 
thermal radiant energy and spectral discrimination are deter-
mined not only by the land-cover material type, but also by 
the temperature. The radiant energy of the TI-HSI dataset is 
sensitive to the environmental change occurring during the 
data acquisition (see Table 1), as can be seen in the obvious 
intensity discrepancy across the flight direction, as shown in 
Figure 1b, while the VIS reflectance is relatively stable.

For classification, over-fitting is one of the most important 
problems, as noted in Chapter 1.4.7 in Murphy (2012). For the 
study area, the locations of the labeled samples show obvi-
ous spatial correlation and redundancy, as shown in Figure 
1c. Both the redundant training samples in a local region and 
spectral variation will aggravate the over-fitting issue.

C. Ambiguous Boundaries of Land Objects
For TI-HSI data, it is well known that the ambiguous bound-
aries of land objects seriously affect image interpretation 
accuracy at a fine spatial resolution. To illustrate this prob-
lem, some of the blurry boundaries of the TI-HSI data are 
highlighted in white ellipses in Figure 3, and compared with 
the segmentation result of the VIS dataset. Since the spatial 

(a)

(b)

(c)

Figure 2. The low quality of the TI-HSI dataset: (a) Representa-
tive spectral curves of each class in the original TI-HSI dataset; 
(b) grayscale map of the 80th spectral band of the original TI-HSI 
dataset; and (c) grayscale map of the 82nd spectral band of the 
original TI-HSI dataset.

Figure 3. Illustration of boundaries in the two datasets: a sub-
region of the TI-HSI data with the VIS segmentation boundaries. 
As the VIS dataset can offer dedicated edge information, the VIS 
segmentation boundaries are considered believable. 
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resolution of the original TI-HSI dataset is 1.0 m, it can be seen 
that such ambiguity can involve dozens of pixels at the 0.2-m 
spatial resolution level.

Challenges Posed by the VIS Dataset
In addition to the well-studied problem of dealing with high 
spatial resolution visible image classification, the large gaps 
between the available strips aggravates the challenge.

For high spatial resolution imagery, the spatial information 
can be of great assistance to the spectral information vari-
ability (Dalla Mura et al., 2010; Huang and Zhang, 2011), and 
can be extracted by a set of linear or nonlinear combinations 
of the surrounding pixels. Although the spatial information 
can improve the discriminability of the land-cover, it calls 
for completeness in the spatial domain, and obvious spatial 
structure corruption will decrease the performance of the 
spatial descriptor. Unfortunately, due to the inconsistency of 
the swath widths of the VIS and TI-HSI data, large image gaps 
are found within the VIS data.

Proposed Method
The first important aspect for the classification is the dis-
criminative feature extraction. The following section analyzes 
the spectral separability of the training sample set, as it can be 
utilized as a foundation to improve the classification. The Jef-
fries-Matusita distance (JMD) and the transformed divergence 
(TD) are two well-used evaluation indices for measuring the 
degree of discriminability between two categories. The defini-
tions and physical meanings of these indices can be found in 
Richards (1993). For the VIS dataset, it can be first observed 
that the road/concrete class pair show weak separability, as 
marked in bold in Table 2, and similar observations can be 
made for the red roof/bare soil pair, due to the discriminative 

limitation of the visible spectral information. For the TI-HSI 
dataset, the road pixels can be easily discriminated from the 
rest of the classes, while the separability for the other class 
pairs is poor.

In view of the above phenomena, the entire classification 
framework is composed of the following three parts: (a) data 
pre-processing; (b) road extraction; and (c) remaining class 
classification (see Figure 4).

Preprocessing

TI-HSI Denoising and Dataset Matching
To alleviate the low-SNR problem, the first step of the pre-
processing procedure refers to noise removal with low rank 
matrix recovery (Zhang et al., 2014). Considering the severe 
noise, as shown in Figure 2c, the 82nd band is abandoned. 
With regard to the different spatial resolutions of these two 
datasets, calibration and resampling techniques are called for 
in the matching step. The calibration procedure is based on 
affine transformation. In fact, we just carry out the transla-
tion and isometric scaling without rotation, which is enough 
for the following process. The reason for this is that the two 
cameras are mounted on the same airborne platform, so the 
LWIR image and the VIS image are captured at almost the same 
time and imaging conditions. In this way, upsampling by bi-
cubic interpolation of the denoised TI-HSI data is implemented 
to match the VIS data at a finer spatial resolution. Bicubic 
interpolation refers to cubic convolution interpolation, which 
determines the gray level value from the weighted average of 
the closest pixels to the specified input coordinates, and as-
signs that value to the output coordinates, in two dimensions. 
In this way, the resulting image is slightly smoother than that 
produced by bilinear interpolation, and it does not have the 
staircase appearance produced by nearest neighbor interpola-
tion. It is suggested that there is less spectral distortion after 

Table 2. Jeffries-Matusita Distance and Transformed Divergence for the VIS and TI-HSI Datasets

Road Trees Red roof Gray roof Concrete roof Vegetation

Trees
1.9975
1.9999

1.8556
1.9732

VIS TI-HSI

Red roof
1.8861
1.9992

1.8176
1.9102

1.9683
1.9997

0.8171
0.1635

JMD   

TD   

Gray roof
0.6343
0.7374

1.7233
1.8431

1.9447
1.9999

1.1751
1.3970

1.6400
1.9904

0.6226
1.0991

Concrete roof
1.7070
1.9259

1.6212
1.9408

2.0000
2.0000

1.0111
1.7344

1.9999
2.0000

0.6383
0.9885

1.8703
1.9999

0.9557
1.6675

Vegetation
1.9961
1.9999

1.8424
1.9219

0.9936
1.4547

0.4736
0.6372

1.9476
1.9841

0.9873
1.6496

1.9566
1.9999

1.2945
1.5322

2.0000
2.0000

1.0807
1.8971

Bare soil
1.9318
1.9600

1.9922
2.0000

1.9984
1.9998

1.9153
2.0000

1.3953
1.6779

1.9338
2.0000

1.9515
1.9615

1.9782
2.0000

1.9999
2.0000

1.8897
2.0000

1.9827
1.9964

1.8545
2.0000

Scope for both indices is [0,2] and >1.9desirable separability, [1.4,1.8]qualified sample, <1.4bad classification result

Figure 4. Processing flow of the proposed method.

904	 December  2015 	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

12-15 December Peer Reviewed.indd   904 11/24/2015   4:04:32 PM



Delivered by Publishing Technology to: McMaster University
IP: 218.64.57.12 On: Sat, 23 Jan 2016 05:48:46

Copyright: American Society for Photogrammetry and Remote Sensing

image interpolation, as the spectral information of an image, 
which is first down-sampled to a certain resolution, and then 
interpolated to the same image size as before, hardly changes. 
In the following part after the matching step, “TI-HSI data” 
refers to the denoised and upsampled result after these pre-
processing steps.

VIS Data Inpainting
Due to the inconsistency of the swath width of the VIS and TI-
HSI data, there are large image gaps within the VIS data, which 
significantly and negatively affect the extraction of the spatial 
features. This is actually an inevitable problem in multi-image 
interpretation and feature description. Considering the huge 
data dropout, utilizing the simultaneously acquired TI-HSI data 
is desirable. As mentioned in the last section, energy in the 
TI-HSI data changes in the different strips, which aggravates 
the challenge of the inpainting. Fortunately, the TI-HSI label 
information can be utilized to build the mapping relationship 
between the spectral information of the VIS data and that of 
the thermal infrared measurement in a supervised fashion.

In the proposed approach, the inpainting algorithm in-
cludes two steps. (a) Coarse inpainting per class: as all the 
labeled samples are obtained at the same time, the linear 
mapping is a function of the two spectral features per class, 
without considering the change in temperature. That is, a 
fraction of the labeled samples are randomly selected to lin-
early predict the mapping coefficients, and several indepen-
dent trials are taken to correct the unexpected corruption and 
inappropriate labels of the TI-HSI dataset (see Figure 5). Based 
on the estimated regression parameter sets, the linear trans-
formation is then performed. (b) Local luminance adjustment: 
the estimated VIS band may inherit the luminance change, 
which should be adjusted, from the TI-HSI dataset. In a local 
spatial parcel, it is assumed that pixels in a local spatial part, 
belonging to the missing or the known region, should follow 
the same distribution. Therefore, mapping the distribution of 
the estimated band and that of the given VIS band in a known 
region, and matching the means of the associated regions, can 
alleviate the luminance effects.

Road Extraction
As shown in Figure 6, the flowchart for road extraction 
includes two steps: (a) object-oriented image fusion analysis 
(OOIFA); and (b) road refinement in the confidence region.

Object-Oriented Image Fusion Analysis
For VHSR image processing, it is believed that the object-ori-
ented approach is desirable to alleviate the “salt-and-pepper” 
misclassification phenomenon caused by the intra-class 
spectral variation. Meanwhile, it was also demonstrated in 
the previous sub-section that the TI-HSI data contain a superior 
identification ability for road pixels, and the VIS data have a 
fine object boundary extraction capability. In view of this, it 
is intuitive to combine the superiorities of these two datasets 
in an object-oriented fusion manner. Here, we first classify the 
TI-HSI dataset by the use of a linear support vector machine 
(SVM) classifier (Boser et al., 1992; Vapnik, 1999), and seg-
ment the VIS dataset with the mean-shift algorithm (Coman-
iciu and Meer, 2002; Li et al., 2014). Guided by the clusters of 
the segmentation map, a majority voting approach (Huang and 
Zhang, 2011) is utilized to achieve the object-oriented fusion 
result. In this way, the classification map of the TI-HSI dataset 
and the segmentation result of the VIS dataset are integrated to 
produce a candidate road map, as illustrated in Figure 6.

Road Refinement
The aforementioned object-oriented fusion technique can 
be affected by the segmentation scale, and it is difficult to 
adaptively match all the land objects in an entire complex 
scene at one scale. As shown in Figure 7, although most of 
the concrete roof pixels in the lower-left part of the sub-region 
with its surrounding road pixels are correctly classified in 

Figure 5. The flowchart of VIS data inpainting.

Figure 6. The flowchart for road extraction as the first step in the 
land-use and land-cover classification framework. The upper part 
is associated with OOIFA, while the bottom part is the following 
refinement procedure. 
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Figure 7b, the aforementioned OOIFA strategy misclassifies the 
concrete roof class as roads, which is caused by the under-
segmented blocks in Figure 7c. Due to the scene complexity, 
it is difficult to determine a suitable segmentation scale, and 
even a multi-scale segmentation method may not fully ad-
dress this problem. In this paper, the fine separability and the 
homogeneity of the road areas in the TI-HSI data are again uti-
lized to deal with the problem from another perspective. It is 
believed that heat diffusion only affects adjacent pixels, and 
the morphological dilation operation is conducted with road 
pixels of the TI-HSI classification map. Pixels combined with 
their dilation-related ones comprise the so-called “confidence 
region,” and are labeled as potential roads, as shown in Fig-
ure 7e. In view of this, only pixels located in the confidence 
region accept the labeling correction made by the OOIFA, as 
shown in Figure 7f. Finally, the concept that the road regions 
are elongated areas with connected components is utilized for 
pruning, to generate the final road map (Maurya et al., 2011).

Classification of Other Classes
For the remaining classes, we focus on the fine spatial resolu-
tion VIS data. However, the gaps in the VIS data may lead to 
inaccurate spatial feature extraction. Thus, this procedure 
consists of two components: (a) classification by stacked 
multi-feature vectors; and (b) post-classification.
For VHSR imagery, the spatial features are valuable informa-
tion for image interpretation (Li et al., 2014). In this work, 
four meaningful morphological attribute profiles (Dalla Mura 
et al., 2010), i.e., area, standard deviation (SD), diagonal box 
(DB), and moment of inertia (MI), along with the gray level 

co-occurrence matrix (GLCM) feature (Huang and Zhang, 2013) 
and the spectral feature, are merged in a vector stacking (VS) 
manner (Li et al., 2014) for the classification. The selection 
of the parameter set for the above spatial features depends on 
the type of images and the application and task being dealt 
with. For the study in this paper, we first extract the profiles 
with the parameters in a large range, then compute the deriva-
tive of the profile, and pick out those containing meaningful 
spatial structure. Recently, some automatic methods for the 
selection of these spatial criteria have been proposed (Ghami-
si et al., 2015). Among the various classifiers, linear SVM (Fan 
et al., 2008) is efficient and effective enough to deal with 
such a task with a large training sample set. To analyze the 
study area, the parameters of linear SVM were automatically 
determined by five-fold cross-validation (Li et al., 2014) from 
a reasonable range. After the classification, the segmentation 
map of the VIS data is utilized as an object-based decision fu-
sion step (Sugg et al., 2014) to conduct the post-classification 
process. The selection of the parameter set in the mean-shift 
segmentation procedure depends on the spectral and spatial 
resolutions of the image and the terrain complexity within the 
scene. For the study area, we set the spectral scale as 17, the 
spatial scale as 15, and the smallest block size as 200 pixels.

Results and Discussion
Experimental Setting
Labeled samples were provided by the IADF 2014 commit-
tee, as visually shown in Figure 1c, and were used for the 

(a) (b) (c)

(d) (e) (f)

Figure 7. Illustration of the road extraction procedure within a sub-region of the scene: (a) The red band of the VIS dataset; (b) the TI-HSI 
classification map; (c) the segmentation result and its boundaries in the VIS domain, with each grayscale value associated with the seg-
mentation parcel index; (d) the OOIFA result with the procedure described in the second Section; (e) the highlighted confidence regions, 
along with pixels labeled as roads in (b); and (f) the final road map after refinement.

906	 December  2015 	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

12-15 December Peer Reviewed.indd   906 11/24/2015   4:04:34 PM



Delivered by Publishing Technology to: McMaster University
IP: 218.64.57.12 On: Sat, 23 Jan 2016 05:48:46

Copyright: American Society for Photogrammetry and Remote Sensing

training. For testing, there were two test sample sets, the first 
set being provided by the contest committee for the whole im-
age, while the second set was collected by the authors on the 
edges near the missing strips, to evaluate the performance of 
the inpainting step. In the second test set, the road class was 
omitted, and the bare soil class was mostly absent in the edge 
parts. Details of the training and test samples for each class of 
the reference data are shown in Table 3.

General Classification Performance
The different classification approaches described in Table 
4 and the top-two results in the contest were selected for 
comparison. Each thematic map is visually shown in Plate 
1. The quantitative evaluation consisted of the classification 
accuracy for each class, the overall accuracy (OA), the average 
accuracy (AA), and the kappa coefficient (κ) (Congalton, 1991), 
as shown in Table 5. For the spectral-spatial feature fusion 
related approaches, the related parameters were selected with 
consideration of the spatial distribution and resolution, as 

suggested in Dalla Mura et al. (2010). In addition, the κ values 
for the winners of the classification contest are given in the 
bottom row of Table 5. In this table, the best results for each 
quality index are highlighted in bold, and the second-best 
results are underlined.

It can be observed that most of the accuracy statistics in 
Table 5 suggest that the proposed method can obtain the best 
or at least a desirable performance, except for the bare soil 
pixels, which are often mixed with grass and tree pixels in 
the study area. In Plate 1d through 1i), the classification ac-
curacies of the thematic results improve one by one. In Plate 
1c, it is suggested that although the road pixels still show 
a satisfactory discrimination, the imaging environmental 
changes (i.e., the temperature change, pressure variation, etc., 
shown in Table 1) reduce the discriminative ability for the 
rest of the classes, especially the pixels in the second strip, in 
which most of the pixels (except for the road pixels) are clas-
sified as concrete roof. In both Plate 1a and 1b, it can be seen 
that many corridors existing between the roofs in the commu-
nity are misclassified as concrete roof pixels, as the material 
of these corridors is also concrete. Since there is no corridor 
class type in the reference data, this kind of misclassification 
is ignored in the quantitative statistics. The proposed method 
interpreted these pixels as road, which is more suitable in 
the semantic-level exploitation. Compared with the other 
thematic maps, Plate 1h and 1i show the best road detection 
performance, while the latter figure also shows the best bare 
soil land-cover recognition.

Table 6 shows a statistical comparison between the dif-
ferent approaches. The ΔOA values are the difference in the 
quantity disagreement between practical Classifier 1 and Clas-
sifier 2, and they confirm the inferiority of the former classi-
fier when ΔOA <0. McNemar’s test (Foody  2004), which is a 
non-parametric statistical significance test of the difference 

Table 5. Classification Accuracy (%) for the Study Area

Class Name TI-HSI VIS VIS-SF VIS-VS InVIS-VS R-InVIS-VS Proposed

Road 96.30 88.29 89.86 91.49 94.52 98.17 98.17

Trees 0.90 12.15 90.16 90.11 88.56 85.94 91.07

Red roof 27.71 93.66 96.93 97.85 98.40 94.72 95.14

Gray roof 50.10 53.20 67.42 90.24 88.74 95.71 98.99

Concrete roof 71.53 93.77 92.15 91.49 91.82 90.38 92.29

Vegetation 26.51 99.40 91.46 93.46 93.58 94.74 99.14

Bare soil 45.54 88.89 65.55 88.12 88.38 87.69 89.70

OA (%) 70.10 81.29 87.80 91.90 93.42 95.57 96.81

AA (%) 45.51 75.63 84.79 91.82 92.00 92.48 94.93

κ 0.5470 0.7187 0.8160 0.8795 0.9009 0.9324 0.9514 

Note: according to the result of the IADF 2014 Data Fusion Contest, the κ value of the runner-up was 0.9217, and 0.9438 for the winner. 

Table 3. The Seven Ground-Reference Classes in the Study Area, and the 
Training and Test Sample Sets for Each Class 

No.
Class 
name

Provided by the contest committee Edge 
sample 

set
Training 
samples

Global test set

1 Road 112457 809098 -

2 Trees 27700 100749 21116

3 Red roof 46578 136697 55702

4 Gray roof 53520 142868 118723

5
Concrete 

roof
97826 109539 37718

6 Vegetation 185329 103583 105473

7 Bare soil 44738 49212 -

Total 568148 1451746 338732

Table 4. Comparison of the Classification Approaches

Acronym Approach

TI-HSI Original spectral feature of the TI-HSI data

VIS Original spectral feature of the VIS data

VIS-SF Single optimal spatial feature of the VIS data

VIS-VS
Vector stacking (VS) of the five spatial features of 
the VIS data

InVIS-VS
Inpainting of the strips of the VIS data, and then VS 
of the five spatial features of the VIS data

R-InVIS-VS
Road extraction with the OOIFA approach, then 
inpainting of the strips, and VS for the remaining 
class classification

Proposed R-InVIS-VS, with post-classification

Table 6. Summary of the Classification Comparisons Undertaken in the Study 
Area. A Resampling Method was Used to Conduct the McNemar’s Test, to 
Compare the Proportions of the Correctly Allocated Pixels. All the tests 

Shown were One-sided, and a 5 Percent Level of Significance was Selected

Classifier 1 Classifier 2

Comparison of the proportions 
and disagreement

ΔOA(%) |z| Significant?

TI-HSI VIS −10.19 1.8204 No

VIS-SF VIS 6.51 1.6713 No

VIS-VS VIS 10.61 3.6742 Yes

Proposed VIS 15.52 4.5962 Yes
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Plate 1. Thematic maps of the study area: (a) runner-up in the 2014 Data Fusion Contest; (b) 2014 Data Fusion Contest winner; (c) TI-HSI; 
(d) VIS; (e) VIS-SF; (f) VIS-VS; (g) In-VIS-VS; (h) R-InVIS-VS; and (i) the proposed method. These thematic maps are utilized to allow a visual 
comparison between the proposed method, the winning methods in the 2014 Data Fusion Contest, and the other methods listed in Table 4.

between two classification results, is also utilized in this 
paper. Although the single spatial feature can improve the 
discrimination, it is observed that the multiple-feature fusion 
can achieve a better performance. Furthermore, the proposed 

approach combining gap inpainting, road extraction, and VS 
fusion can obtain the best result. However, some issues with 
the current fusion approach need to be mentioned. First, the 
computational complexity is high because of the multiple 
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features utilized in the VS image interpretation. Second, 
due to the large-scale data classification task (with as many 
as 568,148 training samples), it is likely that a complicated 
classifier with greater computational complexity could not be 
utilized, which will be further studied in the future.

Performances when Dealing with the Challenges

Improved TI-HSI SNR
To evaluate the effectiveness, the no-reference metric Q 
(Xiang and Milanfar, 2010) was utilized, which indicates a 
better image quality with a larger value. Due to the space limi-
tations, we omit the visual comparison between the original 

Figure 8. Classification omission, agreement, and commission for each class for the related classifiers with the sub-test set, to display the 
performance for inpainting. For each group: the upper bar is for VIS-SF (i.e., the GLCM feature of the VIS), the second bar is associated 
with InVIS-SF (i.e., the GLCM feature of the inpainted VIS), the third bar represents VIS-VS, and the bottom bar refers to the InVIS-VS ap-
proach. With regard to these evaluation indices, it can be seen that the classification performance of each category has been improved 
by the image gap inpainting.

Figure 9. Classification omission, agreement, and commission for each class for the related classifiers with the global test set, to display 
the discriminative ability for each class. The results are shown for each spatial feature related approach for the remaining class classifi-
cation of the study area. For each group, results of the SD, area, moment, DB, GLCM, VS, and the proposed approach are shown in order 
from the top to bottom. With regard to these evaluation indices, it can be seen that the VS approach utilizes the complementary spatial 
descriptions to effectively improve the classification accuracy.
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and the denoised image, which obtained metric Q values of 
0.0020 and 0.0023, respectively.

Enhanced Discriminative Feature Description near Missing Regions
To validate the function of the VIS image gap inpainting for 
the classification, five single spatial features and the multiple-
feature VS approach were utilized, respectively. Table 7 re-
cords the classification accuracy results, and the quantitative 
assessments for each class are shown in Figure 8.

Table 7. Classification Accuracy on the Edge Sub-Part of the Second Test 
Set for Each Spatial Feature Related Approach for the Remaining Class 

Classification of the Study Area, Before and After Image Inpainting

Index Area SD DB MI GLCM VS

With 
inpainting

OA 0.9096 0.9092 0.9103 0.8960 0.9127 0.9350 

AA 0.8819 0.8628 0.8856 0.8430 0.9322 0.9448 

κ 0.8790 0.8778 0.8800 0.8604 0.8843 0.9133 

Without 
inpainting

OA 0.8935 0.8388 0.8950 0.8951 0.9080 0.9274 

AA 0.8721 0.8138 0.8807 0.8321 0.9293 0.9365 

κ 0.8572 0.7881 0.8596 0.8590 0.8781 0.9031 

In Table 7, it can be seen that in all the comparison pairs, es-
pecially the SD pair, the image gap inpainting can improve the 
classification accuracy. In Figure 8, the classification omis-
sion, agreement, and commission (Li et al., 2014) are shown 
as the sub-bars for each category in a group, and the detailed 
number in each sub-bar denotes the associated proportion. 
Overall, the classification performance of each category has 
been improved by the image gap inpainting, as shown in Fig-
ure 8. Specifically, comparing VIS-VS with In-VIS-VS, it can be 
seen that the omission decreases for the vegetation, concrete 
roof, and red roof classes, and the agreement for tree pixels 
increases. For the commission, similar observations can be 
made, which further confirm the effectiveness of the simple 
inpainting step.

Discriminative Ability Analysis for each Class
To illustrate the discriminability between the land-use and 
land-cover types, the classification omission, agreement, and 
commission for the global test set are shown as the sub-bars 
for each class in a group in Figure 9. Here, it can be first seen 
that the road discriminability of the TI-HSI data is superior to 
that of the VIS data, although the spatial features are repre-
sented in the VIS data. It should be mentioned that the pro-
posed OOIFA approach can achieve the goal of road extraction, 
and can also alleviate the omission error of the other classes. 
The remaining classes consist of bare soil, vegetation, trees, 
and buildings (i.e., red roof, concrete roof, and gray roof). 
For these classes, it is believed that their spatial description 
is more useful. For the first three class types in Figure 9 (i.e., 
bare soil, vegetation, and concrete roof), it is suggested that 
the contextual feature is superior, as each of these classes has 
a specific contextual pattern, which can be seen in Figure 1a. 
It can also be observed that the VS approach can maintain the 
superiority of the contextual description, to conduct the clas-
sification task. For the three building (roof) classes in Figure 
9, it can be seen that a single feature cannot describe the dis-
criminative characteristic satisfactorily, and the VS approach 
utilizes the complementary spatial descriptions to improve 
the classification accuracy.

Conclusions
The study of the newly released multi-sensor, multi-spectral-
spatial resolution, and multi-swath width TI-HSI and VIS 
datasets is a challenging topic, and this paper presents a 
multi-level fusion approach for discriminative information 

mining to achieve urban land-use and land-cover classifica-
tion. The specific superiorities of the TI-HSI and VIS datasets 
are integrated to improve the classification accuracy, which 
was confirmed by a quantitative assessment. In particular, a 
novel image gap inpainting method for the VIS data with the 
guidance of the TI-HSI data is applied to deal with the swath 
width inconsistency and facilitate accurate spatial feature 
extraction, thereby improving the overall classification ac-
curacy. In summary, it is suggested that utilizing the TI-HSI 
data together with the VIS data for urban surface exploitation 
is both promising and meaningful.
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