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a  b  s  t  r  a  c  t

Sparse  representation  classification  (SRC)  is becoming  a promising  tool  for hyperspectral  image  (HSI)
classification,  where  the Euclidean  spectral  distance  (ESD)  is widely  used  to reflect  the fidelity  between
the  original  and  reconstructed  signals.  In this  paper,  a generalized  model  is  proposed  to  extend  SRC  by
characterizing  the  spectral  fidelity  with  flexible  similarity  measures.  To  validate  the  flexibility,  several
typical  similarity  measures—the  spectral  angle  similarity  (SAS),  spectral  information  divergence  (SID),
the structural  similarity  index  measure  (SSIM),  and  the  ESD—are  included  in  the  generalized  model.
Furthermore,  a general  solution  based  on  a  gradient  descent  technique  is  used  to solve  the nonlinear
nified framework
yperspectral image

optimization  problem  formulated  by  the  flexible  similarity  measures.  To test  the generalized  model,
two  actual  HSIs  were  used,  and  the experimental  results  confirm  the  ability  of  the proposed  model  to
accommodate  the various  spectral  similarity  measures.  Performance  comparisons  with  the  ESD,  SAS,
SID, and  SSIM  criteria  were  also  conducted,  and  the  results  consistently  show  the  advantages  of  the

I  clas
generalized  model  for HS

. Introduction

Recent advances in sparse representation learning have
chieved significant success in the adaptation of sparse representa-
ion for hyperspectral image (HSI) classification, and there has been
n increasing tendency to explore sparsity as prior information for
emote sensing applications in recent years. Chen et al. (2011) first
pplied sparse representation to HSI classification by utilizing the
parsity of the input sample with respect to a given overcomplete
ictionary consisting of several training samples. Given a test spec-
ral vector, it can then be sparsely represented with several atoms
n the dictionary and the associated sparse coding coefficients. The
lass of the test pixel can then be determined by comparing the
imilarity between the reconstructed and test pixels. To exploit the
ontextual information in homogeneous regions, joint sparse rep-
esentation classification (JSRC) was also proposed to enhance the
bility of the classification (Chen et al., 2011).

Several variants of the typical SRC model have also been pro-

osed and have achieved better performances in HSI classification.
ealizing that not all pixels provide the same contribution to the
entral pixel, Zhang et al. (2014b) proposed a non-local weighted

∗ Corresponding author.
E-mail addresses: wavelet778@sohu.com (B. Wu), xhuang@whu.edu.cn

X. Huang).
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303-2434/© 2016 Elsevier B.V. All rights reserved.
sification  in  terms  of  overall  accuracy  and kappa  coefficient.
©  2016  Elsevier  B.V.  All  rights  reserved.

JSRC method by considering the different contributions of the
neighboring pixels in the classification process. In addition, multi-
scale adaptive SRC was formulated by considering that regions
of different scales can incorporate complementary yet correlated
information (Fang et al., 2014). Manifold-based SRC has also been
proposed to exploit the local structure of the test pixel to enhance
smoothness across neighboring homogeneous regions (Tang et al.,
2014). Since the complex arrangement of land cover on the Earth’s
surface inevitably results in many mixed pixels, a nonlinear exten-
sion of SRC with spatial and spectral information based on a kernel
metric has also been proposed, and has performed well in HSI clas-
sification (Chen et al., 2013; Liu et al., 2013).

Although the aforementioned SRC methods can perform well,
most of them adopt the Euclidean spectral distance (ESD) as the
measuring criterion to reflect the spectral fidelity between the orig-
inal and reconstructed pixel signals, due to its ease of use and
popularity. However, the ESD measure is sensitive to the absolute
magnitude of the spectra, and it fails to take into account the charac-
teristics of the spectral signal, such as the spectral shape and spatial
information. On the other hand, the magnitude of the spectra usu-
ally varies from site to site in a real image, due to external factors
such as the atmospheric effect, environmental radiation, shading,

etc. These physical phenomena can cause multiple signal scattering,
resulting in a nonlinear mixture effect, especially for heterogeneous
area. Consequently, we  can infer that the linear-based similarity

dx.doi.org/10.1016/j.jag.2016.06.006
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2016.06.006&domain=pdf
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easures such as the ESD would produce significant classification
rrors in such circumstances.

Some researchers have recently proposed other spectral fidelity
easures to overcome the disadvantages of the ESD-based mea-

ure. In the remote sensing community, spectral information
ivergence (SID) is now one of the most widely accepted spec-
ral similarity measures for material identification (Chang, 2000).
ID measures the discrepancy between the probabilistic behaviors
f the spectral signatures of two pixels from the aspect of infor-
ation theory. A previous study confirmed the ability of SID to

ffectively discriminate spectral properties (Van Der Meer, 2006).
ore recently, a sparse representation classifier using the SID mea-

ure was proposed to reduce the influence of spectral variation, and
chieved a promising classification accuracy (Zhang et al., 2014a).
nspired by the structural similarity index (Wang et al., 2004),

e incorporated a new structural similarity index measurement
SSIM) into an SRC model to capture the spectral and spatial prop-
rties, and the experiments demonstrated that SSIM-based SRC
utperforms ESD-based SRC in most cases (Wu et al., 2015). The
uperiority of the SSIM-based or SID-based SRC may  be because
heir nonlinear spectral measures provide more powerful discrim-
native abilities to classify mixed pixels. On the other hand, due
o the fact that the algorithm of traditional ESD-based SRC is not
pplicable to SID- or SSIM-based SRC methods, the solutions used
o solve the respective models are different. To solve the SID-based
roblem, the authors developed a new orthogonal matching pursuit
ethod to update the selected atoms via minimizing the correla-

ion matrix between the reconstructed residual and the dictionary
Zhang et al., 2014a). Meanwhile, the solution of SSIM-based SRC
dopted the same idea as the traditional ESD-based problem by
dding a scaling coefficient to its optimal sparse codes (Rehman
t al., 2012).

Although SRC has been extensively studied from various aspects,
here are still some areas that remain untouched. Given that sev-
ral spectral similarity measures are available, it is still difficult
o know which to select to characterize the spectral fidelity when
ne needs to perform an SRC task. In addition, since the existing
lgorithms for ESD-, SSIM- and SID-based SRC are different, there
s not yet a generalized SRC algorithm, such that different spectral
delity items can be universally applied. We  attempt to address

hese questions in this paper, where we make three possible con-
ributions. The first is that we generalize the SRC model with a
nified framework to adapt to various spectral similarity measures.
ne advantage of using this generalized model is that it provides a
ossible way to accommodate any spectral similarity measure that
he user decides to use. Another contribution is that we present a
nified solution to solve the generalized SRC model by adopting a
radient descent technique. Finally, a systematic comparison of the
erformance of HSI classification using various spectral similarity
easures is conducted, i.e. ESD, the spectral angle measure (SAS),

SIM, and SID.
The remainder of this paper is structured as follows. Section II

ormulates the unified framework with flexible spectral similar-
ty measures for SRC. In Section III, two real HSIs are used to test
he effectiveness of the proposed framework. Finally, Section IV
ummarizes the paper.

. The generalized SRC model

.1. Formulation of the generalized SRC model

Suppose that we have M distinct classes, and the mth class

as Nm training samplesDm = {dm

i
}
i=1,2,...Nm

, respectively. We  let

 = {D1 D2 . . . DM } ∈ R
B×N (B < N) be a structural dictio-

ary, whose columns (which we refer to as atoms) are extracted
rom the training sample pixels, where B refers to the number of
ervation and Geoinformation 52 (2016) 275–283

bands of the HSI, and Di is a sub-matrix belonging to the same
class of the overcomplete dictionary. The typical SRC model can
be represented as:

ˆ̨ = argmin
˛

‖y − D˛‖2
2s.t‖˛‖0 ≤ K0 (1)

class(y) = argmin
i

‖y − xi‖2
2, i = 1, 2, . . .,  M (2)

where ˆ̨ i denotes the sparse coding coefficient associated with
atoms Di, i.e. the sub-matrix belonging to the ith class, and xi = Di ˆ̨ i
indicates the reconstructed spectral signals with the estimated
sparse coding coefficient ˆ̨ i. It is clear from Eq. (2) that the class label
is determined by the minimal residual error ri = ‖y − xi‖2

2 associ-
ated with each class, where the reconstructed vector is dominated
by the coefficients corresponding to the indices of the training sam-
ples (atoms) in the ith class. To enhance the robustness, the JSRC
model is formed to include the contextual information, which can
be formulated as:

Ŝ = argmin
S

‖Y − DS‖2
2s.t.‖S‖row,0 ≤ K0 (3)

class(y) = argmin
i

‖Y − DiŜi‖2
2, i = 1, 2, . . .,  M (4)

where Y is all the pixels around the test sample y within a local
window, and S is the associated group sparse coding coefficients.

As can be seen from the formulations in Eqs. (1)–(4), they all
adopt the ESD measure to reflect the spectral fidelity. Intuitively,
the use of different spectral fidelity items can produce different
sets of atoms, and thus different classification results. Therefore, we
propose a generalized sparse representation classification model
(GSRC) to extend the ESD-based model to accommodate various
similarity measures, such that any pixel can be formulated as a
weighted sum of the selected atoms. To this aim, we  formulate
GSRC by characterizing the spectral fidelity as a general objective
function:

ˆ̨ = argmin
˛
f (y, x)s.t.x = D˛, ‖˛‖0 ≤ K0 (5)

class(y) = argmin
i
f (y, xi), xi = Di ˆ̨ ii = 1, 2, . . .,  M (6)

where f is a user-specified objective function, which defines the
general similarity measure to reflect the spectral fidelity between
the original signal y and the reconstructed signal x.

It is clear that GSRC has the advantage of being able to accommo-
date any spectral similarity measure. For example, the ESD-based
SRC model can be modeled by specifying the objective function f
as ESD to measure the similarity, i.e.

fESD = ESD(y, x) = ‖y − x‖2
2 (7)

Other spectral fidelity items can also be specified as the objec-
tive function, such as SAS. SAS calculates the angle between two
spectra and uses it as a discriminative measure, and thus has an
advantage with respect to reducing or avoiding the effect of bright-
ness deformation (Du et al., 2004). To cast the objective function as
a minimization formulation, f for SAS becomes:

fSAS = 1 − SAS(y, x) = 1 − �B
i=1xiyi

�B
i=1x

2
i
�B

i=1y
2
i

(8)

Analogously, the objective function f for SSIM is given as:

fSSIM = 1 − SSIM(y, x) = 1 − 2�x�y + c1

�2
x + �2

y + c1

2�xy + c2

�2
x + �2

y + c2
(9)
where �xand�y are the means of vectors x and y, respectively; �xy
is the sample covariance; and�2

x and �2
y are their variances. The

constants c1 and c2 are stabilizing constants to account for the
saturation effect of the human visual system.
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The objective function f for SID is formulated as:

SID = SID(y, x) =
B∑

i=1

pilog(
pi
qi

) +
B∑

i=1

qilog(
qi
pi

) (10)

here pi and qi, (where i = 1, 2, . . .,  B) are the two probability func-
ions produced by the reconstructed spectral vector and the original
pectral vector, respectively, which are defined as:

pi =
yi∑B
i=1yi

, qi =
xi∑B
i=1xi

(11)

In Eq. (10), SID(y, x) is also known as Kullback-Leibler infor-
ation, which offers a new view of spectral similarity from an

nformation theory perspective, by calculating the relative entropy
o account for the spectral information provided by each pixel.

.2. The joint generalized sparse representation classification
JGSRC) model

Since the GSRC model does not consider the contextual infor-
ation, the JGSRC model is also developed by exploiting the spatial

orrelation across the neighboring samples in GSRC, which can be
athematically formulated as follows:

ˆ = argmin
S
f (Y, X), s.t.X = DS, ‖S‖0 ≤ K0 (12)

lass(y) = argmin
i
f (Y, X i), Xi = DiŜii = 1, 2, . . .,  M (13)

where the variables are defined in the same way  as Eqs. (3) and
4). In comparison with GSRC, the main difference is that JGSRC
tilizes all the sparse vectors from the local patch to compute the
esidual error, which has the potential to improve the classification
erformance. As a result, JGSRC can significantly outperform GSRC

n most cases.

.3. Solution to the JGSRC

Since the SRC model defined by the l0 norm is a nondetermin-
stic polynomial time hard problem, it is usually resolved by the
rthogonal matching pursuit (OMP) method. Specifically, for a test
ixel, the OMP  algorithm tends to incrementally search for a repre-
entative atom iteratively, and then the residual of the fidelity item
s updated. The next atom is then selected as the one that vector.
ollowing a similar idea, maximizes the relationship between the
ervation and Geoinformation 52 (2016) 275–283 277

dictionary and the residual we  propose to use a gradient descent
algorithm for the general similarity measure to indicate which atom
is to be selected iteratively.

grad = ∂(f (R, D˛))
∂(˛)

(14)

where R denotes the residual item between the original and recon-
structed vectors, f is a general spectral similarity measure, and  ̨ is
the associated sparse coding coefficient. If the objective function is
specified as ESD, i.e. f = ‖y − D˛‖2

2, then the gradient is:

grad = ∂(f (y, D˛))
∂(˛)

= ∂(‖y − ‖D˛2
2)

∂(˛)
= −2DT (y − D˛) = −2DTR(15)

It can be seen that Eq. (15) is exactly the same formulation as the
one derived from the typical ESD-based model (Chen et al., 2011).
Therefore, if the maximum gradient is an indicator for the atom
selection, the proposed gradient descent algorithm boils down to
the traditional OMP  algorithm used in the ESD-based SRC model.
Given other similarity measures, such as fSAS, fSSIM , and fSID, the set
of atoms for representation can be iteratively selected with their
respective gradient formulations. The respective gradients for the
fSAS , fSID, and fSSIM functions are formulated as follows:

∂(fSAS)
∂˛

= 1
‖y‖2

‖x‖2
2D

′
y − (D˛)

′
y ∗ D′D˛

‖x‖2
2 ∗ ‖x‖2

(16)

∂(fSID)
∂˛

= D′(log(
D˛

y
) + I) − D′ y

D˛
(17)

∂(fSSIM)

∂˛
= 2

NwB2
1B

2
2

[A1B1(B2a − A2y + B1B2(A2 − A1)�a − A1A2(B2 − B1)�y)] (18)

where A1 = 2�a�y + c1, B1 = �2
a + �2

y + c1, A2 = 2�ay + c2,
B2 = �2

a + �2
y + c2, and Nw is the number of pixels in a local win-

dow. �a, �2
a , and �ay represent the sample mean of a, the sample

variance of a, and the sample covariance of a and y.
By characterizing the spectral fidelity item with a general

objective function, GSRC can be processed with various similarity
measures, on the condition that the objective function is convex.
Considering that GSRC is only a special case of JGSRC with the neigh-
boring window size equal to one, we  mainly focus on the JGSRC
model in this paper. The implementation details are summarized
as Algorithm 1.

Algorithm 1. Joint generalized sparse representation classifica-
tion (JGSRC):
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fferent methods with varying window sizes.
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Table 1
Training and test samples for the AVIRIS Indian Pines dataset. The classes are
alfalfa [1], corn-notill [2], corn-min [3], corn [4], grass/pasture [5], grass/trees
[6], grass/pasture-mowed [7], hay-windrowed [8], oats [9], soybeans-notill [10],
soybeans-min [11], soybean-clean [12], wheat [13], woods [14], building-grass-trees
[15], and stone-steel towers [16].

Class No. 1 2 3 4 5 6 7 8
Training 5 143 83 24 49 73 3 48
Testing 41 1285 747 213 343 675 25 430
Fig. 1. Comparison of the OAs of the di

Although Algorithm 1 appears similar to OMP, it should be noted
hat the proposed method significantly differs from the traditional
SRC algorithms in two aspects. The first is that we utilize a gradient
escent algorithm for the general objective function, rather than

 fixed measuring function to determine the subset of atoms for
he representation of the test pixel vector. The other difference is
hat we not only project the observed test pixel vector orthogonal
o the selected atoms to calculate the residual, we also project the
emaining dictionary atoms and renormalize them, such that all the
toms are unit norm again. One advantage of using renormalization
f the remaining dictionary atoms is to force the sparsity of the
esidual to decrease along with its rank (Natarajan, 1995) in the
terative processing.

. Experimental results and analysis

To test the effectiveness of the proposed JGSRC, two actual HSIs
ere selected for the experimental evaluation. The classical JSRC
ith ESD measure classifier was implemented as the baseline for

he comparison. The primary objectives of the experiments were:
) to evaluate the JGRSC model by comparing the performances
f the specified similarity measures; and 2) to test the improve-
ent of the proposed algorithm compared with the existing SSIM-

nd SID-based JSRC algorithms (Zhang et al., 2014a; Wu  et al.,
015). For a fair comparison, all the algorithms were coded in
ATLAB R2012b. Although many accuracy measures are available

Pontius and Millones, 2011), two widely used measures—the over-
ll accuracy (OA) and Kappa coefficient—were chosen to measure
he accuracy of the HSI classification tasks because they are the sim-
lest yet most popular accuracy measures and are recommended

or use as a primary measure (Liu, 2007).

.1. Performance evaluation and comparison

.1.1. Dataset 1: AVIRIS

The first dataset was the 220-band Airborne Visible/Infrared

maging Spectrometer (AVIRIS) image taken over the Indian Pines
est site in North-western Indiana in June 1992, with 224 bands
cross the spectral range from 0.2 to 2.4 �m.  This image is a classi-
Class  No. 9 10 11 12 13 14 15 16
Training 2 98 246 60 21 127 39 10
Testing 18 874 2209 533 184 1138 347 83

cal benchmarking dataset used to validate algorithm accuracy (Wu
et al., 2014). Since all the pixels have been labeled, the data are often
used to validate different algorithms from various aspects. In our
experiments, the number of bands was reduced to 200 by remov-
ing 20 water absorption bands and four noise bands. This image
has a 20-m spatial resolution per pixel and a spatial dimension of
145 × 145 pixels. It contains 16 crop-type classes and a total of 10
366 labeled pixels, from which we randomly chose 10% as the train-
ing samples and used the rest for testing. The numbers of training
and test samples for each class are summarized in Table 1.

Two important parameters, i.e. the sparsity level K0 and win-
dow size T0, needed to be refined for the JGSRC model, so that its
best performance could be evaluated. The sparsity level K0 con-
trols how many atoms are selected for the representation of the
test pixel. To determine K0, we compared the OAs of the various
methods by varying the sparsity level from K0 = 5 to K0 = 50, and
the K0 value associated with the highest accuracy was considered
to be the best parameter setting. The results are plotted in Fig. 1,
where the subplots from left to right and top to bottom are the
window sizes equal to 3, 5, 7, 9, and 11, respectively.

It can be seen from each subplot that the increase of the spar-
sity level usually has a positive effect in improving the OA value.
This is because the data contain a mixture of the classes’ signa-

tures, and a small number of atoms is inadequate to exactly identify
the mixed pixels. We  can also see that the classification accuracies
acquired by the use of the SID and SSIM measures are significantly
higher than those obtained by the ESD-based SRC in most cases. The
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Fig. 2. Comparison of the OAs of the different methods with varying sparsity levels.
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ig. 3. Classification maps with different fidelity measures for the AVIRIS Indian Pin

ID measure achieves the best results among all the measures, and
he highest OA is 95.37% when the sparsity and window size are
qual to 50 and 7, respectively. Therefore, the results of this exper-
ment imply that the use of different spectral similarity measures
an generate totally different classification results.

Another important parameter is the window size T0, which indi-
ates how many neighboring pixels around the central pixel are

imultaneously sparsely coded. In general, this parameter reflects
ow smooth the image is on the whole. The generated results are
lotted in Fig. 2, where in each subplot, the vertical direction is the
A, and the horizontal direction indicates the size of the local win-
taset: (a) training samples; (b) test samples; (c) ESD; (d) SAS; (e) SSIM; (f) SID.

dow. It can be seen that in the case of a fixed sparsity level, the
OAs for all the measures drastically decrease with the increase of
the window size, especially when K0 is small. One possible rea-
son for this is that the neighborhood pixels around the central
test sample may  contain more heterogeneous materials with the
increase of the window size, which invalidates the assumption that
all the neighborhood pixels coming from the same class in the group

sparse representation model shares a common sparsity support.
Moreover, the neighboring pixels in a larger window may  not be
faithfully approximated by few atoms if the value of K0 is small. In
addition, it can be inferred from Fig. 1 and Fig. 2 that all four clas-
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Fig. 4. Comparison of the OAs of the different methods with varyin

Table 2
Comparison of the classification accuracies of the four different measures, i.e. ESD,
SAS,  SSIM, and SID.

Classes ESD (%) SAS (%) SSIM(%) SID (%)

Alfalfa 53.66 21.95 34.15 82.93
Corn-notill 86.07 67.86 89.34 93.23
Corn-min 83.00 69.08 83.53 90.36
Corn 84.04 22.54 61.03 84.51
Grass/Pasture 96.08 85.02 91.47 96.54
Grass/Trees 98.93 88.43 95.13 97.87
Grass/Pasture-mowed 68.00 24.00 96.00 92.00
Hay-windrowed 100.00 98.37 99.07 99.77
Oats 22.22 0.00 0.00 16.67
Soybeans-notill 83.64 72.88 87.53 89.93
Soybeans-min 90.04 95.20 94.79 98.14
Soybean-clean 83.86 44.09 83.49 89.68
Wheat 98.91 75.54 91.85 94.02
Woods 98.42 96.49 98.77 98.77
Building-Grass-Trees 83.29 67.72 87.61 93.95
Stone-steel Towers 100.00 50.60 93.98 97.59
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rion Okavango Delta dataset, the optimal sparsity level is lower
OA  89.89 79.33 90.77 94.81
Kappa � 0.885 0.759 0.894 0.941

ifiers generally have a positive relationship with K0 and T0, which
uggests that a larger window size associated with a higher sparsity
evel can lead to a higher classification accuracy. Finally, the opti-

al  parameter settings of the sparsity level and the size of window
re K0 = 50 and T0 = 7×7, respectively.

Using these parameter settings, we finally classified the AVIRIS
mage with the four specified fidelity measures. Fig. 3(a) and
ig. 3(b) show the spatial distributions of the training and test sam-
les, respectively, and the SRC-classified maps with the ESD, SAS,
SIM, and SID measures are shown in Fig. 3(c)–(f), respectively. A
isual comparison shows that SID achieves the best performance,
nd most of the land-cover types are correctly classified. In contrast,
he classification map  obtained with SAS generates the lowest accu-
acy, because it exhibits a lot of salt and pepper noise in several of
he land-cover types, such as soybean and wheat.
These visual analyses are quantitatively illustrated by the confu-
ion matrix in Table 2. A direct comparison of the results shows that
ID achieves the best performance in terms of the OA and kappa
g window sizes with the Hyperion Okavango Delta dataset.

coefficient indictors, with the highest values of 94.8% and 0.941,
respectively, which are much higher than the values achieved by
ESD, with 89.9% and 0.885. The improvements of OA and kappa
are about 5% and 0.06, respectively. The second best results are
obtained by SSIM, and SAS obtains the lowest accuracy, which is
consistent with the results shown in Fig. 3. We  can also see that
the classification accuracy of oats is low for all the methods. This is
mainly due to the small number of training samples for this class,
and the high degree of mixing of the classes’ signatures in this
image.

3.1.2. Dataset 2: Hyperion
The second HSI used in our experiments was from the Okavango

Delta, Botswana, acquired by the Hyperion sensor onboard NASA’s
Earth Observing-1 (EO-1) satellite on May  31, 2001, which can
be freely download from website http://www.ehu.eus/ccwintco/
index.php?title=Hyperspectral Remote Sensing Scenes. The Hype-
rion sensor acquires data at a 30-m pixel resolution over a 7.7 km
strip in 242 bands covering the 400–2500 nm portion of the spec-
trum in 10 nm windows. This dataset from north-west Botswana
comprises permanent marshlands and seasonally flooded plains,
and consist of observations from 14 identified classes representing
the different land-cover types (Ham et al., 2005). In our experiment,
the uncalibrated and noisy bands covering the water absorption
features were first removed, and the remaining 145 bands were
used in the experiment. A total of 3248 labeled pixels were avail-
able, from which we randomly chose 10% as the training samples
and the rest were used for the testing. Details about the training
and test sets are provided in Table 3.

In order to optimize the two  important parameters, i.e., spar-
sity level K0 and window size T0, we again plotted the relationships
between their OAs and parameters K0 and T0 for the different meth-
ods, which are shown in Figs. 4 and 5, respectively.

It can be seen that the corresponding best parameters for K0 and
T0 are 20 and 11 × 11, respectively, for this dataset. For the Hype-
than that for the AVIRIS Indian Pines dataset. This is because most
of the data are homogeneous areas, which contain fewer mixed
signatures. Therefore, for most of the test pixels, selecting a small
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Fig. 5. Comparison of the OAs of the different methods with varying sparsity levels with the Hyperion Okavango Delta dataset.

Table 3
The 14 ground-truth classes of the Hyperion Okavango Delta dataset, showing the
numbers of training and test sets for each class. The class names are water [1], hippo
grass [2], floodplain grass 1 [3], floodplain grass 2 [4], reeds [5], riparian [6], fire scar
[7],  island interior [8], acacia woodland [9], acacia shrubland [10], acacia grassland
[11], short mopane [12], mixed mopane [13], and exposed soils [14].

Class No. 1 2 3 4 5 6 7
Training 27 11 26 22 27 27 26
Testing 243 90 225 193 242 242 233
Classes No. 8 9 10 11 12 13 14
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s
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Table 4
Comparison of the classification accuracies of the four different measures for the
Hyperion Okavango Delta dataset.

Class ESD (%) SAS (%) SSIM (%) SID(%)

1 100.0 100.0 100.0 100.0
2  97.78 100.0 100.0 100.0
3  99.11 99.56 99.11 100.0
4  100.0 100.0 100.0 100.0
5  69.83 97.11 85.95 94.63
6  88.43 87.60 84.30 90.91
7  100.0 100.0 100.0 100.0
8  100.0 100.0 100.0 100.0
9  98.23 96.81 90.43 97.52
10  99.55 99.10 99.10 98.65
11  99.27 100.0 100.0 100.0
12  98.15 95.68 98.77 96.30
13  97.51 95.85 95.85 98.34
14  90.59 98.82 97.65 98.82

a low value of K , while the JGSRC method continuously improves
Training 21 22 25 31 19 27 10
Testing 182 282 223 274 162 241 85

umber of atoms is adequate to reconstruct the test pixels. More-
ver, it can be inferred from Fig. 5 that all the methods except for
he ESD-based classifier exhibit a positive relationship with the spa-
ial window size, indicating that the nonlinear spectral similarity

easures have more powerful discriminative abilities, and hence
 larger window size can lead to a higher classification accuracy.

The quantitative evaluation results, including the classification
ccuracy for every class, the OA, and the kappa coefficient, are
hown in Table 4. Here, it can be seen that the SID-based tech-
ique shows the best performance, with the highest OA and kappa
oefficient of 98.08% and 0.98, respectively. We  can also see that
he SAS-, SSIM-, and SID-based models significantly outperform
he ESD-based model, implying that ESD is not the best choice of
imilarity measure in terms of classification accuracy.

.2. Testing the improvements of the proposed algorithm

In this section, we aim to demonstrate whether or not the pro-
osed JGSRC algorithm outperforms its counterparts developed in
ther studies, i.e., SSIM-based JSRC (Wu et al., 2015) and SID-based

SRC (Zhang et al., 2014a). Note that SAS- and ESD- based SRC mod-
ls were not included in the comparison, because a SAS-based SRC
ethod is not yet available in the literature, while ESD-based SRC
s the same as the GSRC model shown in Eq. (14). Two issues are
ddressed. One issue is whether or not the proposed algorithm con-
istently outperforms the other methods. To this aim, we varied the
OA  95.54 97.70 97.29 98.08
Kappa�  0.952 0.975 0.971 0.980

parameters of window size and sparsity level to obtain their corre-
sponding optimum classification accuracies for the comparison.

Table 5 reports the comparison between the JGSRC model and
the SSIM- and SID-based JSRC models (Wu  et al., 2015; Zhang et al.,
2014a) for the AVIRIS Indian Pines dataset. It can be seen that the
proposed JGSRC generally outperforms its counterparts when the
sparsity level is greater than 30. This is because JGSRC requires
more independent atoms to represent the test pixel in the non-
linear measuring space. Closer observation shows that the JGSRC
method obtains much better gains than the other methods with the
increase of K0. For example, with a fixed window size of 7 × 7, the
gains of the JGSRC method for the SSIM and SID measures are 14.3%
and 18.1%, respectively, when the sparsity level K0 is varied from 5
to 50. In contrast, the gains of the counterpart methods are 13.2%
and −2.14%, respectively. This experiment implies that the accura-
cies of the other algorithms generally reach saturation point with
0
with the increase of K0, which is due to its ability to select inde-
pendent atoms with the gradient descent algorithm. Moreover, the
steps of projecting the remaining dictionary atoms and renormal-
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Table 5
Comparison of the JGSRC model with the SSIM- and SID-based JSRC models, respectively, for the AVIRIS Indian Pines dataset.

3 × 3 K0

SSIM (%) SID (%)

5 10 20 30 40 50 5 10 20 30 40 50

Others 82.37 86.09 87.77 88.56 87.91 85.99 88.18 88.18 88.10 87.71 87.30 86.68
Proposed 79.14 83.23 85.50 85.79 85.68 85.44 86.06 89.33 91.35 91.26 91.05 90.19
5  × 5 5 10 20 30 40 50 5 10 20 30 40 50
Others 88.51 88.47 88.22 87.11 86.96 85.84 74.42 82.65 85.14 86.66 89.75 91.28
Proposed 74.81 82.23 88.15 90.32 90.49 90.90 72.21 80.84 87.86 91.08 92.84 94.16
7  × 7 5 10 20 30 40 50 5 10 20 30 40 50
Others 77.84 85.16 87.52 89.02 91.58 91.22 92.85 92.81 92.61 91.83 91.29 90.44
Proposed 77.77 83.90 88.66 90.36 90.77 92.09 77.28 84.41 90.84 93.33 94.91 95.37
9  × 9 5 10 20 30 40 50 5 10 20 30 40 50
Others 74.42 82.65 85.14 86.66 89.75 90.90 88.51 88.47 88.22 87.11 86.96 85.84
Proposed 74.81 82.23 88.15 90.32 90.49 91.28 72.21 80.84 87.86 91.03 92.84 94.16
11  × 11 5 10 20 30 40 50 5 10 20 30 40 50
Others 82.84 82.78 82.48 81.19 81.15 80.28 70.85 79.25 82.50 84 87.06 88.72
Proposed 72.22 79.53 86.80 89.17 89.98 90.3

Table 6
The average Z-values for the proposed method and the other classifiers for both
experimental datasets.

AVIRIS dataset (%) Hyperion dataset (%)

SSIM SID SSIM SID

Others 91.22 93.66 96.81 96.30
Proposed 92.09 95.37 98.46 99.62
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Gain 0.87 1.71 1.65 3.32
Z-  value 1.32 2.16 2.27 3.58

zing them in the JGSRC algorithm play a crucial role in the process
f atom selection.

Another issue is whether or not the proposed algorithm signif-
cantly outperforms its counterparts. To this end, we  utilized the
onparametric McNemar’s test (Foody, 2004) to assess the statisti-
al significance in accuracy improvement. This test is based on the
tandardized Z-test statistic:

 = c12−c21√
c12+c21

(16)

here c12 denotes the number of samples classified correctly and
ncorrectly by the proposed model and the other models, respec-
ively. Accordingly, c12 and c21 are the counts of the classified
amples on which the considered first and second models disagree.

 lower prediction error (higher accuracy) is identified by the sign
f Z. A positive sign indicates that the results from c12 are more
ccurate than the results from model c21. At the commonly used 5%
evel of significance, the difference in the accuracies between the
rst and second models can be considered to be statistically signifi-
ant if Z > 1.96. This experiment allowed us determine whether the
ifferences in classification accuracy were significant.

The average Z-test values for the proposed method and the other
lassifiers with both experimental datasets are shown in Table 6.
rom Table 6, it is clear that, in most cases, the proposed method
erforms significantly better than the other methods in terms of
lassification accuracy.

. Conclusions

This paper has presented a general SRC model for HSI classifi-
ation to accommodate various spectral similarity measures. Two

eal HSI images were used to demonstrate the effectiveness of the
roposed model, and the experiments confirmed that the general-

zed model can deal with various spectral similarity measures, and
he classification accuracies of both the SSIM- and SID-based SRC
1 66.23 75.73 83.99 88.01 90.12 91.60

were consistently better than that of the ESD-based SRC. However,
the SAS-based SRC exhibited an unstable performance with the test
datasets, because it is prone to misclassification in the case of con-
taining a mixture of the classes’ signatures. The experiments also
showed that the operation of projecting the remaining dictionary
atoms can have a positive effect on the HSI classification and can
significantly improve the classification accuracy in most cases.
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