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Abstract—Most earth observation satellites, such as IKONOS,
QuickBird, GeoEye, and WorldView-2, provide a high spatial
resolution (HR) panchromatic (Pan) image and a multispectral
(MS) image at a lower spatial resolution (LR). Image fusion is an
effective way to acquire the HR MS images that are widely used in
various applications. In this paper, we propose an online coupled
dictionary learning (OCDL) approach for image fusion, in which a
superposition strategy is applied to construct the coupled dictio-
naries. The constructed coupled dictionaries are further developed
via an iterative update to ensure that theHRMS image patch can be
almost identically reconstructed by multiplying the HR dictionary
and the sparse coefficient vector, which is solved by sparsely
representing its counterpart LR MS image patch over the LR
dictionary. The fusion results from IKONOS and WorldView-2
data show that the proposed fusion method is competitive or even
superior to the other state-of-the-art fusion methods.

Index Terms—Coupled dictionary, image fusion, remote sensing
imagery, sparse representation (SR).

I. INTRODUCTION

A S A POWERFUL quality improvement technique, data
fusion has been gradually improved in recent years. In [1],

data fusion is defined as a formal framework which includes
expressed means and tools for combining and utilizing data
originating from different sources. Accounting for most of the
data fusion studies, image fusion is the integration of different
information sources by taking advantage of the complementary
spatial/spectral resolution characteristics of remote sensing im-
agery. For most earth observation satellites, such as IKONOS,
QuickBird, GeoEye, and WorldView-2, the data provided are
composed of a high spatial resolution (HR) panchromatic (Pan)
image and a low spatial resolution (LR) multispectral (MS)
image. The process of acquiring an HR MS image by blending
an HR Pan image and its corresponding LRMS image is referred
to as “image pan-sharpening.” In practice, images with high
spectral and spatial resolutions are useful in an increasing

number of applications, such as feature detection [2], segmenta-
tion/classification [3], [4], and so on.

During the past two decades, a large amount of image fusion
methods have been developed [5]–[7]. In [8] and [9], the
fusion methods are grouped into three categories: 1) projection-
substitution methods, 2) relative spectral contribution methods,
and 3) methods that belong to the Amélioration de la Résolution
Spatiale par Injection de Structures (ARSIS) concept. Projection-
substitution methods, which transform the MS image into an-
other space and exchange one structural component with the Pan
image, are widely used and have been integrated into some
commercial software packages. Among these methods, the most
popular are intensity hue saturation (IHS) transformation [10],
[11], principal component analysis (PCA) [12], and the Gram-
Schmidt transform-based methods [13]. The relative spectral
contribution methods are based on the assumption that the LR
Pan image can be written as a linear combination of the original
MS image, of which the Brovey transform [14] and the
[15] method are two successful application instances. These two
types of methods can produce a noticeable increase in visual
impression with a good geometrical quality, but a major draw-
back comes from the nonignorable spectral distortion. As for the
ARSIS concept-based methods, it is assumed that the missing
spatial information in the LRMS image can be inferred from the
high frequencies of the HR Pan image. To be specific, details
extracted from the HR Pan image by certain multi-scale or multi-
resolution decomposition algorithms are injected into the LRMS
image [8], [16]. The significant advantage of theARSIS concept-
based methods is the preservation of the spectral content of the
originalMS image. The à trous wavelet pan-sharpening (AWLP)
[17] method and the context-based decision (CBD) [18] method
are two effective ARSIS concept-based methods, which both
lead to good fusion results.

Recently, a new image fusion branch, which transfers the
image fusion problem into an image-related inverse problem
resolved with the help of sparse representation (SR) and com-
pressed sensing (CS) theory, has emerged and shown impressive
fusion performances. Li and Yang [19] were the first to perform
the remote sensing image fusion task from the perspective of CS
[20] theory. Subsequently, Jiang et al. [21] extended the above
model by learning a joint dictionary from the LR MS image and
Pan image to make it more practical. Nevertheless, these CS-
based methods require a large collection of images to train the
dictionary,which is computationally expensive. To dealwith this
problem, Li et al. [22] developed a restoration-based remote
sensing image fusion method with sparsity regularization, in
which the dictionary is adaptively learned with the source image.
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With an effective and robust performance, the method still needs
to assume a spectral composition model, which is a little com-
plicated to implement. In [23], Zhu and Bamler proposed an
image fusion method named sparse fusion of images (SparseFI)
which explores the same sparse coefficient vector of the corre-
sponding HR/LR MS image patches over the coupled dictionar-
ies, which are offline constructed from the Pan image and its
down-sampledLRversion.Due to its ease of implementation and
the lack of requirement for external image data, SparseFI has
been considered as a promising approach with a broader appli-
cation range. Recently, a two-step sparse coding strategy for the
pan-sharpening of remote sensing images was proposed in [24]
on the basis of the SparseFI method.

In this paper, we propose an online coupled dictionary learn-
ing (OCDL) approach for image fusion, in which we make full
use of the available LR MS image and the HR Pan image to
decrease the spectral distortion and preserve the spatial informa-
tion of the LR MS image. In the proposed OCDL method, a
superposition strategy is adopted to produce two intermediate
images for the coupled dictionary construction for each band. In
order to ensure that the HR MS image patch can be almost
identically reconstructed by multiplying the HR dictionary and
the same sparse coefficient vector, which is solved by sparsely
representing its counterpart LR MS image patch over the LR
dictionary, an iterative update method is utilized to update the
coupled dictionaries, which can be referred to as an online
dictionary learning process. The theoretical analyses and experi-
mental results in this paper indicate that the proposedmethod can
produce competitive fusion results, even if the Pan image has a
low correlation with some of the MS bands.

The rest of the paper is structured as follows. Section II briefly
describes SR in image processing and the coupled dictionary
model for image fusion. Thereafter, the scheme of the proposed
algorithm is reported in Section III. In Section IV, experiments
with two IKONOSdata sets and oneWorldView-2 data set verify
the effectiveness of the proposed method, with respect to the
visual, spatial, and spectral quality. Finally, the conclusions are
drawn in Section V.

II. RELATED WORKS

A. SR in Image Processing

Sparsity has recently been the subject of intensive research,
and the field of image processing has benefitted a lot from the
progress in both theory and practice [25], [26]. In the image
processing approach, each signal R lexicographically
stacking the pixels can be sparsely represented by
a suitable overcomplete dictionary R [27], each
column of which corresponds to a possible image patch (also
lexicographically stacking the pixel values in this patch as a
vector). That is to say, signal can be represented as �,
which simultaneously assumes the sparsity of the coefficient
vector �. This problem can be formulated as

� �

where � denotes the number of nonzero components in �.

This optimization problem is NP-hard. It has been shown that
the optimization problem can be converted to an -norm mini-
mization problem if the desired coefficient � is sufficiently
sparse [28], which converts (1) to

� �

A large number of solution algorithms have been developed to
solve the -norm optimization problem [29], [30], with one of
the classic algorithms being the LASSO algorithm [30].

B. The Coupled Dictionary Model and Its Application
in Image Fusion

The coupled dictionarymodel was designed to solve the cross-
style image synthesis problem [31], in which each style for the
scene can be mutually transferred by learning the underlying
mapping from the example image pairs. Suppose that we have
some example image pairs from the coupled feature spaces. For
convenience, we assume that the images in one space follow the
style , and the images in the other space follow style .
The image cross-style synthesis problem can then be formulated
as follows: recover the image in style when its corresponding
description in style is given.

The working mechanism of this model is that there is a
corresponding relationship between the counterpart atoms in
the coupled dictionaries, which leads to a mapping function
between the sparse coefficient vectors of the image patch pairs in
the coupled feature spaces. Clearly, the coupled dictionaries play
an important role in this model. In general, the coupled dictio-
naries are simply generated by randomly sampling raw patches
from the training image pairs of the same scene in the coupled
spaces, or learned from the above raw patch dictionaries. Once
the coupled dictionaries are constructed, each patch of style is
sparsely represented over the dictionary in the space . The
commonly used and effective mapping function refers to the
assumption that the sparse coefficient vectors in different styles
should be the same, with respect to the delicate coupled dictio-
nary construction [22], [23], [32]. Therefore, the associated patch
of style can be reconstructed with the same sparse coefficient
vector and the dictionary in the space .

Image resolution enhancement is one of the classic cross-style
image synthesis problems, where the coupled dictionaries refer
to coupled spaces: the high- and low-resolution signal spaces in
the patch-based SR [32]. Image fusion is a common method of
image resolution enhancement, and the coupled dictionary
model can be used to solve this problem. The SparseFI [23]
method has recently been proposed as an application of the
coupled dictionary model in image fusion. Since an HR Pan
image and its down-sampled LR version can be directly
utilized, we are able to directly construct the coupled dictionaries
without an extra image data set. In this way, in the SparseFI
method, the coupled dictionaries, which consist of an LR dictio-
nary and an HR dictionary , are directly constructed from
the Pan image and its down-sampled LR version. To be specific,
we down-sample the HR Pan image to the same scale as the LR
MS image by using bicubic interpolation, and we then get an LR
Pan image. The LR dictionary is generated by sampling
raw patches from the LR Pan image with overlapping areas.
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Likewise, theHRdictionary is generated by tiling theHRPan
image into patches that are times the size of the LR Pan image
patches, so that each HR patch corresponds to an LR patch.
However, with a small amount of data, a dictionary constructed
directly from the Pan image cannot meet the requirement that the
dictionary should be overcomplete to ensure a good SR result.
The above limitation can be alleviated as follows. First, the Pan
image covers the same scene as the LRMS image, so that the Pan
image will exhibit a very high similarity to the MS image in
geometric structure. Moreover, the range of the wavelength
spectrum of the Pan modality is usually overlapped or partly
overlapped by each of theMS bands. As a result, the Pan image is
highly correlated with each of the MS bands, and a dictionary
atom generated from the Pan image will be highly relevant to the
corresponding MS image patch. Based on SR theory, a sparse
solution can be obtainedwhen the atom in the dictionary is highly
relevant to the signal to be represented.

In the image fusion application, the LR MS image can be
modeled as the degraded version of the unknown HRMS image

, which can be formulated as , where
represents the degradation process and is the noise. As we
stated before, the HR image patches can be sparsely repre-
sented by a suitable overcomplete HR dictionary

� � R �

Therefore, the corresponding LR image patch can be ex-
pressed as

�

As the atoms in the two coupled dictionaries are in one-to-one
correspondence, and the LR atoms from the LR dictionary are
subject to the same degradation process as the LR MS image
patches, from the HR style to LR style, we can obtain the
following relationship:

Taking (4) and (5) into consideration, we obtain
� . Therefore, based on (3), it is reasonable, to a

certain extent, to assume that the sparse coefficient vectors
between the low- and high-resolution patch pair, with respect
to their dictionaries, are the same in the image fusion application.

In the SparseFI method, the coupled dictionaries are the same
for each LR MS band pan-sharpening process. In the sparse
coefficient estimation stage, each one of the LR MS image
patches is sparsely represented by the LR dictionary , and
the HR MS image patch can be reconstructed with the same
sparse coefficient vector and the HR dictionary . After all the
HR MS image patches are reconstructed, the HR MS image is
obtained by averaging the overlapping image patches.

III. THE OCDL APPROACH FOR IMAGE FUSION

In this section, we propose an OCDL approach for image
fusion. The concept diagram of the proposed method is set out in

Fig. 1. Taking the th LRMS band as an example, we introduce
the proposedmethod as follows.As shown in Fig. 1,we construct
an intermediate image pair, which is composed of an HR
intermediate image and its LR version. The former HR image
is constructed by the superposition of the HR Pan image and the
HR MS band obtained from the last iteration. Meanwhile, the
corresponding LR intermediate image construction is offline,
which directly imposes the LR MS band on the down-sampled
Pan image. Iteration processing is utilized in the proposed
approach, and it is believed that the MS information can be
fully enhanced in the coupled dictionary reconstruction process,
which makes the dictionary more specific and suitable for the LR
MS image sharpening task.

Let and denote the th band of the LR
MS image and the HR fused MS image, respectively, where
stands for the number of bands in the MS image. The Pan image
with a resolution times higher than the LR MS image is
represented as . For most very high-resolution satellite sensor
systems, e.g., IKONOS and QuickBird, the value of the scale
ratio is 4. The proposed OCDL method for image fusion
consists of two steps: 1) OCDL and 2) image fusion with the
online coupled dictionary.

A. Online Coupled Dictionary Learning

The construction of the coupled dictionaries in the coupled
dictionary model is of vital importance. Although the coupled
dictionaries generated directly from the Pan image and its down-
sampled version can be used for image fusion, the available MS
image information is ignored in the dictionary construction stage.
In view of this, we have designed a superposition strategy to
construct the coupled dictionaries. For the th MS band, the LR
intermediate image is obtained by

where is the LR Pan image, which is obtained by down-
sampling the HR Pan image to the same resolution as the LR
MS image . represents the superposition operation of the
two images. Suppose that there is an HR MS image , then,

Fig. 1. Proposed OCDL method for image fusion.
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similarly, the HR intermediate image for the th band can be
obtained by

After we have obtained the two intermediate images, the
coupled dictionaries for the th band are constructed by sampling
raw patches from the LR and HR intermediate images, respec-
tively. In order to match the corresponding relationship of the
atoms in the coupled dictionaries, the proportional relation of the
patch size and the step size between the HR intermediate image
and the LR intermediate image should be consistent with the
scale ratio .

Unfortunately, the HR MS image is unavailable. To deal
with this problem, the initial estimation of is obtained by
the interpolation of the LRMS image with bicubic interpolation.
However, the integration of the LR MS image destroys the
mapping function between the coupled dictionaries, which
should be constructed from the corresponding HR/LR image
pair. In order to achieve the goal that the SR of the LRMS image
patch, in terms of the LR dictionary, can effectively reconstruct
its underlying HR MS image patch, with respect to the HR
dictionary, an iterative update approach is utilized, where the
fusion result from the last iteration is used to construct for
the next iteration. Fig. 2 provides an example of some atoms of
the HR dictionary of the initial and final iterations. It can be
seen that the image patch contrast is greatly enhanced, and the
detail information is increased in the final HR dictionary, com-
pared to the initial HR dictionary.

The success of the proposed OCDL method is mainly due to
the fact that the superposition strategy increases the correlation
between the LR MS image and the image used for dictionary
construction, when compared with the processing strategy of the
SparseFI [23] method. That is to say, the dictionary atoms
generated from the intermediate image are more relevant to the
corresponding MS image patches than those generated from the
original Pan image directly. According to SR theory, a better SR
result tends to be obtained when the dictionary atoms are more
relevant [25] to the signal to be represented. In view of this, the
HR MS image patches reconstructed by multiplying the HR
dictionary with the associated sparse coefficient vectors benefit
from the excellent LR SR performance. Due to the integration of

the MS image in the dictionary construction, the proposed
method relieves the fusion process from the bottleneck of the
Pan image and leads to wider application possibilities.

B. Image Fusion With the Online Coupled Dictionary

In this stage, we attempt to infer the HR patch with each LR
patch from the input. Let denote the th patch of

, where is a matrix that extracts the th block from the
image and represents the reconstructed HR image patch. For
each patch , the sparse coefficient vector� , with respect to
the LR dictionary , is estimated as follows:

� �

where the parameter restricts the reconstruction error.
In the proposed image fusion method, we also assume that the

sparse coefficient vectors between the low- and high-resolution
patch pair, with respect to their dictionaries, are the same. The
HR image patches can be reconstructed by

�

After all the optimal sparse coefficients of the patches are
obtained, the th band of the HR MS image can be recon-
structed by the following formulation:

�

In the proposed method, a threshold on the residual error
between the estimated fusion images in two consecutive itera-
tions is utilized as the stopping criterion. The proposed OCDL
approach is summarized in Algorithm 1. With the following
processing scheme, all the LR MS bands can be sharpened.

IV. EXPERIMENTAL RESULTS AND ANALYSES

To demonstrate the effectiveness of the proposed OCDL
method, three simulated groups of experiments were carried out
with two kinds of satellite sensor data, i.e., IKONOS and
WorldView-2. The spectral ranges of the IKONOS and
WorldView-2 data are shown in Fig. 3.

Fig. 2. Some atomsof (a) and (b) , which correspond to theHRdictionary in thefirst and last iterations, respectively. In this example, the patches are
of size . (a) Initial iteration. (b) Final iteration.
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(1) The IKONOS data set is from Hubei province, China, and
was obtained by IKONOS-2 in 2009. It is composed of four MS
bands spanning the visible and near-infrared (NIR)wavelengths:
blue (450–530 nm), green (520–610 nm), red (640–720 nm), and
NIR (770–880 nm), and a corresponding Pan bandwith a broader
range (450–900 nm). All the data had been radiometrically
calibrated from digital counts, orthorectified, i.e., resampled to
uniform ground resolutions of 4 and 1 m for MS and Pan,
respectively, and packed in 11-bit bytes. Two IKONOS scenes
with significantly different land-cover types (i.e., one mainly
containing buildings and the other covering a bare area) were
utilized for the two experiments.

(2) The WorldView-2 data set is from an urban area of Rio de
Janeiro, Brazil, and was provided by DigitalGlobe for the IEEE-
IGARSS 2011 Data Fusion Contest. The image consists of one
Pan and eight MS bands with 0.5 m and 2 m spatial resolutions,
respectively. The spectral ranges of the MS bands span from the
visible to the NIR, and include coastal (400–450 nm), blue (450–
510 nm), green (510–580 nm), yellow (585–625 nm), red (630–
690 nm), red edge (705–745 nm), near-infrared 1 (770–895 nm),
and near-infrared 2 (860–1040 nm). The spectral range of the Pan
image covers the interval of 450–800 nm.

Algorithm 1 Online coupled dictionary learning (OCDL) ap-
proach for image fusion, taking the th band as an example

Input: the Pan image and the th LR MS band

Initialization: Initialize , and

1) Down-sample the panchromatic image to the resolu-
tion of the multispectral image and acquire the LR intermediate
image.

2) Interpolate themultispectral image to the resolution of
the panchromatic image and acquire the initial HR intermediate
image.

3) Set the threshold on the residual error between the
estimated fusion images in two consecutive iterations .

While >

1) Dictionary construction: build the LR dictionary
from , and the HR dictionary from , respectively.

2) Sparse coding: compute the representation vector�
via (8) for each patch by approximating the solution of (8).

3) Reconstruct the th band of the HR multispectral
image by (10).

4) Update the HR intermediate image
.

End While

Output: The th HR MS band .

In this study, three independent simulated image experiments
were carried out, in which the original Pan image and MS image
were spatially down-sampled by using bicubic interpolationwith
a factor of , and image fusion was then conducted with the
down-sampled Pan image and the MS image. According to the
Wald’s protocol that any synthetic image should be as identical as
possible to the image that thecorrespondingsensorwouldobserve
with the highest spatial resolution [33], we compared the fused
HRMS imageswith the original HRMS image, which is referred
to as the reference. In the experiments, five typical evaluation
metrics were adopted. The correlation coefficient (CC) [34]

Fig. 3. Spectral ranges of the IKONOS and WorldView-2 data.

Fig. 4. Simulated image experiments: (a) original HR MS image (RGB,
, 4 m); (b) GS; (c) AIHS; (d) AWLP; (e) CBD; (f) CSIF; (g) IFLD;

(h) SparseFI; and (i) OCDL.

TABLE I
TIME COSTS FOR DIFFERENT IMAGE FUSION METHODS
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and root-mean-square error (RMSE) were calculated for each
band between the fused MS images and the reference original
MS image. Erreur relative globale adimensionnelle de synthèse
(ERGAS) [33] and Q4 [35], which are two comprehensive
evaluation indexes, provide unique measures of the fusion
performance for all the MS bands. Furthermore, the spectral
angle mapper (SAM) [34], [35] index was also considered to
measure the spectral distortion. Smaller values of RMSE, SAM,
and ERGAS tend to be achieved by a better fusion result, as do
larger CC and Q4 values. It should be noted that the computation
of the Q4 index was performed on nonoverlapping
blocks, as suggested in [36].

The proposed OCDL method was compared with four com-
monly used image fusion methods, namely GS [13], adaptive
IHS (AIHS) [11], the AWLPmethod [17], the CBDmethod [18],
and three state-of-the-art sparsity regularization-based methods,
CS-based image fusion (CSIF) [19], image fusion via SRs over
learned dictionaries (IFLD) [22], and SparseFI [23].

A. Fusion Results With the IKONOS Data

The original IKONOSPan image and theMS image in the two
data sets were spatially down-sampled by using bicubic interpo-
lationwith a factor of 4 to yield a 4m spatial resolution Pan image
and a 16 m spatial resolution MS image, respectively. Image
fusion was then conducted with the down-sampled Pan image
and the MS image. In this study, we used a simulated IKONOS
LRMS image with the size of , and the corresponding
Pan image sized . Two free parameters, the patch size
and the overlap area size of the SparseFI method and the
proposed OCDL method, were utilized for the patch-based

processing. The optimal size of the image patch in the LR MS
image was , with an overlapping area size of pixels in
the SparseFI and the proposed method. In the dictionary con-
struction stage, the same patch size and overlapping area size
were adopted as in the SR stage, and the dictionary size was

, with the LR MS image sized . In this
paper, LASSO was adopted to pursue the sparse coefficient
vector, and the parameter in (5) was set to 100, where most
of the indexes reached their best values. The threshold was
empirically set to . The impacts of the patch size and
parameter in the proposed method are discussed later on in
this section.

The GS algorithm was implemented in ENVI 4.7 software in
mode 1. Two levels of decomposition were utilized for the à
trous wavelet transform used for the AWLP and CBD methods.
As for the CSIF method, a dictionary with the size of

was randomly sampled from the 10HRMS images
that have the same spatial resolution as the Pan image. In the
IFLD method, the two coupled dictionaries, and ,
were trained to 512 atoms from 50 000 image patch pairs
randomly sampled from the LR MS and Pan images.

Fig. 4 shows theHRMS fusion results of the differentmethods
with the first IKONOS data set. By visually comparing the fusion
images with the original MS image, it can be seen that all the
methods can effectively pan-sharpen the LRMS image.We next
discuss the fusion result in both the spectral and spatial views in
detail. Among the different fusion results, the most serious
spectral distortion exists in the fusion result of the GS method,
due to the modification of the low frequencies of the original MS
image. The results of the CSIF method and the IFLD method
exhibit rich, detailed spatial information; however, there are
artifacts in the fusion results, and the reason for this can mainly
be attributed to the fact that the Pan image imposes a strong
constraint over the reconstruction of the HR MS image. The
result of the CSIF method also shows spectral distortion to a
certain degree. The AIHS method adopting image-adaptive
coefficients for IHS can obtain a more accurate spectral resolu-
tion. It can be clearly seen that the AWLP method and the
proposed method have more advantages than the other methods
inmaintaining the spectral information of the originalMS image.
It can also be seen that the fused image with the SparseFI method

TABLE II
QUANTITATIVE ASSESSMENT RESULTS OF THE SIMULATED EXPERIMENT SHOWN IN FIG. 4

B, G, R, and NIR represent the results of the blue, green, red, and NIR bands, respectively, and Avg is the average result of the results of R, G, B, and NIR.

TABLE III
QUANTITATIVE ASSESSMENT RESULTS OF THE PROPOSED METHOD WITH DIFFERENT

PATCH SIZES, USING THE SAME DATA AS FIG. 4. IS SET TO 100

GUO et al.: OCDL APPROACH FOR REMOTE SENSING IMAGE FUSION 1289



is blurred to some degree, as with the AWLP method. To
facilitate a comparison, a detailed region is shown in the top-
left corner of each image. Here, it can be observed that the fusion
result of the proposed OCDLmethod is the closest to the original
image. Since the sparsity regularization-based fusion methods
are usually time-consuming due to the large computational
complexity of the -norm minimization problem, the running
times of all the methods compared in the experimental part with
the first IKONOS data set are provided in Table I. To sum up, the
proposed OCDL method not only provides high-quality spatial
details but also decreases the spectral distortion to a great extent,
within an acceptable time frame.

The quantitative assessment indexes for the fusion results are
calculated with the original HRMS image, as shown in Table II.
The best results for each quality index are labeled in bold, and the
second-best results for each quality index are underlined. The
EXP entry represents the plain (bicubic) resampling of the MS
data set at the scale of the Pan [18]. Here, it can be seen that the

proposed method acquires the best evaluation results for all the
bands, in terms of both CC and RMSE, i.e., the fusion result of
the proposed method is the most correlated with the original MS
image and has the least radiometric distortion. The second-best
SAM value is obtained by the proposed method, which implies
that the proposed method can effectively preserve the spectral
information in the fusion process. For the ERGAS index and Q4
index, the proposed method again demonstrates a better perfor-
mance than the other fusion methods, as expected. Overall, the
quantitative assessment results are consistent with the visual
evaluation, and the proposed method achieves the best fusion
result.

The impact of the patch size in the proposed method is
investigated in Table III, in which the overlapping size is set
to 4. It can be observed that the optimal patch size with the
IKONOS data set is , from the perspective of all the
evaluation indexes. With the consideration of the fact that
the time cost increases with the increase in the patch size, we
use in the following experiments.

The impact of parameter in the proposed method is also
investigated in Table IV. Here, it can be seen that all the
indexes share a similar trend with the variation of , and the
best fusion results tend to be achieved when parameter is less
than or equal to 100. Overall, it is shown that the fusion results
of the proposed method are quite robust with regard to
parameter .

Fig. 5 shows theHRMS fusion results of the differentmethods
with the second IKONOS data set in which the sizes of LR MS
image and Pan image are the same as the IKONOS data set one,
and it can be seen that the results are consistent with the first
IKONOS data set. For example, the fused image of the GS
method achieves a good visual impression, despite the loss of the
spectral details in the bare area and some building roofs. It can
also be observed that both AWLP and the proposed OCDL
method perform well, with well-preserved spectral detail infor-
mation. To facilitate a comparison, detailed regions are shown in
the top-left corner of the images. Here, it can be observed that the
fused images of the AWLP method and the SparseFI method are
blurred to some degree. Therefore, it can be concluded that the
proposed OCDL method performs the best with respect to both
the spatial and spectral perspectives. The running times of all the

Fig. 5. Simulated image experiments: (a) original HR MS image (RGB,
, 4 m); (b) GS; (c) AIHS; (d) AWLP; (e) CBD; (f) CSIF; (g) IFLD;

(h) SparseFI; and (i) OCDL.

TABLE V
TIME COSTS FOR DIFFERENT IMAGE FUSIONMETHODS USING THE SAME DATA AS FIG. 5

TABLE IV
QUANTITATIVE ASSESSMENT RESULTS OF THE PROPOSED METHOD WITH (K IS FROM TO 4), USING THE SAME DATA AS FIG. 4
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methods with the second IKONOS data set share a similar trend
with the first IKONOS data set as shown in Table V due to the
same experimental data scale.

Table VI reports the quantitative scores for all themethods. As
with the first data set, the observations for all the indexes show
similar trends. The proposed method achieves the best SAM
index value, which demonstrates the superiority of the proposed
method in preventing spectral distortion. For the Q4 index, the
proposed method is better than the other methods, followed by
the AWLP method and the IFLD method. On the whole, the
proposed method performs better than the other fusion methods
with this IKONOS data set.

B. Image Fusion Results With the WorldView-2 Data

In this section, we describe and analyze the experimental
results with the WorldView-2 satellite data, which provides one
Pan image and eight MS bands. Unlike the IKONOS data, the
spectral range of the Pan image does not cover the whole interval
of all the MS bands. It can be observed from Fig. 3 that the
spectral range of the Pan image is mainly concentrated in the
visible light region, which leads to the low correlations between
the Pan image and those bands with a spectral range beyond the
visible light region. It is demonstrated in the following para-
graphs that this characteristic of the WorldView-2 data leads to
results that are sensitive to the different pan-sharpeningmethods.
The size of the LRMS image in the simulatedWorldView-2 data
set experiments was also , with the corresponding Pan
image sized .

With the aim of reaching the best evaluation values, parameter
in the proposed OCDL method and the SparseFI method was

both set to 100, respectively. The other parameter settings were
set to the same as those for the IKONOS data sets. It should be
noted that we omit the CSIF method and the IFLD method with
the WorldView-2 data, in which the fitting coefficients in the

linear fitting model between the Pan image and theMS bands are
unavailable.

Fig. 6 shows scenes with the 5-3-2 bands as a red-green-blue
composite for the HR MS fusion results of the different fusion
methods with the WorldView-2 data set. Unlike the IKONOS
data, whose Pan image covers the whole interval of all the MS
bands, it can be observed that the GS method introduces more
spectral distortions in this experiment, since the setting that
averages all the MS bands to the LR Pan image will change
the low-frequency components of the original MS image for the
WorldView-2 data set. In addition, it can be seen in Fig. 6 that the
AWLP method and the proposed OCDL method have more
advantages than the other methods in maintaining the spectral
information of the original MS image with these three specific
MS bands, as does the SparseFI method. The running times of all
the methods with the WorldView-2 data set are provided in
Table VII as well. All the methods cost more time than the
IKONOS datasets because of the larger number of spectral
channels, especially the sparsity regularization based fusion
methods.

The visual interpretation can only show the quality of three
bands of the fusion results. We evaluate the fusion results for all
the MS bands via a comprehensive quantitative evaluation, as
shown in Table VIII. Although all the methods show excellent
preservation of the CC values of the original MS bands, the
proposed OCDL method maintains the highest correlation be-
tween the fusion result and the originalMS image. In terms of the
SAM index, AWLP and the proposed OCDL method present
results are remarkably better than the other methods, from the
aspect of spectral information protection. Moreover, the best
performance is also provided by the proposed OCDL method
with the ERGAS index. It is worth mentioning here that almost
all the methods are affected by the characteristics of the World-
View-2 data, in that the Pan image has low correlations with the
last two NIR image bands. The proposed OCDL method shows
significant advantages over the SparseFI method in the last two
NIRMSbands; that is to say that the proposedmethod can ensure
relatively stable fusion results due to the integration of the MS
image information in the dictionary construction stage. Overall,
the proposed method is suitable for the pan-sharpening of
WorldView-2 data and can achieve a good fusion result.

TABLE VI
QUANTITATIVE ASSESSMENT RESULTS OF THE SIMULATED EXPERIMENT SHOWN IN FIG. 5

TABLE VII
TIME COSTS FOR DIFFERENT IMAGE FUSIONMETHODS USING THE SAME DATA AS FIG. 6
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C. Correlation Analysis

In this sub-section, we select the first IKONOS data set and the
WorldView-2 data set to further analyze the effectiveness of the
proposed method. In Figs. 7 and 8, the horizontal axis indicates
the band name, and the vertical axis shows the correspondingCC
between each LR/HR MS band and the LR/HR image for
dictionary construction, respectively. In fact, the image utilized
for the dictionary refers to the intermediate image in the proposed
method and the Pan image in the SparseFI method. It is worth

mentioning that the original HR MS image is available for
calculating the correlation between the original HR MS image
and the HR image used for HR dictionary construction in the
simulated image experiments.

From Fig. 7(a), it can be observed that the LR intermediate
image has a higher correlation with the LR MS image for each
band than the down-sampled Pan image, which corresponds to
the proposed method and the SparseFI method, respectively.
Therefore, the atoms of the dictionary generated from the
intermediate image are more relevant to the MS image patches
than those generated from the Pan image, which leads to a better
SR result. Likewise, the HR intermediate image has a higher

TABLE VIII
QUANTITATIVE ASSESSMENT RESULTS OF THE SIMULATED EXPERIMENT SHOWN IN FIG. 6

Fig. 7. Correlations between theMS bands and the image used for the dictionary
construction, with the IKONOS data. (a) Low resolution. (b) High resolution.

Fig. 6. Simulated image experiments: (a) originalHRMS image (RGB, ,
4 m); (b) GS; (c) AIHS; (d) AWLP; (e) CBD; (f) SparseFI; and (g) OCDL.

Fig. 8. Correlations between theMS bands and the image used for the dictionary
construction, with theWorldView-2 data. (a) Low resolution. (b) High resolution.
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correlationwith the original HRMS image for each band than the
Pan image, as expected. Based on the fusion results in
Section IV-A, we conclude that each fused MS band benefits
from the novel coupled dictionary learning approach.

Fig. 8 depicts the correlations between each LR/HR World-
View-2 image band and the LR/HR image used for the LR/HR
dictionary construction. For the WorldView-2 data, the LR
intermediate image has a higher correlation with the LR MS
image for each band than the down-sampled Pan image, which is
consistent with the IKONOS data. Moreover, it is also noticeable
that the Pan image is highly correlated with the first six MS
bands, whereas it has relatively low correlations with the last two
NIR bands. The proposed method, however, can maintain a high
correlation between the MS image and the intermediate image
used for dictionary construction, even in the circumstance of the
Pan image being poorly correlated with theMS image. This is the
reason why the last two NIR fusion bands improve more than
the other six bands, as shown in the experiment. In conclusion,
the proposed OCDL method shows more advantages than the
other methods in sharpening WorldView-2 data, especially for
the last two NIR image bands.

V. CONCLUSION

In this paper, an OCDL approach is proposed for the pan-
sharpening of a LRMS image. The online coupled dictionaries are
iteratively updated with the fused HR MS image, in which the
atoms of the constructed dictionary are more relevant to the MS
image patches, and lead to a better fusion result. In the proposed
coupled dictionary learning stage, the available Pan image and the
LRMS image are fully utilized to decrease the spectral distortion
and to enhance the spatial information. The proposed method
was compared with other state-of-the-art fusion methods, using
IKONOS image data and WorldView-2 data. Overall, the pro-
posed OCDL method showed satisfactory fusion results, even if
the Pan image had a low correlation with some of the MS bands.
The experimental results confirm the effectiveness of the proposed
method, from both the spatial and spectral perspectives.
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