
Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

A novel co-training approach for urban land cover mapping with unclear
Landsat time series imagery

Ting Hua, Xin Huanga,b,⁎, Jiayi Lia, Lefei Zhangc

a School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, PR China
b State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, PR China
c Computer School, Wuhan University, Wuhan 430072, PR China

A R T I C L E I N F O

Keywords:
Land-cover mapping
Unclear observations
Landsat
Co-training
Collaborative representation classifier
Matrix completion

A B S T R A C T

Landsat time-series (LTS) imagery shows potential for dynamic mapping in urban areas. However, unclear ob-
servations (clouds, cloud shadows, snow/ice, and SLC-off data) in the dataset inevitably restrict the efficacy of
many of the state-of-the-art classifiers. In this work, we present a novel co-training classification approach
consisting of two steps to cope with the unclear observations. Firstly, we develop a method called the MCCR
classifier that deals with the unclear observations in an error-recoverable way. The clear observations are uti-
lized to recover the unclear ones in the training samples by the use of the matrix completion (MC) algorithm, and
the collaborative representation (CR) classifier is exploited to handle unclear observations in the unlabeled data.
Secondly, considering that the random forest (RF) classifier is able to cope with contaminated data in an error-
tolerant way, a co-training approach (CotrRM) based on the RF and MCCR classifiers is also proposed to further
improve the classification efficacy. The CotrRM method is executed by iteratively constructing semi-labeled
training sets based on the crisp and soft predictions of the two individual classifiers on the unlabeled data. To
validate the effectiveness of the proposed MCCR classifier and CotrRM method, LTS imagery of the city of Wuhan
(a metropolitan city of China) from four years (11 images from 2000, 16 images from 2005, 13 images from
2010, and 15 images from 2015) was adopted. The experiments showed that the MCCR classifier performs as
well as the RF classifier for the mapping of urban land cover with contaminated LTS imagery. Moreover, the
proposed CotrRM method has the ability to further improve the classification performance. The proposed ap-
proach can not only work effectively in the classification, but can also recover the unclear observations in the
LTS imagery, courtesy of the MC algorithm. The overall accuracies of the land-cover changes between each two
adjacent periods are all over 85%. Given the effectiveness and flexibility, the proposed method could also be
applied in other unclear data classification.

1. Introduction

Urban areas host more than half of the worlds' population and play a
central role in efforts to mitigate and adapt to the effects of climate and
other ecosystem changes (United Nations, 2014). As human-dominated
habitats, urban areas have developed at an unprecedented rate in recent
decades, especially in developing countries such as China (Long et al.,
2009). Urban land-cover maps are one of the most fundamental datasets
used in many scientific fields, e.g., urban heat island effects (Estoque
and Murayama, 2017), air pollution (Lin et al., 2015), urban ecosystem
service (Haase et al., 2014) and local climate zone (Middel et al., 2014).

Remotely sensed imagery of various spatial resolutions has been
widely used to produce land-cover maps. High resolution (HR) imagery

has the ability to provide fine spatial detail for urban mapping (Huang
et al., 2017). However, the sparse coverage, limited access, and absence
of historical data impede the use of such data (Huang et al., 2014b; Zhu,
2017). Land-cover maps generated from coarse spatial resolution
images, such as Moderate Resolution Imaging Spectroradiometer
(MODIS) and Advanced Very High Resolution Radiometer (AVHRR),
have been reported to show a limited mapping accuracy (Fritz et al.,
2010), especially in urban areas with complex distributions of many
combinations of materials (Chen et al., 2016). Considering the issues of
spatial detail, data availability, and areal coverage, medium resolution
imagery such as Landsat is more appropriate at present for urban land-
cover mapping and change detection. Furthermore, the Landsat satellite
archive has a long and continuous record stretching over 40 years and
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has been open access since 2008, which has resulted in it being widely
used in the monitoring of land-surface dynamics (Gómez et al., 2016).
There have been numerous applications that have adopted Landsat
imagery as the main data source, e.g., forest disturbance and recovery
surveillance (Senf et al., 2015; Grogan et al., 2015; Matthew et al.,
2016; White et al., 2017), agricultural expansion and intensification
(Kontgis et al., 2015; Qin et al., 2015), and impervious surface cover
characterization (Lu et al., 2011; Zhang and Weng, 2016).

Single-date images only reflect static land surfaces, but the multi-
temporal signature extension provides dynamic observations of land
cover. Moreover, it has been verified that using multi-temporal images
as input can help to improve the classification accuracy (Bhandari et al.,
2012), especially for the land-cover types that have similar spectral
characteristics in a single-date image, such as cropland and forest
(Schneider, 2012). Landsat can visit the same location every 16 days.
However, due to the existence of clouds as well as their shadows, the
frequency of clear observations for a specific location is generally
much<16 days. What is worse, the scan-line corrector (SLC) of
Landsat 7 malfunctioned in May 2003, which causes wedge-like data
gaps in the ETM+ scenes (SLC-off data). These unclear observations
(i.e., clouds, cloud shadows, snow/ice, SLC-off data) inevitably influ-
ence the availability of multi-temporal images and their mapping ac-
curacy. In order to address this problem, Grinand et al. (2013) used
images with the lowest cloud cover in the study period to estimate
every-five-year deforestation. The time interval of mapping results
obtained by the use of such an approach is restricted to the frequency of
the clear satellite observations. Zhu and Woodcock (2014) fit a time-
series model by using all the clear observations for each pixel. But this
algorithm requires sufficient clear observations to initialize the model.
Beckschäfer (2017) produced annual best-available-pixel (BAP) com-
posites, e.g., the least cloudy pixels, from various acquisition dates to
cope with the data quality problem, but the experimental results
showed that careful selection of images was mandatory in BAP com-
positing. The previous studies using time-series Landsat imagery are
usually based on clear observations, but in Schneider (2012), where
dense time series Landsat data, regardless of data quality, were stacked
for urban land-cover classification. It was demonstrated that this ap-
proach could achieve a better accuracy than simply discarding the
unclear datasets. In their experiments, the random forest (RF) classifier
was also proved to outperform the maximum likelihood classifier and
support vector machine classifier when handling contaminated Landsat
data. Some other studies (Breiman, 2001; Zhu et al., 2016b) have also
shown that the RF classifier can work effectively, even when the dataset
contains some noise. The RF classifier is an ensemble learning method
that combines K binary CART trees (Classification And Regression
Trees). Each tree is created by selecting a random subset of the features
or predictive variables at each node with replacement and the trees
grow without pruning (Rodriguez-Galiano et al., 2012; Pelletier et al.,
2016). The random and bootstrapped manner enables RF to be a robust
and error-tolerant classifier when unclear observations are included
(Belgiu and Drăguţ, 2016). However, this method neglects the degree of
the reliability between the clear and unclear observations, and may
suffer from the negative effect of the unclear ones (Rodriguez-Galiano
et al., 2012).

Therefore, it is worth investigating new methods that can focus
more on the utilization of both the clear and unclear observations. The
improvement of the usability of unclear observations is proved to be
conducive to the classification procedure (Schneider, 2012). Training
samples from the same class are correlated in both the spectral and
temporal dimensions. Therefore, the matrix, constituted by stacking the
feature vectors of each training sample from the same class, should be
approximately low rank (Chen and Yang, 2014; Cabral et al., 2015).
The clear observations of training samples can then be utilized to re-
cover the unclear ones by the matrix completion (MC) algorithm
(Candès and Recht, 2009; Cai et al., 2010). To avoid the negative im-
pact of unclear observations in the unlabeled data, the collaborative

representation (CR) classifier (Zhang et al., 2012) is an appropriate
method to combine with the MC algorithm since its classification hy-
perplane would not be seriously affected even when only partial ob-
servations are available, inferring the CR classifier has the potential to
flexibly maintain the discriminative ability when discarding the unclear
observations (Li et al., 2014a; Waqas et al., 2013). Therefore, we pro-
pose the MCCR classifier that exploits the merits of both MC and CR to
cope with poor-quality LTS data classification.

In the MCCR classifier, the clear observations are utilized to recover
the unclear ones by the MC algorithm and to then construct the CR
classifier. It should be noted that the error-recoverable manner of the
MCCR classifier is quite different from the error-tolerant way of the RF
classifier. Co-training is a semi-supervised learning paradigm where
two basic classifiers are iteratively retrained with the additional semi-
labeled samples based on the predictions of either classifier of un-
labeled samples (Blum and Mitchell, 1998; Xu et al., 2012). The efficacy
of co-training classification method has also been validated in remote
sensing imagery, including multispectral image, hyperspectral image,
and high spatial resolution image (Persello and Bruzzone, 2014; Zhang
et al., 2014). The predictions of RF and MCCR in the unlabeled samples
could be complementary to each other, making it possible to exploit the
co-training paradigm to provide a better decision than each separate
classifier (Zhang and Zhou, 2011; Zhu et al., 2016a). Therefore, we
further embed the two classifiers into the co-training paradigm and
develop a novel approach (CotrRM), which has the potential to enhance
the classification. To the best of our knowledge, this is the first time that
an error-recoverable approach with a co-training scheme has been ex-
plored to handle contaminated data classification of LTS imagery.

Specifically, in this study, we attempt to investigate the following
two research questions:

1) Can the MCCR classifier effectively deal with contaminated data in
LTS imagery classification?

2) Is it possible to fuse the MCCR and RF classifiers in order to further
raise the performance of their individual use?

2. Study site and datasets

In our study, the city of Wuhan was chosen as the study site (Fig. 1)
as it is a typical city that has experienced high-speed development and
urbanization in recent decades. Wuhan is the capital of Hubei province,
and had a population of over 10 million in 2012 (Wuhan Municipal
Statistics Bureau, 2013). The mean annual temperature ranges from
15.8 °C to 17.5 °C (Han et al., 2009), with annual average rainfall of
1050mm to 2000mm (Wang et al., 2015). Wuhan lies in the middle
reaches of the Yangtze River, and its unique locational characteristics
have made it one of the biggest metropolises in central China.

The city of Wuhan is almost entirely covered by the Landsat scene of
WRS-2 Path 123 and Row 39, except for about 5% of the study area in
the north of Huangpi and Xinzhou districts, as shown in Fig. 1. Since
our objective was to investigate a classification method, we selected
only this scene to represent the study area. All the available Level 1
Terrain (Corrected) (L1T) Landsat 5,7, and 8 surface reflectance (SR)
products acquired in 2000, 2005, 2010, and 2015 with<60% unclear
observations (i.e., pixels with clouds, cloud shadows, snow/ice, and
SLC-off data) were downloaded from the U.S. Geological Survey
(USGS). Fig. 2 demonstrates the date distribution of the selected images
for each year. The Fmask algorithm with its default setting was applied
to each image to detect clouds, cloud shadows, and snow/ice. The
average producer's accuracy of Fmask in cloud detection is reported to
be 92.1% and user's accuracy is as high as 89.4% (Zhu and Woodcock,
2012). This Fmask layer and SR product can provide us whether the
observation is clear or not.

Similar to Ying et al. (2017), in this study, we selected time-series
Landsat images within a specific given year to produce an annual land-
cover map, which can characterize the temporal characteristics for the

T. Hu et al. Remote Sensing of Environment 217 (2018) 144–157

145



different land-cover types.

3. Methodology

In this section, we first describe how the MC algorithm and CR
classifier are effectively combined to develop the MCCR classifier,
which can classify the contaminated observations of LTS imagery. The
co-training approach on the basis of RF and MCCR classifiers (CotrRM)
is then explained in Section 3.2. Finally, the accuracy assessment is
detailed in Section 3.3.

3.1. The proposed MCCR classifier

A number of the existing classifiers may fail to effectively process
contaminated LTS imagery, e.g., imagery subject to clouds, cloud sha-
dows, snow/ice, and SLC-off data. There are two key issues to be re-
solved: 1) unclear observations in the training data impede the

successful construction of a classifier; and 2) unclear observations in
each unlabeled sample have a negative impact on its accurate identi-
fication. Training data from the same category normally show similar
signatures, which enables the MC algorithm to recover the unclear ones
in the training data. With respect to the unclear observations in the
unlabeled data, the CR classifier is employed since its discriminative
ability has the potential to be guaranteed, even with incomplete ob-
servations (Li et al., 2014a; Waqas et al., 2013). Fig. 3 shows the
workflow of the MCCR classifier for LTS imagery. Specific descriptions
are given in the following subsections.

3.1.1. The recovery of training samples
If we suppose that K LTS images are selected within a specific year,

then the spectral bands of all the images are stacked together to con-
stitute the input feature vectors for classification. The input feature
vector of a given sample x can be depicted as shown in Fig. 4, where B
denotes the dimension of the feature vector.

There are M distinct classes defined in the classification scheme and
N training samples, of which Ni(i=1,..,M) training samples belong to
the ith class. As shown in Fig. 3(a), the matrix Xi

o∈ℝB×Ni is composed
of training samples from the ith class. Each element in the matrix can be
identified as clear or not (displayed in white in Fig. 3(a)) by the Fmask
product. The matrix Xi

o actually lies on a low-dimensional space (Tao
et al., 2013), for the following reasons. Firstly, features composed by
multi-temporal stacking of the spectral bands are correlated with each
other, to some extent (Li et al., 2014b; Li et al., 2015; Schneider, 2012).
Secondly, samples from the same class normally show a degree of si-
milarity, which is useful to distinguish them from other categories
(Huang et al., 2014a; Madonsela et al., 2017). Based on the low-rank
constraint, it is possible to recover the contaminated observations
through the clear subsets, and the problem can then be modeled as:

= ∈

X
X X
rank

p q
min ( )
s. t. ( ) ( ) , ( , ) Ω

i

i pq i
o

pq (1)

where Ω denotes the set of clear elements and Xi is the recovered ma-
trix. In this research, fixed-point continuation with approximate (FPCA)
singular value decomposition (SVD) (Ma et al., 2011) is adopted to
solve the MC problem due to its efficiency. The training data from each
class can be processed with the MC algorithm separately, and in this

Fig. 1. Study area map. (a) The geographic location of the city of Wuhan. (b) The background image is a false-color composite (R: near-infrared, G: red, B: green)
Landsat 8 image acquired on November 26, 2015. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 2. The selected images of each year. DoY: day of year.
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way, the contaminated observations in all the training samples are re-
covered.

3.1.2. The CR based classifier for processing unclear observations in the
unlabeled samples

If all the K LTS images are free of contamination, an unlabeled
sample y∈ℝB with class i can be linearly represented as follows in the
classical CR model (Zhang et al., 2012), displayed in Fig. 3(b):

= + = + …+ + …+ +y Xα ε X α X α X α εi i M M1 1 (2)

where X∈ℝB×N represents the dictionary that is constituted by all the
training samples; Xi∈ℝB×Ni denotes the ith sub-dictionary, which is
formed by training samples from the ith(i=1, ..,M) class; and the
vector α∈ℝN is called the CR coefficient.

The Fmask product can provide the location of the unclear feature
subset in y, which is shown as the elements highlighted by the red
dashed lines in Fig. 3(b). With the unclear observations abandoned, the
CR model can be modified as follows (also shown in Fig. 3(c)):

= +y X α εcc c c (3)

where yc∈ℝBc is the clear feature subset that is composed of all the
clear observations and Xc∈ℝBc×N denotes the flatter dictionary that is
extracted by the corresponding feature subset of each training sample.
From the derivation process, it can be observed that the CR model still
holds for the subset of unlabeled samples, and the samples can be re-
presented by the coefficient αc∈ℝN, given the modified dictionary.

As reported in Zhang et al. (2012), training samples from different

categories present both similarities and differences. The training sam-
ples that are very different from y can naturally result in the decline of
the representation accuracy of y. Based on this idea, it has been sug-
gested that adaptive dictionary selection could be utilized to further
represent the unlabeled samples and facilitate their identification (Li
et al., 2014c). The L training samples that are most spectrally similar to
all the training samples are picked to construct the adaptive dictionary
for the specific unlabeled samples. This process is demonstrated in
Fig. 3(d), where a narrower dictionary is exhibited than that shown in
Fig. 3(c). We let xcj(j=1,…,N) denote the jth row in the dictionary Xc,
and the spectral similarity between yc and each xcj is computed. The
largest L values are chosen, and then the associated training samples are
selected accordingly to construct the adaptive dictionary, which is de-
noted as Xc

s∈ℝBc×L. Therefore, the final CR-based model (Fig. 3(d))
can be summarized as:

= +y X α εc c
s

c
s

c (4)

The representation coefficient can be solved by the regularized least
squares (RLS) method:

= = −α Qy Q X X I Xλ+, with (( ) ( ) ) ( )c
s

c c
s T

c
s

c
s T1 (5)

where parameter λ is a trade-off between the data fidelity term and the
coefficient prior, and I is an identity matrix. For a given sample y, the
output identity can be denoted as Zhang et al. (2012):

= −
= …

y y X α αlab ( ) arg min ‖ ( ) ( ) ‖ /‖( ) ‖
i M

c c
s

i c
s

i c
s

i
1, ,

2 2 (6)

where (αcs)i is the representation vector associated with class i, and
(Xc

s)i is the sub-dictionary of class i. The CR-based model, as well as the
CR-based classifier, to adapt to the clear feature subset in the unlabeled
sample has been completed.

In summary, the training samples are first recovered class by class to
obtain a fully reliable dictionary using the MC algorithm (Section
3.1.1). The CR model is then established according to the clear feature
subset of each unlabeled sample, and the corresponding label can be
identified by Eqs. (5) and (6) (Section 3.1.2). In the CR model, each
pixel is collaboratively represented by training samples from all the

Fig. 3. Workflow showing the MCCR classifier for LTS imagery. In step (a), unclear elements (shown in white) of the sub-dictionary Xi composed of training samples
from the ith (i=1, ..,M) class are recovered by the MC algorithm. From steps (b) to (c), the unclear sub-features y (shown in white) are abandoned, as are the
corresponding feature subsets in the dictionary X, represented by the red dashed lines. From steps (c) to (d), the training samples which are very different from the
unlabeled sample are removed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Depiction of the input feature vector. The feature of each sample is
formed by multi-temporal stacking of the spectral bands.
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classes. Training samples from other classes can highlight the dis-
criminative ability of the current class when maintaining the linear
presentation process, as shown in Eq. (2). They are called as colla-
borative assistants, which enables the CR classifier competitive among
the state-of-the-art classifiers. It is this mechanism that guarantees the
potential discriminative ability of the CR classifier, even with in-
complete features (Li et al., 2014a; Zhang et al., 2012).

3.2. The proposed CotrRM method

The RF classifier copes with the data quality problem in an error-
tolerant way. However, the MCCR classifier treats the problem in an
error-recoverable manner, where the unclear observations are re-
covered by the MC algorithm, and then only the clear ones are utilized
to construct the CR classifier. The two learners provide different ap-
proaches to the predictions of unlabeled data (Tan et al., 2014). In-
spired by the co-training paradigm, the newly labeled samples can be
iteratively selected to retrain each classifier, and a strong classifier is
then built on the fusion of the two retrained basic classifiers (Zhang
et al., 2011). Therefore, we propose a co-training approach (CotrRM)
based on the fusion of RF and MCCR classifiers.

3.2.1. The proposed CotrRM framework
The framework of the CotrRM method is displayed in Fig. 5. Both

the RF and MCCR classifiers can predict a label for a given sample and
provide the posterior probability for each class. The class certainty for
the assigned label is computed as Huang et al. (2014b):

= − −y y ycer prob prob( ) ( ) ( )max sub max (7)

where probmax(y) and probsub−max(y) are associated with the maximum
and the second largest posterior probability values.

Both the crisp (class label) and soft (class certainty) outputs of the
unlabeled data for each classifier are utilized to select the appropriate
samples to enhance the classifiers. A higher class certainty generally
means that the assigned label is more to be correct, but also shows the
sample has limited benefit to further strengthen the classifier. Besides,
the consistency of an unlabeled sample in the RF and MCCR classifiers
indicates that the predicted label is probably reliable. It is reported that
the reliability and variety of training samples have significant influence
on the classification performance (Gray and Song, 2013), therefore, an
accurate-diverse trade-off (ADT) selection (further details are given in

Section 3.2.2) based on the predictions of the unlabeled samples is
designed to generate a semi-labeled sample set with less label noise and
more feature diversity (Zhang and Zhou, 2011). Each classifier is re-
trained iteratively with the selected semi-labeled samples until a pre-
defined maximum iteration number maxIter is reached. Please kindly
note that the semi-labeled samples selected for the MCCR classifier
should be recovered by the MC algorithm to ensure the performance of
MCCR classifier.

Please note that the two base classifiers with their respective semi-
labeled training sets may still have inconsistent predictions (i.e., con-
flicts) in unlabeled samples after the last iteration. In such situation, the
label is determined by fusion of the two individual predictions. The
posterior probabilities of the RF and MCCR classifiers are summed up
and the final label is assigned to the class with the maximum posterior
probability. This aggregation rule is adopted since it does not involve
learning and counter-acts over-fitting of an individual classifier (Ruta
and Gabrys, 2000).

3.2.2. Construction of semi-labeled sample sets
As mentioned before, the key to the success of the CotrRM method is

the selection of samples with sufficient reliability and variety, which
can enhance the current training set. A sample that is qualified to help
improve the classification should satisfy the following two require-
ments (Zhu et al., 2016a): 1) Accurate: a mislabeled sample would harm
the classification process, therefore the accuracy of the selected samples
should be guaranteed; and 2) Diverse: the feature diversity of selected
samples should be enlarged to improve the recognition ability of each
classifier. Inspired by these considerations, we propose the ADT selec-
tion strategy based on the degree of class certainties in the RF and
MCCR classifiers.

Firstly, the requirement for the sample to be accurate is considered.
A sample y is more likely to be correctly labeled when the following
constraint is met:

= > >y y y ylab lab cer T cer T( ) ( ) & ( ) & ( )RF MCCR RF 1 MCCR 1 (8)

where lab(y)RF and lab(y)MCCR stand for the predicted labels of the RF
and MCCR classifiers, respectively; cer(y)RF and cer(y)MCCR denote the
class certainty of the predicted labels of the RF and MCCR classifiers,
respectively; and T1 is the class certainty threshold. For example,
Samples A and E in Fig. 6 have different predictions, therefore they are
eliminated. The class certainties of Samples D and G in the two base
classifiers are lower than the predefined threshold, and hence they are
also deleted. Unlabeled samples that meet the requirements are added
to the candidate training set, which is denoted asC (e.g., Samples B, C,
F, and H). The samples in C are identified with a reliable label, and
unclear observations within them can be recovered with the MC algo-
rithm (Section 3.1.1).

Subsequently, the diversity criterion of the samples is taken into
account. For a given sample, lower class certainty normally means that
this sample has potential benefit to strengthen the classifier. If this
sample is assigned to a correct label, the incorporation of this sample
can enlarge the intra-class diversity of training set, and hence promote
the classification performance (Tuia et al., 2011; Gray and Song, 2013).
Thus, samples with a lower class certainty need to be further selected
from C with the following steps. Firstly, we define groups of spatially
connected pixels in C from the same class as a segment. One sample
with the minimum class certainty is picked out for each classifier within
each segment, constituting a trimmed sample set Cs. Next, if the class
certainty of a sample for RF is lower than that for MCCR, then it is
added to RF, and vice versa. With all samples in Cs processed, two
different sample sets for the RF and MCCR classifiers are respectively
generated, i.e., C RF_s and C MCCR_s . For example, in Fig. 6, according
to the class certainties, Samples C and F are added to the RF classifier,
and Samples B and H are added to the MCCR classifier.

Normally, a large number of samples can meet the ADT selection. To
further reduce the number of semi-labeled samples and select the

RF

Predictions 
of  RF

Predictions 
of  MCCR

maxIter

MCCR

ADT 
Selection

Final
Classification Map

Semi-labeled set
for RF

Semi-labeled set
for MCCR

Yes

No

Fusion

LTS imagery Initial 
training samples+

Fig. 5. Flowchart of the proposed CotrRM method. ADT selection: accurate-di-
verse trade-off selection.
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representative ones, center patterns for each class are obtained by the k-
means method (Lance and Williams, 1967). The number of centers is
fixed to be proportional to that of the current training samples with the
ratio of T2 (0 < T2 < 1) (Bruzzone et al., 2006). In this way, the semi-
labeled sample sets for the RF and MCCR classifiers, i.e., S RF_ and
S MCCR_ , are generated in each iteration. After the iteration process,
the semi-labeled set together with the initial training set are treated as
the individual input of each classifier.

In summary, we first propose a method called the MCCR classifier,
where the MC algorithm is effectively combined with the CR classifier
to cope with the unclear observations in LTS imagery. In addition, a co-
training classification approach, the CotrRM method, is also proposed
to take further advantage of the RF and MCCR classifiers by iteratively
absorb the reliable and diverse samples from the predictions on un-
labeled data.

3.3. Accuracy assessment

The reference land cover samples for each year were independently
collected with the following steps. First, the study site, Wuhan city, was
divided into 15 columns and 20 rows resulting in 300 cells (Yuan et al.,
2005), and from each cell, 15 polygons with 5× 5 pixels were ran-
domly chosen to represent the spatial variation of land cover. Then a
minimum distance of 30 pixels (900m) between polygons is used as a
constraint condition, to suppress the spatial autocorrelation (Müller
et al., 2015). The selected polygons were visually interpreted using
Landsat data and high resolution (HR) imagery. As a reference to the
manual interpretation, in addition to the images from Google™, we
have sufficient archive of HR data in Wuhan since 2000, including
aerial images, QuickBird, GeoEye-1, Worldview-2, and Ziyuan-3. Please
note that only the polygons that can be labeled confidently are col-
lected.

A random stratification procedure was then applied to the reference
data to produce 10 disjoint datasets (in polygons) for training (50%)
and test (50%) for each year. The training samples were then formed by

randomly selecting one pixel from each training polygon, and similarly,
the test samples were collected by choosing one random pixel from each
test polygon. In order to reduce the possible bias induced by random
sampling, 10 unique training and test sets were generated for each year.
The proposed CotrRM method was then carried out and assessed in-
dependently with the 10 training and test sets for each year, and the
classification map of Wuhan city for each year was generated by ma-
jority voting of the 10 results in the corresponding year.

4. Results

In this section, the performances of the RF and MCCR classifiers and
the CotrRM method for land-cover mapping with LTS imagery are
evaluated. A commonly used classification scheme comprising five
land-use/land-cover types was adopted to implement the classification,
namely, built-up land, cropland, forest, water, and barren land (Zhou
et al., 2014).

4.1. Experimental setup

Table 1 lists the numbers of training and test samples (in pixels)
collected from the reference data for each year.

In addition to the three classifiers (RF, MCCR, and CotrRM), another
method, FuseRM, based on the fusion of RF and MCCR, is carried out

Fig. 6. The selection procedure of semi-labeled samples. (a) Initial sample for each class (in squares), e.g., X for Class I and Y for Class II; (b): predictions of unlabeled
samples (i.e., samples A to H) derived by the RF and MCCR classifiers, respectively, where the shade of the color represents the classification uncertainty (deeper
color signifies larger certainty); (c): the candidate samples for RF and MCCR classifiers, respectively. These samples that satisfy the accurate criterion of ADT selection
are retained; (d): the selected semi-labeled samples for the RF (e.g., Sample C and F) and MCCR classifiers (e.g., Sample B and H), respectively. They are assigned as
the diverse criterion of ADT selection. The ADT semi-supervised selection consists of steps (c) and (d).

Table 1
Numbers of training and test pixels for each year.

Category 2000 2005 2010 2015

Training Test Training Test Training Test Training Test

Built-up 98 97 102 102 111 111 136 135
Cropland 141 141 142 141 141 140 160 160
Forest 91 91 97 97 100 99 101 100
Water 137 137 139 139 145 145 187 186
Barren 38 37 34 34 48 47 39 39
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for the purpose of comparison. Specifically, the posterior probabilities
of RF and MCCR classifiers are summed up for each class, and the final
label is then assigned to the class with the maximum posterior prob-
ability (Ruta and Gabrys, 2000). It should be noted that the difference
between FuseRM and CotrRM method is the co-training process with
the injection of semi-labeled samples. Therefore, the impact of semi-
labeled samples on the classification performance can be assessed by
the comparison between these two methods.

The tree number of the RF classifier was fixed at 500 (Breiman,
2001), parameter λ in Eq. (5) of the MCCR classifier was fixed to 1e− 2
(Zhang et al., 2012), and the size of the adaptive dictionary was set to
50% (Li et al., 2014c) of the original dictionary size in all the experi-
ments. In the CotrRM experiment, the three parameters, i.e., the max-
imum iteration number maxIter, the class certainty threshold T1, and
the clustering threshold T2, were respectively set to 4, 0.1, and 0.1. The
sensitivity of the classifiers to these parameters is discussed in Section
5.2.

4.2. Experimental results

Fig. 7 displays the classification results of the RF, MCCR, FuseRM,
and CotrRM classifiers for the 10 experiments for each year with overall
accuracy (OA), quantity disagreement (Q), allocation disagreement (A)
(Pontius Jr and Millones, 2011), and the significant result of Student's t-
test (Box, 1987). A lower value indicates a better result when using the
indicators of Q and A. In terms of OA (Fig. 7(a)), MCCR achieves
slightly higher average accuracy than RF in the four years, and the
FuseRM method shows superiority over the two base classifiers. The
OAs of CotrRM are better than those of FuseRM in all the experiments,
indicating that the iteratively selected semi-labeled samples are con-
ductive to the classification process. With regard to the Q and A scores
(Fig. 7(b)–(c)), the comparison results between MCCR and RF differ in
the experiments of the four years. The Q values of MCCR are worse than
those of RF in the 2000, 2005, and 2015 experiment, but MCCR out-
performs RF in 2010. The A values of MCCR are similar to those of RF in
all the years. Both Q and A values of FuseRM are better than those of

two base classifiers in most of the experiments. The Q value of CotrRM
in 2000 is better than that of FuseRM, but opposite result can be found
in 2015. The Q values of CotrRM and FuseRM are similar in 2005 and
2010. In terms of the A values, the performance of the proposed CotrRM
method is better than that of FuseRM in all the four years.

To further evaluate the MCCR and CotrRM classifiers, the sig-
nificance of the difference between every two classifiers are also listed
in Fig. 7(d), with the p-value set to 0.05. With 95% confidence intervals,
we can draw the following observations: 1) In terms of OA, the pro-
posed MCCR can achieve a comparable accuracy to the RF in the 2000,
2005, and 2010 experiments, and outperform RF in 2015. The proposed
CotrRM method significantly outperforms the two base classifiers in all
the experiments. 2) With respect to the indicator of Q, the proposed
CotrRM achieves significantly better results than RF in the 2000, 2010,
and 2015 experiments, and a similar result to RF in 2005. 3) The A
values obtained by CotrRM are significantly better than those of the two
base classifiers.

According to the above results, it can be stated that the MCCR
classifier achieves a similar or even better result than the RF classifier in
LTS imagery classification. In addition, it is interesting to see that their
co-training classifier (i.e., CotrRM) can further improve the classifica-
tion performance compared with their individual usage. To summarize,
the proposed CotrRM method has the ability to outperform the RF
classifier.

5. Discussions

5.1. Performance of the matrix completion algorithm

As mentioned in Section 3.1.1, unclear observations in all the
training samples should be recovered by the MC algorithm beforehand.
Therefore, the performance of the MCCR classifier is affected by the
quality of the recovered observations in the training samples. We first
assess the quality of MC algorithm through both simulated and real data
experiments in Section 5.1.1, and then the benefit of recovering unclear
observations to the classification is examined in Section 5.1.2.

Fig. 7. The classification results of the different classifiers.
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5.1.1. The recovery quality of unclear observations
A simulated experiment was designed by selecting the samples

whose observations were all clear in the LTS images of 2015. The
number of pixels per category is displayed in Table 2. In order to
generate a synthetic dataset that was close to the distribution of clouds,
cloud shadows, ice/snow, and SLC-off data, two guidelines were con-
sidered for simulating the contamination process: 1) the unclear ob-
servations usually appear in a spatial cluster; and 2) the locations of
unclear observations in different images are independent of each other.
The contamination percentage of each sample was randomly assigned,
but limited to between 0 and 80%. The simulation process was repeated
10 times. The recovery errors of the MC algorithm are summarized in
Table 2. The recovery error is computed as:

=

∑ ∑ −

×
×

= =
x x x

num B
RecErr

( )/
100%

p
num

q
B

pq pq pq1 1

(9)

where num is the number of pixels in the given category, B denotes the
number of feature dimensions, xpq represents the recovered element in
the qth dimension of the pth pixel, and xpq is the corresponding real
value of the element. A smaller value of RecErr indicates a better re-
covery result. For all categories, the average values of RecErr are about
10%, which shows that the result of the simulation testing is satisfac-
tory and the effectiveness of the MC algorithm can be confirmed.

The recovery quality of the MC algorithm was also checked by vi-
sual inspection in real data testing. Considering the spectral signature of
built-up class is relatively more stable than those of other classes, we
randomly selected a sample from the built-up class to assess the re-
covery quality. The original and recovered feature curves, representing
the temporal stack of the spectral bands of this sample, are compared in
Fig. 8(a), where the blue dashed line denotes the original feature curve
and the red line is the recovered one. The overlapping parts in the two
curves correspond to the clear observations, and the differences in-
dicate that unclear observations are recovered. It can be noted that the
recovered curve looks more regular than the original one.

Additionally, three examples with unclear observations are dis-
played. The first one (Fig. 8(b)) was induced by SLC-off data on the date
of 2015306. Fig. 8(c) displays the recovered image, and Fig. 8(d) is the
image acquired on an adjacent date (2015290) as a reference. It can be
seen that the recovered observation is very similar to the reference. The
second example is contaminated by clouds as well as their shadows
(Fig. 8(e)). As in the first example, the recovered image in Fig. 8(f) is
close to the reference in Fig. 8(g). When using the observations from
neighboring dates as benchmarks, the recovery errors of the two ex-
amples are 4.87% and 13.03%, respectively, showing that the recovery
performance is reliable. In the last example, a sample whose land cover
changed over a year is demonstrated (Fig. 8(h)). Referring to Google™
imagery, we found that this change was due to flooding caused by
heavy rain (Fig. 8(j)). In this case, the recovery quality is not as sa-
tisfactory as the two previous ones (Fig. 8(i)), since the low-rank con-
dition cannot be fully met.

The results of both the simulated and real data experiments verify
the recovery quality of the MC algorithm. In the CotrRM process, un-
clear observations in the semi-labeled samples can be recovered once

they are labeled, and the unselected samples are labeled by the ag-
gregation of the class probabilities obtained by the RF and MCCR
classifiers. With the labels of all the samples assigned, all the LTS
imagery can be recovered by utilizing the MC algorithm.

5.1.2. The benefit of recovering unclear observations
In this section, additional experiments were performed to assess the

benefit of MC algorithm to the classification, and the results are pre-
sented in Fig. 9, where for instance the combination ‘Clear+CR’ in-
dicates the CR classifier is used to deal with only the clear observations,
i.e., simply discarding the unclear observations, and ‘All+ CR’ means
all observations, including the unclear ones, are used as the input to the
CR classifier. It can be observed that ‘Clear+CR’ outperforms
‘All+CR’ because unclear observations can impede the collaborative
linear representation of the CR classifier. However, when the unclear
observations are recovered by the MC algorithm, the collaborative
linear representation of CR (i.e., MCCR) is capable of substantially
improving the classification accuracy. In summary, the comparison
between MCCR and ‘Clear+ CR’ explicitly indicates that the inclusion
of unclear observations is conducive to raising the mapping accuracy. In
addition, ‘All+RF’ achieves better OA than ‘Clear+RF’, inferring that
when the RF classifier is used, there is something in unclear data that
can positively add to the classifier's ability.

The stacked multi-temporal spectral bands can correlate with each
other for each class, which enables MC to effectively recover the un-
clear observations. The experimental results of MC also validated the
improvement of image quality in LTS data. With more useful observa-
tions added to the classifier, the model performance can be improved.

5.2. Parameter analysis

5.2.1. Parameters of ADT selection
This section aims at assessing the influence of the two important

parameters related to construction of the semi-labeled samples of ADT
selection in each iteration. The class certainty threshold T1 affects the
reliability of the candidate training samples, and the clustering
threshold T2 controls the representativeness of the final semi-labeled
samples. Fig. 10 shows how the OA values of the three classifiers vary as
a function of T1 with different T2, based on LTS imagery of 2015. With a
fixed T2 value, nearly all the OA values of the three classifiers show a
tendency to decline when T1 increases from 0.1. When T1 is relatively
large, the accuracy criterion is sufficiently strict to guarantee the re-
liability of selected samples, however, the class certainties would be too
high to capture samples with more diversity, leading to the reduced
accuracy (Gray and Song, 2013). Among these experiments, the highest
accuracy is achieved when T1 is in the range of [0, 0.2], regardless of
the classifier or the value of T2. In addition, it can be seen that when T1
is fixed, the variation range of Kappa with different T2 values is rela-
tively small, inferring that the influence of T1 on the classification
performance is generally greater than that of T2. The range of [0.1, 0.3]
is recommended for the selection of T2.

As noted in Section 3.2.1, with a relatively low T1, the diversity of
the training samples has the potential to be enhanced. However, on the
other hand, it is possible to introduce some mislabeled samples at the

Table 2
Results of the simulated testing.

Class Built-up Cropland Forest Water Barren

n 378 619 1184 1106 329
cp (%) 36.41 ± 8.09 41.24 ± 11.36 37.06 ± 12.28 34.18 ± 16.22 45.87 ± 12.31
RecErr (%) 6.47 ± 6.19 11.75 ± 8.04 9.71 ± 8.46 8.68 ± 9.83 10.18 ± 6.76

n: the number of clear samples per category.
cp: contamination percentage.
In the expression ‘a ± b’, ‘a’ means the average value and ‘b’ denotes the standard deviation.

T. Hu et al. Remote Sensing of Environment 217 (2018) 144–157

151



same time. Therefore, we set up an experiment to investigate the pos-
sible reasons why a high accuracy can be obtained when T1 is relatively
low (e.g., T1= 0.1). The sets of C RF_s and C MCCR_s were made up of
samples that satisfied the ADT selection. To measure the accuracy of the
selected samples, we checked the intersection set ofC RF_s and the test
sample set, and then examined the intersection set ofC MCCR_s and the
test sample set. The accuracy in the two intersection sets was about
97.9% and 97.1%, respectively. That is, mislabeled samples do exist
after ADT selection. Next, to assess the effect of k-means method in
selecting the representative samples, the final semi-labeled samples
(i.e., S RF_ and S MCCR_ , see Section 3.2.2) were constructed by
randomly selecting samples with the same size of center patterns
(generated from the k-means method) for each class. The random se-
lection process was repeated 100 times. The classification results after

the first iteration of CotrRM process for 2015 are shown in Table 3,
where the column ‘Initial’ represents the classification result obtained
by the initial training samples, and the columns ‘Max’ and ‘Min’ re-
present the best and worst classification results among the 100 random
selections, respectively.

It can be seen that the accuracy rankings of the four strategies (i.e.,
‘Min’, ‘Initial’, ‘K-means’, ‘Max’) in the three methods are the same. The
difference is about 2% between the maximum and minimum OA in the
100 experiments. We visually interpreted the samples that led to the
minimum Kappa and found mislabeled samples in both semi-labeled
sets, i.e., S RF_ and S MCCR_ . In other words, the injection of mis-
labeled samples decreases the accuracy. With this k-means strategy, the
OA values increase for all three classifiers when compared with ‘Initial’,
showing that the k-means clustering method can effectively eliminate

Fig. 8. The recovery results of the real data experiment: (a) The recovered feature curve compared to the original one for the selected sample. The images in (b)–(j)
are displayed as near-infrared, red-visible, and green-visible false-color composite images, respectively. The intersections of the yellow dashed line represent the
contaminated samples. The three examples are shown in (b)–(j), and the acquisition date of each image is listed in brackets. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The overall accuracy of different combinations of features and classifiers for each year.
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the negative effect of mislabeled samples and maintain the sample di-
versity at the same time. Therefore, a relatively low threshold in class
certainty is preferred in the proposed approach.

5.2.2. The maximum iteration number
The experimental results show that the proposed CotrRM method

further improves the performance compared to the two individual
classifiers. To further investigate the performance of the CotrRM
method, the performance during the iteration for the year of 2015 is
presented in Fig. 11, including the number of training samples, di-
versity of training samples, the average certainty of the classification
map, and the overall accuracy.

Fig. 11(a) shows that the number of training samples for each class
increases linearly during the iteration. The diversity of the current
training samples in each iteration for MCCR classifier (Fig. 11(b)) is
calculated for each class by considering the standard deviation of the
sample set, and the diversity of the training samples for each class
gradually rises along with the iteration. The average certainties of the
classification map are increased for both RF and MCCR classifier
(Fig. 11(c)), and the OAs of RF and MCCR also present a gradually
rising trend (Fig. 11(d)). In summary, with reliable and diverse training
samples added, the OAs of the base classifiers, i.e., RF and MCCR, in-
crease iteratively, and the CotrRM method also presents a rising trend
during the iteration. It can be observed that the OA values of CotrRM
remain relatively stable after 4 iterations, and, therefore, the maximum
iteration number was fixed to 4 in all the experiments of this research,
considering both performance and efficiency.

5.3. Comparisons

5.3.1. Comparison between MCCR and RF classifiers
The experimental results verify that both the MCCR and RF classi-

fiers can effectively deal with contaminated data in LTS imagery. In
order to comprehensively investigate their performances, in this sub-
section, the performances of the MCCR and RF classifiers are compared
with different contamination degrees. The contamination degree of
each sample was determined by the frequency of occurrence of unclear
observations in all the observations, which is defined as the con-
tamination percentage. Hence, we calculated the OA values of the RF

and MCCR classifiers in identifying the test samples with different
contamination percentages for each year. Fig. 12 displays the OA dif-
ferences between the MCCR and RF classifiers, where a positive value
denotes that the MCCR classifier performs better than the RF classifier,
and a negative value indicates that RF outperforms MCCR. Please
kindly note that when there is no test sample whose contamination
percentage is in a given range, for instance, Year 2000 with a percen-
tage of 50%, the corresponding bar is missing in this figure.

In general, more positive values can be observed from the figure,
which shows the superiority of the proposed MCCR classifier over the
RF classifier when processing LTS data with different contamination
percentages. In the case of low contamination rates (e.g., < 30%),
MCCR steadily outperforms RF, but when the data contamination be-
comes more severe (e.g., above 30%), the results of MCCR show more
fluctuations. This is because, with a low contamination rate, only a few
unclear observations are discarded, and hence the CR classifier can be
brought into full play. Instead, when the data are heavily contaminated,
the clear observations for restoring the unclear ones are insufficient,
which may lead to uncertainty or instability for the construction of the
CR classifier.

5.3.2. Comparison with existing methods
The “best-available-pixel” (BAP) approach is considered in this re-

search for a comparison. BAP aims to select the “best” observation for
each pixel among several candidate images, and enables the generation
of a composite image free of clouds and shadows (Hermosilla et al.,
2015). The pixel scoring rule for selecting the “best” observations can
be referred to White et al. (2014). With the composite image, the RF,
CR, and SVM (support sector machines) classifiers are adopted to
conduct the classification. In addition, SVM was also selected as a
comparison with the proposed CotrRM method. Fig. 13 displays the
classification results of different methods, in terms of OA.

When all observations (including the unclear ones) are utilized as
the input feature, both the proposed MCCR and CotrRM method per-
form significantly better than SVM. It can also be observed that the OA
values of ‘BAP+RF’, ‘BAP+CR’ and ‘BAP+ SVM’ are lower than
those of MCCR and CotrRM, indicating that the recovery of unclear
observations is beneficial to LTS imagery classification.

5.4. Land-cover change analysis

The classification results obtained by the proposed CotrRM method
are displayed in Fig. 13. In order to further verify the efficacy of
CotrRM, the multi-temporal change detection accuracy between
neighboring years was also investigated. We randomly generated 60
samples for the change class and 140 samples for the non-change class
based on the classification maps of two neighboring years (Olofsson
et al., 2014). These reference samples were carefully labeled by

(a) RF (b) MCCR (c) CotrRM
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Fig. 10. Sensitivity analysis for the three classifiers of parameters T1 and T2 in 2015.

Table 3
OA values with different strategies to select semi-labeled samples in 2015.

(%) K-means Initial Min Max ave ± std

RF 92.81 92.28 91.64 93.15 92.73 ± 0.39
MCCR 93.16 92.65 91.72 93.49 92.81 ± 0.66
CotrRM 94.04 93.33 92.49 94.42 93.92 ± 0.48

T. Hu et al. Remote Sensing of Environment 217 (2018) 144–157

153



referring to the high-resolution images, and the accuracy assessment is
shown in Table 4. The results show that reliable accuracies for the
change detection are achieved, with>85% for the overall accuracies
(OAs) and over 0.70 for the Kappa in the three periods.

It can be observed in Fig. 14 that built-up areas experienced suc-
cessive development and expansion in Wuhan. The proportion of pixels

changed to built-up from other classes was further analyzed (Table 5).
During the research period, the main source of rapid urban sprawl was
the loss of cropland (486.3 ± 87.0 km2 with a 95% confidence in-
terval). The conversion from water bodies to built-up land was also
significant (163.1 ± 21.8 km2 with a 95% confidence interval). All
these land-cover changes have resulted in deterioration of the eco-
system (Zhou et al., 2014). Some representative land-cover changes are
shown in Fig. 15. Sites 1 and 2 are two examples of land-cover change
from 2000 to 2005, when cropland and water were converted to built-
up area. The changes in Sites 3 and 4 happened between 2005 and
2010, when cropland experienced conversion to barren land. Site 5
shows the transition from cropland to built-up area and barren land
from 2010 to 2015, and Site 6 indicates that water surface was con-
verted to built-up area and barren land in this period.

6. Conclusions

Landsat time-series (LTS) imagery can provide dynamic information
for accurate urban land-cover mapping. However, the observations are
unavoidably contaminated due to the existence of clouds, cloud sha-
dows, snow/ice, and SLC-off data. In this study, the MCCR classifier has
been proposed to take advantage of the matrix completion (MC) algo-
rithm and collaborative representation (CR) classifier, in order to
handle the classification of unclear data in LTS imagery. The MCCR
classifier deals with the unclear observations in an error-recoverable
way, rather than the error-tolerant manner of the random forest (RF)
classifier. RF treats the unclear observations as well as the clear ones,
ignoring the degrees of reliability between them. However, the MCCR

(a) (b)

(c) (d)

Fig. 11. The iteration process in the CotrRM method for 2015.

Fig. 12. The OA difference between the MCCR and RF classifiers when iden-
tifying samples with different contamination percentages.
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classifier focuses more on the utilization of clear observations to elim-
inate the adverse impact of unclear ones. The contaminated data in the
training samples are recovered by the MC algorithm, and with respect
to the unclear observations in the test samples, only the clear ob-
servations are utilized to construct the CR classifier, without loss of
discriminative ability. Furthermore, inspired by the co-training para-
digm, disagreements between the RF and MCCR classifiers are adopted
as the source of mutual learning, and hence a novel co-training ap-
proach (CotrRM) based on semi-labeled sample selection is proposed to
improve the classification performance. To the best of the authors'
knowledge, it is an innovative attempt to investigate an error-re-
coverable method with a co-training scheme to deal with unclear LTS
imagery classification.

The proposed methodology was tested with LTS imagery from the
city of Wuhan, using annual time-series imagery from 2000 to 2015 for

Fig. 13. Comparison between the proposed method and other ones. The ‘BAP+RF’, ‘BAP+CR’ and ‘BAP+ SVM’ denote the BAP image is classified by RF, CR and
SVM classifier, respectively.

Table 4
Accuracy assessment for the land-cover change transitions from 2000 to 2015.

Ground reference

From 2000 to 2005 From 2005 to 2010 From 2010 to 2015

C NC Total UA(%) C NC Total UA(%) C NC Total UA(%)

C 51 9 60 85.0 48 12 60 80.0 45 15 60 75.0
NC 15 125 140 89.3 10 130 140 92.9 8 132 140 94.3
Total 66 134 200 58 142 200 53 147 200
PA(%) 77.3 93.3 82.8 91.5 84.9 89.8
OA 88.0 89.0 88.5
Kappa 0.72 0.74 0.72

C: change; NC: non-change.

Fig. 14. The classification results for the city of Wuhan for each year.

Table 5
Statistics of the built-up area expansion.

From 2000 to 2005 From 2005 to 2010 From 2010 to 2015

Cropland 53.05%
(102.5 ± 9.5 km2)

48.61%
(181.4 ± 22.1 km2)

38.80%
(202.4 ± 22.0 km2)

Forest 5.30%
(10.2 ± 1.3 km2)

5.80%
(21.6 ± 1.9 km2)

2.72%
(14.2 ± 1.4 km2)

Water 7.13%
(13.8 ± 1.54 km2)

14.58%
(54.4 ± 3.4 km2)

18.18%
(94.9 ± 6.8 km2)

Barren 34.52%
(66.7 ± 14.7 km2)

31.01%
(115.7 ± 18.0 km2)

40.30%
(210.3 ± 62.7 km2)
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land-cover mapping. The results of the experiments confirmed that the
MCCR classifier has the ability to work as effectively as the RF classifier
in the presence of data noise, and the proposed CotrRM method can
further enhance the classification due to the iterative learning from
unlabeled data. Moreover, with all the samples labeled, the unclear
observations in the whole image can be recovered with the MC algo-
rithm, which is beneficial to the LTS data processing and other appli-
cations.

It should be noted that the MCCR classifier could be applied to other
remote sensing data with contaminated observations. Furthermore,
base classifiers of the co-training paradigm are not limited to the RF and
MCCR, and other classifiers that provide crisp and soft predictions can
also be adopted to strengthen the time-series urban land-cover map-
ping.
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