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A B S T R A C T

Timely and reliable land-use/land-cover (LULC) change dynamic monitoring is the basis of urban understanding
and planning. However, either the training sample shortage or the error accumulation in the multi-temporal
processing inevitably restricts the monitoring performance. In this paper, to overcome these problems, we
present a label-noise robust active learning method, which automatically collects reliable and informative
samples from the images and builds a unified classification system with these augmented samples. In more
detail, a Bayesian sample collection process that fuses the unsupervised transition information and the multi-
temporal land-cover information is designed to provide candidate samples with “from-to” labels. A reliability-
based multi-classifier active learning method is then proposed to adaptively allocate the more reliable samples to
the classes that are difficulty to classify. Finally, a fusion of the multiple multi-date classifications trained by the
selected samples is implemented to identify the change type of interest. The dynamic monitoring results for
Shanghai, Shenzhen, and Shiyan in China, two megacities with rapid and obvious urbanization and a small city
with relatively slow urbanization, indicate that the proposed method achieves a significantly higher accuracy
than the current state-of-the art methods. The sample accuracy verified by the high spatial resolution reference
maps endorses the applicability of the sample collection, while the reliability-based active learning further
ensures the robustness of the proposed method in the label-noise situation. The presented method was tested in
two difficult situations (a small training sample case and a training sample set without joint labeling), so that the
robustness and accuracy of the approach can be expected to be of a similar or better quality in cases with more
training samples. Given its effectiveness and robustness, the proposed method could be widely applied in LULC
change dynamic monitoring.

1. Introduction

Timely and reliable geo-information on the extent of a city is of
significant importance for urban growth studies (Li et al., 2015b). In
addition to the time and location (Jabari et al., 2019), the categoriza-
tion of the land-use/land-cover (LULC) dynamic, i.e., the “from-to”
types of LULC changes, is important in many applications (Healey et al.,
2018). Efficient and accurate multi-temporal land-cover monitoring is
vital to facilitate a better understanding of the interaction between
mankind and nature, especially under the trend of global urbanization.

Remote sensing has become the primary data source for multi-
temporal LULC dynamic monitoring (Gómez et al., 2016). From the
perspective of remote sensing processing, the mainstream from-to types
of LULC change detection (also called multi-temporal classification) (Li
et al., 2015b; Schneider, 2012; Wu et al., 2017; Xu et al., 2018; Yu

et al., 2016) can be divided into post-classification and multi-date
classification techniques. The post-classification methods produce
multi-temporal LULC maps from independent classifications, and the
changes are identified by comparing these maps (Masek et al., 2008).
Due to its flexibility in organizing (or fusing) the existing multi-tem-
poral classification maps, this kind of technique is popular, especially
when dealing with LULC change detection tasks at a national or global
scale (Masek et al., 2008; Xian et al., 2009). However, the dis-
advantages of the post-classification methods can be summarized as
follows. Firstly, misclassification in any of the images will be com-
pounded in the final change detection map, and these errors (including
illogical land-cover change events) will be further amplified with an
increase in the time series. Secondly, as urban LULC changes usually
account for only a small part of the study region and are scattered in
different locations, the confidence level of the change trajectory
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generated by direct multi-temporal comparison can be low, which re-
stricts the reliability of the further applications (Lu et al., 2011;
Schneider, 2012). Although several temporal priors have been in-
vestigated to reduce the misclassification, it is still not easy to apply
such priors to multi-temporal urban LULC change detection. One major
technique in the bi-temporal change detection task is referred to as the
consistency checking and updating/backdating approach, in which the
threshold to acquire a binary change map cannot be automatically and
accurately determined (Li et al., 2015b; Wu et al., 2017; Xian et al.,
2009; Xu et al., 2018; Yu et al., 2016). For hypothesized trajectory-
based multi-temporal change detection methods (Li et al., 2015b;
Schneider and Mertes, 2014; Xue et al., 2014a), the rules that classify
LULC changes by the hypothesized trajectory signatures cannot fully
portray the heterogeneous urban environment.

The multi-date classification method first extracts training samples
from remote sensing time-series data for places that have undergone
certain kinds of change as one separate class, and later builds a unified
classifier by these samples to identify the change type of interest from
the stacked time-series data (Huang et al., 2008; Im and Jensen, 2005;
Nemmour and Chibani, 2006; Schneider, 2012). Given an advanced
supervised machine learning classification algorithm and enough high-
quality training information, a unified classification system can yield a
desirable change detection performance (Huang et al., 2008; Nemmour
and Chibani, 2006), and can show robustness when the land-cover
classes are not normally distributed (Lu et al., 2004), as in a hetero-
geneous urban environment (Liu and Lathrop Jr, 2002). However,
previous surveys have indicated that there are still several issues to be
addressed (Gómez et al., 2016; Hussain et al., 2013). Firstly, signature
extension by generalization of LULC signatures across time might pre-
sent additional challenges for training data sampling (Gómez et al.,
2016). The collection of sufficient training samples is also costly, which
prevents it from being widely used. To tackle this problem, one solution
is to generate synthetic training data from laboratory spectra, field
surveys, and spectral models (Okujeni et al., 2013; Roy et al., 2019).
However, the effect of spectral model processing (e.g., the modeling
errors that ignore changes in the vegetation structure, as described by
Roy et al. (2019)) and the effects of remote sensing monitoring (e.g.,
electronic noise, ground topography, variations in the exoatmosphere
solar spectra, differences in spectral and radiometric calibration, the
bidirectional reflectance distribution function (BDRF), and the ad-
jacency effects mentioned in Ben-Dor et al. (2004)) pose challenges
when applying a classifier trained on synthetic data to a real-world
scenario. The other solution is to collect samples from the real images
directly (Li et al., 2019; Xue et al., 2014b). For instance, Xue et al.
(2014b) utilized the phenology trajectory of natural land covers to
augment the sample set size. However, a phenology trajectory requires
dense time-series data, and cannot be applied to permanent features in
an urban environment, such as built-up areas and lakes. Furthermore,
the sample redundancy and the label noise of the augmented sample set
are not considered, and there is still room for improvement to achieve
the goal of using the smallest number of adequate samples to achieve
the maximum accuracy.

In the meantime, as argued by Schneider (2012), in view of the
dominant position of supervised classification methods in remote sen-
sing research in recent years, developing semi-automated ways to speed
up training sample collection holds great promise. Meanwhile, Gómez
et al. (2016) also suggested that the advanced machine learning para-
digms, such as active learning (Demir et al., 2010; Tuia et al., 2011),
could help to reduce the high computational cost of redundant samples,
although the current active learning methods in the field of remote
sensing image interpretation are sensitive to label noise (Guo et al.,
2015; Huang et al., 2015). It should be noted that, although several
advanced supervised classifiers (e.g., support vector machine (SVM),
decision tree, and neural network classifiers) have been applied to LULC
change detection (Gómez et al., 2016), there is still no optimal ap-
proach for urban LULC dynamic monitoring.

In this paper, to deal with the aforementioned problems, we present
a label-noise robust active learning sample collection method for multi-
temporal land-cover classification and change analysis. Firstly, the
collection process for the from-to sample set is carried out by accu-
mulating land-cover records of each single date, and then a Bayesian-
based purification process is carried out, which uses unsupervised
change information to ensure the reliability of the selected samples.
Next, a discriminative subset of these newly selected samples is picked
by the use of a reliability-based multi-classifier active learning method.
Finally, the multi-date classification is implemented by fusing the multi-
classifiers conducted from the union of the original training samples
and the newly added discriminative ones. Taking a small city (Shiyan in
China) with a low level of urbanization and two megacities (Shenzhen
and Shanghai in China) with rapid and obvious urbanization in recent
years as the study areas, three multi-temporal Landsat datasets were
adopted to test the advantages of the proposed approach, in terms of
both accuracy and efficiency.

2. Study areas and data description

2.1. Study sites, data sources, and preprocessing

In this study, the three Chinese cities of Shiyan, Shenzhen, and
Shanghai (Fig. 1), which feature diverse spatial sizes, were selected for
the LULC change monitoring. The city of Shanghai (31°40′ N to 31°53′
N and 120°51 E' to 122°12′ E) is the undisputed leader in economic
development in China, with the permanent resident population of
Shanghai being 24.18 million at the end of 2017 and the GDP being
$444.8 billion in 2017. Shanghai has become the engine of the eco-
nomic growth for the Yangtze River Delta region, and its incredible run
of success has been accompanied by complicated LULC transformation.
The city of Shenzhen (113°46′–114°37′E, 22°27′–22°52′N) has trans-
formed from an unknown fishing village to one of the largest cities in
the Pearl River Delta since it became China’s first special economic zone
in 1979. Shenzhen’s permanent resident population increased from less
than 100,000 in 1979 to over 12 million in 2017, and its GDP reached
$328.7 billion in 2017. As a window of China for economic, scientific,
and technological exchanges, its natural land covers have a high
probability of transition to construction land. In addition to these two
typical coastal megacities experiencing rapid urbanization, the city of
Shiyan (including Zhangwan and Maojian districts, 110°46′–111°00′E,
32°04′–32°36′N) was also taken as a study area. Shiyan has a GDP of
less than $30 billion, with a permanent resident population of 819,100
at the end of 2018. The city of Shiyan is a mountainous city with scarce
land for construction and limited urban space. Compared with
Shenzhen and Shanghai, there has been much less LULC transformation
in Shiyan. To thoroughly evaluate the performance of the proposed
method for delineating multi-temporal land-cover dynamics, these
three study area were chosen for their diversity in geo-spatial, land-
cover transition, and socio-economic aspects (Table 1).

The multi-temporal L1T level Landsat data adopted in this study
were downloaded from the U.S. Geological Survey website (USGS
http://earthexplorer.usgs.gov/). Cloud cover of less than 90% and si-
milar dates/seasons were set as the image selection criteria. The se-
lection results are listed in Table 1. On the basis of the standard L1 level
product, the image mosaicking for two adjacent scenes within one year
was first undertaken in the ENVI 5.3 environment, and then the multi-
temporal preprocessing, including relative radiometric correction and
geometric registration, was further conducted. False-color composites
of the three datasets are presented in Fig. 1.

2.2. Land-cover change types and reference sites

We categorized the landscapes in the study areas into four land-
cover classes: water, vegetation, built-up, and bare soil. Table 2 lists the
multi-temporal (i.e., three-date) land-cover change scheme for each
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study area. The reference sites for each study area were selected in the
following steps. Firstly, according to the semi-variogram based sam-
pling criteria (Chen and Stow, 2002), three regular square grids (i.e.,
300 × 300 m for Shiyan, 630 × 630 m for Shenzhen, and
1200 × 1200 m for Shanghai) were employed to divide the study areas
into blocks, with the aim being to suppress the spatial autocorrelation.
Secondly, the intersection points identified as pure (land-cover) sam-
ples for each date were collected as reference sites. Here a “pure”
sample is defined as the associated land-cover class comprising > 60%
of the pixel area (i.e., within 900 m2). For Shanghai and Shiyan, the
selected reference sites were visually identified by experts with at least
two years of experience in remote sensing interpretation. In addition to
the high-resolution images from Google™ Earth, a very high spatial
resolution image covering Shanghai in 2017, made up of eight Gaofen-2
images (spatial resolution: 0.91 m, Table 3), was adopted as a reference
for the manual inspection. For each date (i.e., 2005, 2013, and 2017)
for Shenzhen, a thematic map covering the whole city at a 2-m re-
solution was adopted to determine the detailed land covers. A total of
21 high-resolution remote sensing images were collected to generate
the thematic maps of Shenzhen. The satellite sensors considered in this
experiment were QuickBird, Ziyuan-3, and Gaofen-2. More details can
be found in Table 3. In the image preprocessing step, the raw digital
number values of the remote sensing images were converted to surface
reflectance with the QUick Atmospheric Correction (QUAC) algorithm
in ENVI (Flaash, 2009). The QuickBird satellite images with the original
spatial resolution of 1 m were resampled to 2 m. For the Gaofen-2
images, the high-resolution (1 m) panchromatic and lower-resolution
(4 m) multispectral imagery were merged using the NNDiffuse pan-
sharpening technique (Sun et al., 2014). The created high-resolution
(1 m) multispectral imagery was then resampled to 2 m. Finally, the
images were stitched together to cover the whole study area, using both
edge feathering and reflectance correction (Chon et al., 2010). A

supervised classification approach, as well as manual post-processing,
was then conducted to transform the very high spatial resolution sa-
tellite imagery into thematic maps of the land cover (water, vegetation,
bare soil, and built-up). Each thematic map was validated with at least
200 independent polygons, where, in each polygon, one pixel was
randomly chosen as a test sample, and its overall accuracy was not less
than 98%. Thirdly, a sample allocation scheme which strikes a balance
between the concerns of this study (i.e., focusing on the changes related
to urbanization) and the proportion of each class was adopted (Olofsson
et al., 2014). In more detail, all the samples of the changed classes and
all the stable bare soil samples (due to their rarity) were retained, and
the numbers of stable built-up, stable water surface, and stable vegetation
samples were proportionally reduced. Finally, on the basis of this
sample allocation, random sampling for each class was carried out. The
numbers of final reference sites for each study area are listed in Table 2.
In the classification procedure, the reference sites of each city were
randomly divided into disjoint sets for training and testing. In addition,
please note that with the high-resolution thematic maps of Shenzhen,
the accuracy of the automatically collected samples could also be as-
sessed (see Section 4.3).

3. Methodology

The task of supervised classification is to identify the test samples
for the most probable categories by learning rules from the training
samples collected manually. The proposed method can be viewed as a
combination of unsupervised learning, in that it first automatically
collects samples from the unlabeled sample and assigns them with
pseudo-labels (e.g., U in Fig. 2), and active learning, in that it con-
tinually picks the discriminative and reliable sample subset from these
collected samples. With the aid of these newly added samples, the
multi-date classification ability can be improved. Fig. 2 portrays the

Fig. 1. False-color composites (R: near-infrared; G: red; B: green) of the study areas: Shiyan (the upper three images were acquired in 2007, 2013, and 2017),
Shenzhen (the middle three images were acquired in 2005, 2013, and 2017), and Shanghai (the lower three images were acquired in 2007, 2013, and 2017). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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flowchart of the proposed algorithm, which consists of two main steps:
① the Bayesian theory based from-to sample collection, which in-
tegrates the multi-temporal change intensity and the land-cover label
possibilities (i.e., the soft classification result of each land-cover map-
ping); and ② a reliability-based multi-classifier active learning tech-
nique, which picks the discriminative and reliable sample subset (Ũ)
from the set (U). Please note that, for every Landsat Level-1 product, a
Quality Assessment (QA) band is available, which describes the quality
of the pixels within a scene. This can help the user determine the
suitability of the scene for classification. Thus, the land parcels identi-
fied as unsuitable for land-cover classification in any observation can be
excluded before step ②. After the automatic sample collection, the
multi-date classification is implemented by the union of these newly
added samples and the original ones. The multi-temporal spectral fea-
tures of each test sample are then independently fed into each basic
classifier trained by the augmented training set. The final label of each
test sample can then be determined by majority voting on the three
independent predictions.

3.1. Bayesian-based sample collection

Under the assumption that multi-temporal land-cover labels should
be temporally correlated, the Bayesian-based approach can be for-
mulated as: find the multi-temporal land-cover labels that provide the
maximum a posteriori probability for the multi-temporal spectral fea-
tures:

=max p l l l s s s{ ( , , , | , , , )}c l lt lT t T t T{ 1, , , } 1 1 (1)

where lt and st refer to the land-cover label (e.g., water) and the spectral
feature at the tth date, respectively. c is the from-to class derived from
the multi-temporal land-cover transition (e.g., Water–built up 13 in
Table 2, which means water to built-up from the first date of interest to
2013, and unchanged since 2013).

Using Bayesian theory, (1) can be reformulated as:

=

p s s l l p l l
p s s

max (( , ..., )|( , ..., )) ( , ..., )
( , ..., )c l l

T T T

T{ ,..., }

1 1 1

1T1 (2)

where p(s1,…,sT), which is the probability distribution of the multi-
temporal spectral features, is independent of the land-cover labels and
can be ignored, as it makes no contribution to the determination of the
land-cover transition; p(s1,…,sT|l1,…,lT) is the probability of the multi-
temporal spectral features under the condition of land-cover transition;
and p(l1,…,lT) is the multi-temporal land-cover transition probability.

In terms of p(s1,…,sT|l1,…,lT), by assuming that the probability
distribution of the spectral feature only correlates to its land-cover type
at the current date, p(s1,…,sT|l1,…,lT) can be shortened to p(l1|s1)…p(lT
|sT), where p(lT|sT), which is the land-cover class probability at the Tth
date, is determined by averaging the label land-cover posterior prob-
ability of all the basic classifiers.

In terms of p(l1,…,lT), by assuming that the future land-cover state
of a sample can be modeled purely on the basis of the immediate pre-
ceding state, Markov chain theory (Kasetkasem and Varshney, 2002)
transforms p(l1,…,lT) to p(lT|lT-1)…p(lt|lt-1)…p(l2|l1), where p(lt|lt-1) is
the land-cover transition probability from the (t − 1)th date to the tth
date, which is estimated by the change probability ρ(t−1)~t:

=
=

p l l
l l

l l( | )
1 , if

, ift t
t t t t

t t t t
1

( 1) 1

( 1) 1 (3)

In this study, an effective unsupervised change detector named
iteratively reweighted multivariate alteration detection (IR-MAD;
(Nielsen, 2007)) was utilized to calculate each bi-temporal change
possibility ρ(t−1)~t. IR-MAD is designed to measure the difference of the
spectral characteristics acquired at two points in time and covering the
same geographical region (e.g., st−1, and st). As mentioned above, the
multi-temporal land-cover transition probability p(l1,…,lT) is highlyTa
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correlated with the continuous multiplication of adjacent change
probabilities, and any possible error in each change probability esti-
mation will be compounded in the final result. Furthermore, if the land-
cover classification posterior probability at each date is very high (e.g.,
0.7 for each date), the continuous multiplication, which is at risk of
degrading the multi-temporal transition possibility (e.g., 0.73 = 0.343),
is useless.

Thus, (2) can be reformulated as:

…

>=

p l s p l s p l l p l l

p l s p l s p l s thr

max{[ ( | )·... ( | )]·[ ( | )· ( | )]}

max{[ ( | )·... ( | )]} ifmin ( | )
c

T T T T

c
T T t T t t

1 1 1 2 1

1 1 1,..., (4)

where thr∈(0,1) is a threshold to ensure that the minima of the land-
cover class probabilities is credible.

3.2. Reliability-based multi-classifier active learning

The core idea of active learning is to iteratively select the most
beneficial (i.e., informative) subset from a large sample set. In practice,
given a set of samples with known labels, one of the approaches that
can maximize the information gain is to select the samples mislabeled
by the current classifier as incremental training samples (Tuia et al.,

2011). Nevertheless, with regard to the automatically collected samples
with pseudo-labels, the risk of importing confused samples calls for the
design of a specific active learning approach.

In this study, a large number of samples with pseudo-labels could be
collected by the aforementioned approaches. Thus, we built a multi-
date multi-classifier model by the use of the training samples, and then
iteratively imported reliable and informative samples from the pseudo-
set to refine the model until the desired classification performance was
reached. During the iteration, the proposed sample inclusion process
takes the following aspects into consideration: (1) which samples can be
included; (2) how to allocate these samples to each class of interest; (3)
are there any techniques to stop the samples from having a negative
effect on the multi-temporal image interpretation system; and (4) when
to stop the iteration. In the following, the sample selection scheme is
described in detail, including the sample inclusion and checking
method in each iteration, and the termination conditions.

(1) Which samples can be included?

According to the basic idea of active learning (Tuia et al., 2011), the
inclusion of the pixels in the areas of uncertainty of the current multi-
date classification model into the training set is able to force the model

Table 2
The land-cover change types used in each study area and the numbers of reference sites for each change type.

Classification scheme Caption Reference sites per class

Unchanged, stable classes Shiyan Shenzhen Shanghai
Stable water Stable water surface during the study period 55 177 150
Stable vegetation Stable vegetation during the study period 78 172 200
Stable bare soil Stable bare soil during the study period 18 19 10
Stable built up Stable built-up during the study period 70 123 170

Changed classes
Water–built up 13 Water to built-up from the first date to 2013, and unchanged since 2013 – 36 –
Water–built up 17 Water to built-up 2013–2017 – 11 –
Vegetation–built up 13 Vegetation to built-up from the first date to 2013, and unchanged since 2013 103 132 231
Vegetation–built up 17 Vegetation to built-up 2013–2017 50 84 134
Bare soil–built up 13 Soil to built-up from the first date to 2013, and unchanged since 2013 52 106 63
Bare soil–built up 17 Soil to built-up 2013–2017 20 59 101

Table 3
List of the high spatial resolution satellite images used in this study.

Image Date Sensor Image Date Sensor

Shenzhen 2005 2005/11/29 QuickBird 2017/10/29 (4)
2005/11/16 Shenzhen 2017 2017/02/15 (2) Gaofen-2
2005/12/17 2016/11/28 (2)
2005/05/02 2016/10/10
2005/12/22
2005/09/05
2003/12/07
2002/08/31

Shenzhen 2013 2013/03/08 Ziyuan-3 2017/03/01 (2)
2014/02/20 (2) Shanghai 2017 2017/04/29 (2) Gaofen-2
2014/10/09 2017/12/12 (4)

Fig. 2. Flowchart of the proposed automatic sample collection method.

J. Li, et al. ISPRS Journal of Photogrammetry and Remote Sensing 163 (2020) 1–17

5



into solving the regions of low classification confidence. In the case of
candidate sample set U with label noise, the samples with both high
reliability and abundant information are preferred. Thus, in each
iteration, high reliability is ensured by consistent labeling by the basic
from-to classifiers (i.e., random forest (RF), SVM, and SoftMax), and
abundant information is indicated by the conflict between the current
multi-date classification result and the pseudo-label, which indicates
that the incorporation of this sample should be informative for further
refining the multi-date classification model. In this way, the pseudo-
samples with both reliability and rich information can be incorporated.

(2) How to allocate the incorporated samples to each class of interest?

Given a set of candidate samples with labels, efficient active
learning refers to collecting a small high-quality subset under a low
computational cost. In the proposed method, instead of selecting the
single most informative sample per iteration, a novel and efficient
adaptive batch-mode active learning approach is proposed (i.e., a batch
of samples is included at each iteration), which increases the speed of
the sample selection and reduces the iterations.

In general, it can be expected that the classification system perfor-
mance will improve with the iterations (i.e., more and more samples
can be identified as reliable) and the growth rate will gradually slow
down. Thus, more samples are required in the early stage of the active
learning process. In this study, a new adaptive sample set size selection
method was designed. For the kth iteration, the sample set reliability
(i.e., Rsk for short) identified by the current classification system is
formulated as the number of reliable samples in U divided by the total
number of samples in U. The sample set reliability should increase with
the iterations (i.e., the growth of reliable samples) and gradually sta-
bilize. By assuming that Rsk is inversely correlated to the number of
newly added samples at the current iteration (i.e., numk for short), it can
be formulated as follows:

= × × ×num Rs Card U C N(1 ) ( )k k
Â½ (5)

where Card(U) refers to the number of samples in U, C means the
number of from-to classes, and N (set as 5 in this study) is the batch
scale parameter used to control the size.

Meanwhile, for multi-class active learning, in an iteration, the la-
beling difficulty of each class can be taken into account in the sample
allocation. For instance, a heterogeneous class (e.g., from bare soil to
built-up) may need more help from newly added samples than a
homogenous class (e.g., stable water surface). Thus, the number of
newly added samples for each class (e.g., numk,c for class c) is inversely
proportional to the class-wise sample set reliability (Rsk,c for short,
which is defined as the number of reliable samples in U of class c di-
vided by the total number of samples in U of class c), and should be
summed up to numk.

We now introduce the technique used to pick the most informative
numk,c samples from all the reliable-pseudo samples in U of class c.
Firstly, all of these samples are sorted in descending order according to
the reliability level, which is formulated as follows (Han et al., 2018):

= +
=

r s c p c s p c s( ) 1/ ( ( | ) ( 1| ))
c

C

1 (6)

where r(s) means the transition reliability level of sample s, which be-
longs to the reliable samples in U of class c; p c s( | ) represents the
average from-to transition posterior probabilities in descending order;
and s = [s1′,…, st’,…, sT’] represents the multi-temporal spectral fea-
ture. The first numk,c samples from these reliable samples in U of class c
are then selected to be the newly added ones.

(3) Which techniques can stop the samples from having a negative ef-
fect on the classification system?

To further ensure the reliability of the newly added samples, a

rechecking technique is designed. After the inclusion of these newly
added samples, both the multi-classifier system and the current selected
sample subset (i.e., Ũk for short) are updated. To avoid possible clas-
sification system degradation from the newly added but wrongly
identified samples, the reliability of the current multi-classifier system
(i.e., Rck, which is equal to the summation of r(s), s ∈ U) and the re-
liability of the current selected sample subset (i.e., Rsk) are simulta-
neously used to exclude these undesirable samples. In general, during
active learning, both reliabilities increase with the growth of the sample
set. Otherwise, if both Rsk+1 < Rsk and Ruk+1 < Ruk are met, samples
that are added from the kth iteration should be abandoned, and the
samples numbered numk,c should be recollected from the rest of U in a
similar manner to the above.

(4) When to stop the iteration?

During the iterative process, the reliability of the selected sample
subset (Rs) and the multi-classifier system (Rc) is improved and gra-
dually becomes stable. Mathematically, a small value of || Rsk+1 – Rsk
||2/|| Rsk||2, which refers to the difference of reliability between two
successive iterations, indicates high stability of the selected sample
subset. The difference of Rc can also be modeled in a similar fashion.
Accordingly, the termination condition of the iteration refers to the
relative stability of both reliabilities:

< <+ +Rs Rs Rs Rc Rc Rc|| || /|| || and || || /|| ||k k k k k k1 2 2 1 2 2 (7)

where σ is a small constant (set as 0.001 in this study) to measure the
relative difference. At this point, a lightweight and purified alternative
Ũ to U can be successfully collected.

4. Results

4.1. Experimental environment and compared method

In the classification procedure, a random stratification procedure
was applied to the reference sites of each city (Table 2) to produce
disjoint datasets for training and testing. The total sizes of these two
sets followed the ratio of approximately 1:9. When allocating a sample
set size to each class, the ratios of the rare change types were set as
larger to mitigate the training data imbalance problem. In particular,
due to the extreme scarcity of stable bare soil in all the reference sites,
this kind of training data sample set was about half the size of the
others. As suggested by Li et al. (2015a), in the small training sample
set task, 10 independent trials were conducted to reduce the possible
bias induced by the random sampling.

All the experiments were carried out using MATLAB R2018a on a PC
with a single 3.20 GHz processer and 32.0 GB of RAM. To evaluate the
performance of the proposed method, the classical multi-date classifi-
cation technique was carried out as a benchmark. For a fair comparison,
each classification step in this benchmark method was implemented
with the majority vote from the three trained classifiers of SVM, RF and
SoftMax, which were implemented in LibSVM (version 3.23; (Chang
and Lin, 2011)) and two MATLAB built-in functions, respectively. As
suggested by Li et al. (2019), the kernel of SVM was set as the radial
basis function (RBF), and a random subset of n features was used for
the RF classifier at each node, where n is the number of features. In
addition, each hyper-parameter of these three classifiers was auto-
matically tuned by 10-fold cross-validation. The classical multi-date
classification method using the original from-to labels (hereinafter re-
ferred to as FT) identifies the test samples by building a classifier with
the original training samples. For the proposed method using the active
learning enhanced from-to samples (hereinafter referred to as AL-FT),
the sample purification threshold thr and the batch active learning scale
N were set to 0.7 and 5 for all three Landsat datasets. The sensitivity
analyses for these parameters are provided in Section 5.4. The number
of iterations was set to 30 for each study area.
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4.2. Performance assessment

For each independent trial, the estimated transition error matrix,
which records the multi-temporal change detection results and re-
ference labels for every from-to transition type, was employed for the
accuracy assessment (Olofsson et al., 2014). In addition to the user’s
accuracy (UA) and the producer’s accuracy (PA), which were used to
assess the class-wise performance, the overall accuracy (OA) and the
macro-average of the F1 score (MF1 for short; (Zhong et al., 2019))
induced from the transition error matrix were also determined to pre-
sent a general evaluation. Based on the area proportion of each type in
the classification map and the proportion of correct identifications in all
the reference sites, the OA estimates the proportion of correct identi-
fications in the multi-date classification map. MF1 is the simple average
of all the F1 scores of a single class (F1class for short in Table 5), which is
the harmonic mean of the PA and UA. As a supplement to the OA, MF1
highlights the identification capability on relatively rare transition
types. The mean values of the former three class-wise terms are pre-
sented, while the mean ± standard deviation records of the latter two
metrics are listed for an overall evaluation. For each metric, a higher
value indicates a better performance, and a lower standard deviation
signifies a more robust result. In the meantime, the accuracies of the
automatically collected samples (i.e., U and Ũ) were evaluated with
these metrics. To reduce the random bias, all the accuracies were
averaged over 10 independent runs.

For estimating the area for each land-cover transition, the tri-tem-
poral change maps of the Shiyan, Shenzhen, and Shanghai Landsat
images were generated by majority voting with the 10 results. The es-
timated area and its approximate 95% confidence interval, which is also
on the basis of the transition error matrix mentioned above, were cal-
culated in accordance with the recommendations of Olofsson et al.
(2014).

4.3. Assessment of the pseudo-sample set

The evaluation of the pseudo-sample sets is addressed. Firstly, in
terms of the Bayesian-based work, it can be seen that more than 55% of
each study area can be automatically collected as pseudo-samples, and
thousands of samples can be collected for most classes, except for the
stable bare soil class, with only two or three hundred samples in the
Shiyan and Shenzhen datasets (Table 4). In terms of the following ac-
tive learning work, less than 0.1% of the study area can be picked up,
which can reduce the similar and redundant samples collected by the
previous Bayesian-based work.

Furthermore, the high spatial resolution (i.e., 2-m resolution) the-
matic maps of Shenzhen were aggregated to the same resolution as the
Landsat images, and the pure samples were used as reference for the

sample accuracy assessment. On average, 57.14% ± 0.8% samples of U
can be considered as pure, while the ratio for the purified subset Ũ is
24.71% ± 2.0%. Considering the uncertainty of the evaluation from the
small ratio and the limited size of the purified subset Ũ (i.e., 2039 in
Table 4), only the pure samples of U were assessed. The average sample
size, PA, UA, and F1class for every class and the OA and MF1 for a
general assessment are reported in Table 5. From the general assess-
ment, the majority of the collected pure samples are desirable, but there
is still moderate label noise. From the class-wise sample assessment, the
accuracy of the stable classes (except for stable bare soil) is superior to
that of the changed classes, while the accuracy of the stable bare soil and
water–built up 17 classes is inferior. The impact of these pseudo-samples
with some label noise on the multi-temporal change detection is further
reported in Section 4.4.

4.4. General change detection results

Table 6 lists the statistical results (PA, UA, F1class, OA, and MF1) of
the change detection results of the FT and AL-FT methods. Meanwhile,
the student’s t-test (Box, 1987), which is a statistical significance test of
the difference between two from-to change detection results, is also
reported for each metric. “＋” denotes that AL-FT performs significantly
better, “–” denotes that FT performs significantly better, and “n” means
no significant difference between AL-FT and FT.

From the perspective of the overall evaluation (Table 6), both the
OA and MF1 indicate the significant superiority of AL-FT over FT in all
the study areas, and the gap grows dramatically as the size of the study
area increases. From the perspective of the class-wise assessment, in
addition to UA, PA, and F1class, the area estimation for each class, which
is measured on the tri-temporal change maps generated by majority
voting with the 10 independent trials, is adopted as an auxiliary eva-
luation criteria (Table 7). Figs. 3–5 present the class-wise comparison
between FT and AL-FT, from the 10 independent trials.

In terms of stable classes, the proposed method can achieve a sa-
tisfactory performance in the stable vegetation and stable water identifi-
cation (Fig. 3), while the identification results for the stable built-up
class are slightly worse, which can be attributed to the higher diversity
of the spectral characteristics of artificial structures (Fig. 4). With re-
gard to the terrain materials, both water and dark built-up have strong
reflectivity in the green band and strong absorption in the near-infrared
band, and both bare soil and bright built-up have strong shortwave
infrared channel reflectance but low near-infrared channel reflectance
(Li et al., 2019). The overestimation of the stable water by FT can be
mitigated by the proposed AL-FT method, especially for the Shiyan and
Shenzhen datasets (see the left column of Fig. 3 and Table 7). Compared
with FT, the diverse artificial structures can be better identified by the
proposed AL-FT method, as can be seen in the old residences (the parcel
bordered in black in Fig. 4a), the large low-rise industrial area, and the
compact middle-rise industrial area (the two local parcels in Fig. 4c).

Table 4
Sample set sizes of pseudo-sets U and Ũ, by averaging the 10 independent trials.

Shiyan Shenzhen Shanghai

Class U Ũ U Ũ U Ũ

Stable water 3.51e+03 5 5.74e+4 27 2.19e+5 224
Stable vegetation 8.33e+05 10 6.81e+5 30 1.78e+6 492
Stable bare soil 2.79e+02 21 2.63e+2 74 1.81e+3 338
Stable built up 1.26e+04 41 3.01e+5 292 1.28e+6 1270
Water–built up 13 1.41e+04 1.78e+4 206
Water–built up 17 1.55e+04 8.87e+3 178
Vegetation–built up 13 6.43e+03 51 7.18e+4 317 2.42e+5 786
Vegetation–built up 17 6.64e+03 29 1.28e+5 289 5.40e+5 641
Bare soil–built up 13 8.92e+05 63 4.78e+4 250 4.08e+4 988
Bare soil–built up 17 3.51e+03 106 3.81e+4 376 1.04e+5 1301

Total 8.33e+05 326 1.35e+6 2039 4.21e+6 6040

Ratio of set size to study
area (%)

67.20 0.03 61.21 0.08 55.89 0.08

Table 5
Accuracy assessment of the pure samples in the pseudo-sample set (U) for the
Shenzhen Landsat images.

Class Num. PA UA F1class

Stable water 8 93.48% 96.54% 0.9499
Stable vegetation 18 99.81% 88.22% 0.9366
Stable bare soil 5 25.12% 0.32% 0.0063
Stable built up 99 80.93% 80.20% 0.8054
Water–built up 13 37 20.96% 74.17% 0.3164
Water–built up 17 27 8.11% 1.61% 0.0261
Vegetation–built up 13 76 12.72% 73.16% 0.2164
Vegetation–built up 17 43 16.25% 73.45% 0.2641
Bare soil–built up 13 75 12.21% 57.04% 0.2004
Bare soil–built up 17 55 38.88% 50.18% 0.4364

Overall assessment OA 85.11% MF1 0.4158
± 0.68% ± 0.0100
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Table 6
Accuracy assessment of the multi-temporal change detection classification results.

City PA UA F1class

FT AL-FT t-testa FT AL-FT t-test FT AL-FT t-test

Shiyan
Stable water 83.35% 68.64% n 94.96% 99.11% ＋ 0.8684 0.7669 n
Stable vegetation 99.81% 99.57% n 95.12% 97.32% ＋ 0.9741 0.9843 ＋
Stable bare soil 92.88% 28.20% – 29.16% 45.75% n 0.4416 0.2659 –
Stable built up 46.72% 55.96% n 78.52% 93.29% ＋ 0.5771 0.6926 ＋
Vegetation–built up 13 58.85% 65.67% n 94.31% 95.64% n 0.7113 0.7752 n
Vegetation–built up 17 77.39% 100.0% ＋ 99.30% 91.62% – 0.8486 0.9538 n
Bare soil–built up 13 34.15% 59.51% ＋ 67.63% 61.64% n 0.4201 0.5895 ＋
Bare soil–built up 17 54.08% 84.09% ＋ 28.90% 21.94% n 0.3535 0.3417 n

OA 89.95% 91.79% ＋ MF1 0.6493 0.6712 ＋
1.30% 1.19% 0.0217 0.0500

Shenzhen
Stable water 93.52% 80.24% – 96.17% 99.49% ＋ 0.9470 0.8866 –
Stable vegetation 97.62% 96.55% n 97.30% 100.0% ＋ 0.9744 0.9824 n
Stable bare soil 79.35% 56.38% – 49.01% 90.00% ＋ 0.5945 0.7513 ＋
Stable built up 89.05% 88.69% n 79.02% 91.38% ＋ 0.8366 0.9000 ＋
Water–built up 13 64.81% 77.33% ＋ 59.42% 62.85% n 0.6050 0.6909 ＋
Water–built up 17 65.53% 92.37% ＋ 35.50% 24.14% – 0.5011 0.3774 –
Vegetation–built up 13 49.70% 79.54% ＋ 88.44% 87.38% n 0.6325 0.8309 ＋
Vegetation–built up 17 92.13% 98.05% ＋ 78.17% 80.26% n 0.8421 0.8809 n
Bare soil–built up 13 50.47% 75.50% ＋ 88.06% 88.84% n 0.6303 0.8115 ＋
Bare soil–built up 17 74.23% 88.40% ＋ 66.82% 77.70% ＋ 0.6951 0.8252 ＋

OA 86.21% 90.49% ＋ MF1 0.7286 0.7942 ＋
± 1.43% ± 1.46% ± 0.025 ± 0.025

Shanghai
Stable water 100.0% 97.07% – 98.73% 99.43% ＋ 0.9936 0.9820 n
Stable vegetation 99.62% 97.56% – 95.77% 99.84% ＋ 0.9764 0.9868 ＋
Stable bare soil 86.24% 80.78% n 43.50% 71.67% ＋ 0.5492 0.7395 ＋
Stable built up 90.32% 98.95% ＋ 79.31% 89.92% ＋ 0.8435 0.9421 ＋
Vegetation–built up 13 46.95% 83.87% ＋ 92.44% 95.72% ＋ 0.6083 0.8930 ＋
Vegetation–built up 17 82.52% 98.35% ＋ 97.03% 95.06% n 0.8880 0.9664 ＋
Bare soil–built up 13 54.88% 70.51% ＋ 53.99% 86.41% ＋ 0.5333 0.7692 ＋
Bare soil–built up 17 46.22% 64.64% ＋ 55.84% 74.92% ＋ 0.4968 0.6880 ＋

OA 86.34% 94.33% ＋ MF1 0.7361 0.8709 ＋
± 1.90% ± 0.59% ± 0.030 ± 0.023

a whether there is a significant difference (with 95% CI) between FT and AL-FT: “＋” denotes that AL-FT performs significantly better, “–” denotes that FT performs
significantly better, and “n” means no significant difference.

Table 7
Area estimation of each class in the multi-temporal change detection maps generated by majority voting with the 10 independent trials.

City Shiyan Shenzhen Shanghai

Class FT AL-FT FT AL-FT FT AL-FT

Stable water 54.77 35.01 113.80 85.94 418.52 387.73
± 2.74 ± 4.25 ± 3.55 ± 8.17 ± 7.71 ± 5.07

Stable Stable vegetation 912.16 909.01 848.24 811.36 3010.90 2538.18
classes ± 39.71 ± 32.51 ± 16.47 ± 13.57 ± 83.77 ± 30.36
(km2) Stable bare soil 31.13 9.26 26.79 10.08 46.86 11.85

± 10.69 ± 4.91 ± 6.68 ± 4.24 ± 16.20 ± 5.11
Stable built up 77.79 78.28 474.70 448.21 1780.03 1752.66

± 25.46 ± 24.02 ± 35.20 ± 27.87 ± 99.68 ± 92.71

Water–built up 13 32.63 48.62
± 9.90 ± 12.72

Water–built up 17 7.60 16.59
± 2.70 ± 6.68

Vegetation–built up 13 50.73 64.38 144.48 168.73 447.99 642.15
± 23.29 ± 23.71 ± 28.89 ± 22.71 ± 83.71 ± 48.76

Changed Vegetation–built up 17 27.79 46.35 171.51 218.19 410.82 888.93
classes ± 23.19 ± 2.54 ± 17.36 ± 17.10 ± 63.88 ± 30.36
(km2) Bare soil–built up 13 34.68 34.16 105.56 100.44 247.38 182.54

± 10.25 ± 7.66 ± 24.39 ± 15.58 ± 53.73 ± 42.76
Bare soil–built up 17 6.09 18.71 60.22 77.36 438.98 397.44

± 3.83 ± 6.79 ± 7.16 ± 12.33 ± 79.21 ± 80.49
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The last stable class is stable bare soil, which is a rare but important
class in such megacities with a high cost of land. For the proposed AL-FT
method, the recognition ability for stable bare soil also grows as the size of
study area increases, which can be attributed to the growth of the number
of automatically collected samples of this class (Table 4). Although the
correctness of these added stable bare soil samples is not high (Table 5),
the accuracy gains by these samples (Table 6) validate the applicability of
AL-FT for the recognition of the stable bare soil class. For the FT method,
the inferior UA and the overestimation of the stable bare soil class (see the
blue parcels in the right column of Fig. 3) partly results from the over-
weighting of the training samples of stable bare soil (i.e., the ratio between
training and testing is 1:1, which is much larger than the ratio for the
other types). With the aid of the pseudo-samples, the proposed AL-FT
method can overcome this shortcoming and obtain a robust area esti-
mation (Table 7). For instance, the mislabeling of the maintenance road
and the ridge of the paddy field (covered by stable bare soil, see the upper
examples of Fig. 4a and 4b) and the mislabeling of wetland (see the lower
example of Fig. 4b) by FT can be mitigated by AL-FT.

For both methods, the accuracies (i.e., PA, UA, and F1class in
Table 6) and the coefficient of variation values of the area estimation
(i.e., the ratio of the standard deviation to the mean values in Table 7)
for the changed classes are inferior to those for stable water and stable
vegetation, which can be attributed to the feature diversity of these
changed types, i.e., the combination of the spectral confusion men-
tioned previously and the multi-temporal transition. Thus, the identi-
fication of the transition from water to built-up and from bare soil to
built-up is challenging. In terms of the transition from vegetation to
built-up, most metrics (Table 6) and the visual displays (Fig. 5b–d)

show the desirable improvement achieved by the incorporation of the
pseudo-samples. Although the proposed method suffers more from the
stable dark built-up false alarms (Fig. 5a), in the comprehensive con-
sideration of both the performance of the transition from water to built-
up and that of the stable built-up (Table 6), the proposed method still
performs well. In terms of the transition from bare soil to built-up, the
proposed method can obtain a more accurate temporal accuracy, as in
the industrial land expansion in Shiyan (Fig. 5e), the harbor construc-
tion in Shenzhen (Fig. 5g), and the airport construction in Shanghai
(Fig. 5g). In summary, with the aid of the pseudo-samples, the results
demonstrate the robustness of the proposed approach to label noise (see
Table 5) and its applicability in both changed and stable regions.

5. Discussion

One of the main bottlenecks of multi-date classification based from-
to change detection is the lack of efficient multi-temporal joint labeling
training samples. In addition to the comparisons presented in the pre-
vious section, we further discuss the solution to this problem in this
section, from the aspects of the necessity for multi-temporal joint la-
beling, the adaptability of the sample allocation, and the robustness of
the parameters used in the proposed method.

5.1. Does the proposed multi-date classification based method have to use
the multi-temporal joint labeling training set?

Considering the high cost of multi-temporal joint labeling, we fur-
ther constructed another training set to investigate the necessity of

Fig. 3. The identification of the stable water (left column), stable vegetation (middle column), and stable bare soil (right column) classes for the Shiyan (upper),
Shenzhen (middle), and Shanghai (lower) datasets.
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multi-temporal joint labeling. This new training set without joint la-
beling was constructed by randomly selecting the samples from the
reference sites, in which the size of each land-cover type at each date
was the same as the corresponding size of the joint labeling training set
used in the results section. Thus, both training sets had the same
amount of LULC label information at each date, and the major differ-
ence was the location restriction. In other words, the joint labeling
samples should be labeled with the land-cover type on each date, and

the non-joint labeling samples are only required to be labeled with the
land-cover type on a specific date. Considering the unclear observations
of Landsat imagery (e.g., clouds, cloud shadows, snow/ice, and SLC-off
data, (Hu et al., 2018)) and the rare existence of some important ca-
tegories (e.g., stable bare soil), the sample collection for the joint la-
beling set is more costly.

While the traditional multi-date classification method (FT) was not
applicable when using the non-joint labeling set, we now discuss

Fig. 4. The identification of the stable built-up class for the (a) Shiyan, (b) Shenzhen, and (c) Shanghai datasets, each of which is marked with two small patches as
examples. Left: identification results in the study area; middle: examples with zoomed-in local regions and the aligned false-color composite of the Landsat image at
the start date; and right: the very high spatial resolution Google Earth images, whose spatial coverage is the area marked by the cross in the zoomed-in region, which
were taken on the nearest date to the associated Landsat images.
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Fig. 5. The identification of the changed classes for all three Landsat datasets. (a) The transition from water to built-up for the Shenzhen dataset; (b)–(d) the
transition from vegetation to built-up for the three Landsat datasets; and (e)–(g) the transition from bare soil to built-up for the three Landsat datasets. In each
subfigure, left: identification of the changed classes for every Landsat dataset. Upper-middle: the transition result in the local region, which is marked by the dark
square in the left subfigure. Lower: the false-color composites of the Landsat images acquired at three dates in the local region. Upper right: the zoomed-in examples
with the very high spatial resolution Google Earth images taken on the nearest date to the associated Landsat images.
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whether the proposed method can overcome this limitation. In addition
to FT, two post-classification techniques were also taken as comparison
methods, which were both applicable when using either training set.
The first classical method directly stacks three single-date land-cover
records (hereinafter referred to as PCC), and the second method refers
to a multi-temporal extension of a recent method based on bi-temporal

change probability analysis and Bayesian soft fusion (Wu et al., 2017)
(hereinafter referred to as BPCC). The results for both training sets were
then evaluated by a unified test set (Table 8), which was a com-
plementary one to the union of both training sets. Please note that the
samples selected for the non-joint labeling set at each date were not
included in the complementary set.

Fig. 5. (continued)
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In Table 8, all cases are shown, to demonstrate the overall classifi-
cation performances. When using the same training set, except for the
MF1 record of BPCC using the non-joint labeling set, most of the metrics
show that the proposed AL-FT method is superior to the post-classifi-
cation based approaches. When using different training sets, except for
the OA values of PCC, most of the metrics show that the non-joint la-
beling set presents a better performance, and the AL-FT method is still
superior to the three compared methods. Although the training samples
in the non-joint labeling set may have no land-cover record in some
dates, the location flexibility of this set enables more sample sites. Thus,
filling these land-cover labels by the proposed automatic sample col-
lection technique can make better use of these training sites. In short,
the proposed AL-FT method does not require costly joint labeling, it can
make better use of the training sample set without joint labeling, and it
is superior to the most recent post-classification based approaches.

5.2. The function of the designed reliability-based sample allocation scheme

In view of the size of U (see the U columns in Table 4), it is im-
practical to combine such a huge pseudo-set with the original training
sample set. The proposed active learning approach aims to iteratively
pick the most reliable and informative subset (i.e., Ũ) to assist the
original training sample set, and focuses more on the difficult categories
(e.g., the changed classes). Thus, in this subsection, Fig. 6 displays the
iterative processes of the proposed method, from the perspective of
both the class-wise assessment and the general performance. Without
loss of generality, the number of iterations was set to 30 for each study

area. The results of 10 independent trials were statistically recorded to
reduce the possible bias induced by the random sampling. In each
bubble chart of Fig. 6, the horizontal axis is the number of iterations,
the vertical axis shows the class-wise sample set reliability (i.e., Rsk,c,
which is defined as the number of reliable samples in U of class c di-
vided by the total number of samples in U of class c for the kth itera-
tion), and the bubble size denotes the average sample set (Ũk) size of
the associated category at the beginning of the current iteration. In the
lower-right subfigure of Fig. 6, for all the samples in the pseudo-sample
set U, the blue curves show the average sample set reliability (Rsk) and
its standard deviation, and the sepia curves show the average reliability
of the current multi-classifier system (i.e., Rck for the kth iteration,
which is equal to the summation of r(s), s ∈ U) and its standard de-
viation.

It can be seen that the general reliability increases rapidly in the
early iterations, and then reaches a maximum and becomes stable after
several iterations, which is similar to most of the class-wise reliabilities
and sample set size growth trajectories (except for stable bare soil). By
paying more attention to the heterogeneous classes in the sample al-
location, the sample set sizes of the changed classes and the stable built-
up class are much larger than those of the homogenous classes, and the
reliabilities of these heterogeneous classes increase rapidly in the first
few iterations. The reliability of stable bare soil is slightly reduced,
which can be attributed to the following aspects. On the one hand, the
scarcity of reliable stable bare soil samples (see Table 4) cannot support
an enhancement of the stable bare soil recognition ability. On the other
hand, the rapid growth of the heterogeneous class samples increases the

Fig. 5. (continued)

Table 8
Accuracy assessment of the multi-temporal change classification results on two training sets.

City Joint labeling training set Non-joint labeling training set

PCC FT BPCC AL-FT PCC FT BPCC AL-FT

Shiyan OA 84.89% 87.94% 89.78% 90.94% 83.72% – 91.91% 92.19%
± 1.75% ± 1.66% ± 1.55% ± 1.38% ± 0.64% – ± 0.74% ± 0.69%

MF1 0.5958 0.5808 0.6353 0.6482 0.6230 – 0.7120 0.6929
± 0.0691 ± 0.0269 ± 0.0721 ± 0.0606 ± 0.0249 – ± 0.0250 ± 0.0242

Shenzhen OA 84.37% 87.52% 89.85% 91.03% 84.27% – 91.10% 91.48%
± 1.06% ± 2.08% ± 1.81% ± 1.95% ± 0.45% – ± 0.58% ± 1.04%

MF1 0.7268 0.7236 0.7288 0.7875 0.7345 – 0.7498 0.7846
± 0.0500 ± 0.0314 ± 0.0467 ± 0.0607 ± 0.0383 – ± 0.0360 ± 0.0531

Shanghai OA 80.63% 87.77% 92.87% 93.94% 78.70% – 93.15% 94.12%
± 1.88% ± 2.43% ± 1.27% ± 0.63% ± 0.47% – ± 0.34% ± 0.65%

MF1 0.7209 0.7486 0.8298 0.8421 0.7168 – 0.8321 0.8439
± 0.0617 ± 0.0505 ± 0.0572 ± 0.0529 ± 0.0564 – ± 0.0536 ± 0.0505
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risk of mislabeling stable bare soil as other categories. Meanwhile, with
regard to the multi-temporal change detection classification results
(Table 6), the interpretation ability for stable bare soil in the megacities
is significantly improved.

Furthermore, we analyzed the function of the adaptive sample allo-
cation process, by taking the following control groups as a comparison.
For each control group, a number of pseudo-samples were randomly
chosen and combined with the original training sample set to train the
multi-classifier system. For the purpose of a fair comparison, the numbers
of selected samples for each class were kept equal, and 10 to 1000 sam-
ples per class were randomly chosen to train the classifier. Please note
that the numbers of adaptively selected pseudo-samples per class by the
proposed sample allocation strategy (i.e., AL-FT in Fig. 7) are listed in
Table 5. With an eye on the scarcity of the stable bare soil class in the
Shiyan dataset and the Shenzhen dataset (Table 5), the Shanghai Landsat
dataset was chosen in this experiment. The horizontal axis in Fig. 7 is the
number of randomly selected samples per class, and the vertical axes
show the OA value and the MF1 value of the mapping result. The accu-
racy was averaged over 10 runs to reduce the possible bias induced by the
random sampling. In terms of the accuracy, it can be seen that the ac-
curacy increases with the increment of the pseudo-sample set size, i.e., a
rapid growth in the early stage and a slight growth after more than 200
samples per class. It is also noted that the best accuracies of the control
groups are inferior to those of the proposed method, which uses much
fewer pseudo-samples (see the last column in Table 5) in a class-adaptive
allocation manner. Therefore, considering the computational cost (i.e.,

the sample set size) and mapping performance, the class-wise adaptive
sample allocation technique in the proposed active learning method can
be deemed as effective.

5.3. Parameter sensitivity

Using all three Landsat datasets, sensitivity analyses of the land-
cover class probability threshold thr in the Bayesian based sample

Fig. 6. Iterative processes of the proposed active learning method, including a class-wise assessment for each dataset and a general assessment on all three datasets.

Fig. 7. The accuracy versus the number of randomly added samples per class
from the pseudo-sample set U for Shanghai. “+m” in the horizontal axis in-
dicates the multi-date classification trained by the union of the original training
sample set and a subset from U, which contains m pseudo-samples per class.
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collection and the batch scale N parameter in the active learning (see
Eq. (5)) were carried out. By balancing the tradeoff between the land-
cover class probability and the adjacent change probability, thr aims to
purify the pseudo-sample set. Fig. 8 represents the effect of threshold
thr on the multi-date classification accuracy. The horizontal axis in
Fig. 8 denotes the value of thr (i.e., from 0.1 to 0.9, with an interval of
0.1), and the vertical axes show the OA and MF1 of the mapping result.

The accuracy was again averaged over 10 runs. From these figures, it
can be clearly seen that the performances for all the datasets are rela-
tively stable as the threshold increases.

For the sensitivity analysis of the batch scale N, Fig. 9 shows the
statistical performances for 10 independent trials. In these three bubble
charts, the horizontal axis is the number of iterations and the vertical
axis shows the pseudo-sample set reliability, which is equal to the
number of reliable samples in U divided by the total number of samples
in U. The bubble size denotes the total selected pseudo-sample number
at the beginning of the current iteration. The bubble color denotes the
value of the batch scale N, which is followed by the final multi-temporal
change detection result. From both charts, in view of the accuracy,
although there are differences in the iterative process of the active
learning steps, the batch scale N has little impact on the classification
results. In view of the computational cost, despite the fact that cases
with a large N can stabilize in earlier iterations, the cases with large
numbers of selected samples will be more burdensome for mapping the
multi-temporal change detection result. According to Fig. 9, setting N as
5 should be a suitable option to strike a balance. Thus, we set N as 5 and
thr as 0.7 for all the experiments described in the previous subsections,
considering both the computational cost and the performance.

6. Conclusion

In this paper, we have proposed a multi-classifier active learning
sample collection method for urban land-cover multi-temporal from-to

Fig. 8. The classification accuracy versus the threshold thr for the Shiyan,
Shenzhen, and Shanghai Landsat images.

Fig. 9. The iterative process versus the batch scale N for (a) the Shiyan, (b) the Shenzhen, and (c) the Shanghai Landsat images.
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change detection. The proposed method was effectively tested in one
small city with a low urbanization level and two rapidly developing
megacities of China, in which the urban environment features chal-
lenging spectral-spatial-temporal heterogeneity. The proposed method
successfully labeled and selected informative and reliable samples to
improve the change detection performance. The collected samples,
which were assessed by high spatial resolution reference maps with
good evaluation records, were taken into account to validate the ef-
fectiveness of the proposed method. When compared with post-classi-
fication and the classical multi-date classification methods, the pro-
posed method showed a significant advantage in change detection
performance.

Training samples are crucial for multi-temporal change detection,
especially for heterogeneous urban areas. Despite the fact that multi-
date classification based techniques have the merit of being task-or-
iented, due to the unclear observations of Landsat imagery (i.e., clouds,
cloud shadows, snow/ice, and SLC-off data) and the rare existence of
some important classes (e.g., stable bare soil), manual multi-temporal
joint sample collection is costly. Although the post-classification based
approaches are not subject to the multi-temporal joint labeling of
training samples, the diversity of the built-up class, the scarcity of the
bare soil class in each independent land-cover mapping, and the error
accumulation (including illogical land-cover change events) from multi-
temporal land covers still restrict their performance and further appli-
cation. The proposed AL-FT method has advantages over these two
above-mentioned techniques, while also overcoming their dis-
advantages. AL-FT purifies the independent land-cover mappings, se-
lects reliable and informative samples, and conducts task-oriented
multi-date classification with sufficient augmented samples. The pre-
sented method was tested in two difficult situations (including a small
training sample set case and a training sample set without joint la-
beling), so that the robustness and accuracy of the proposed approach
can therefore be expected to be of a similar or better quality in the case
of more training samples. Moreover, as a positive attempt in using ac-
tive learning in a label-noise environment, the proposed method
broadens the field of active learning in remote sensing, and will be
beneficial to multi-temporal change detection and other applications.
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