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Abstract— The recent availability of high-resolution multiview
ZY-3 satellite images, with angular information, can provide an
opportunity to capture 3-D structural features for classification.
In high-resolution image classification over urban areas, objects
with diverse vertical structures make urban landscape more
heterogeneous in 3-D space and consequently can make the
classification challenging. In this article, a novel multiangle
gray-level cooccurrence tensor feature is proposed based on the
multiview bands of the ZY-3 imagery, namely, GLCMMA−T. The
GLCMMA−T feature captures the distributions of the gray-level
spatial variation under different viewing angles, which can
depict the 3-D textures and structures of urban objects. The
spectral and GLCMMA−T tensor features are interpreted by
two 3-D convolutional neural network (CNN) streams and then
concatenated as the input to the fully connected layer. This novel
multispectral and multiangle 3-D convolutional neural network
(M2-3-DCNN) combines the spectral and angular information,
and the fused feature has the potential to provide a comprehen-
sive description of urban objects with complex vertical structures.
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The experimental results on ZY-3 multiview images from four test
areas indicate that the proposed method can significantly improve
the classification accuracy when compared with several state-
of-the-art multiangle features and deep-learning-based image
classification methods.

Index Terms— Convolutional neural network (CNN), gray-level
cooccurrence matrix (GLCM), high-resolution image classifica-
tion, multiangle (MA), tensor.

I. INTRODUCTION

CURRENTLY, with the ongoing development of remote
sensors and platforms, more and more high-resolution

remote sensing (HRRS) images, including monoscopic and
multiview images, are becoming available. The improved
resolution and additional viewing angles can provide abundant
details [1] in 3-D space, which are of great benefit to urban
land-cover classification. However, new challenges also arise
with the improved spatial resolution. Specifically, intraclass
variance increases, while interclass variation decreases [2], [3].
Consequently, the interpretation in the spectral domain can
be difficult. To tackle this issue, a large number of studies
have worked toward developing spatial features, including
texture [4]–[7], shape [8], and morphological profiles [9]–[11],
which are effective ways to improve the classification accu-
racy [4]–[11]. For example, application of the gray-level
cooccurrence matrix (GLCM) [4], which is a texture descriptor
that counts how often two pixels of certain gray levels appear
in predefined directions and distances, has resulted in an
improvement in the classification accuracy of high-resolution
images [12].

Meanwhile, although the use of spatial features has been
important in HRRS image classification, these features are
often extracted from monoscopic images that only contain
information of a single viewing angle, and they are unable
to describe the 3-D structure in urban image scenes [13].
Furthermore, the angular information in high-resolution
images such as those acquired by the WorldView-2/3 (WV-2/3)
and ZY-3 satellites has not been fully exploited.

During the process of urbanization, buildings in urban areas
become more diversified, with different heights and materials,
resulting in more complex 3-D structure and increasing het-
erogeneity [14]. Due to the limitations of 2-D planar features
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in representing vertical structures, it is essential to design
features that can capture 3-D information using multiview
high-resolution images.

The ZY-3 satellite, which was launched in January 2012, is
the first civilian stereo mapping satellite of China. The satellite
is equipped with three-line cameras and has the ability to
simultaneously collect the triple-view panchromatic images,
that is, nadir, forward, and backward (NFB), with inclination
angles of ± 22◦. The multiview images are obtained along-
track, together with the multispectral (MS) images, and there
is almost no interval for the acquisition time between them.
The short interval between the acquisition time of multiview
images can minimize the land cover change and the varia-
tions in atmosphere and light conditions in the study area.
In this situation, the variations in gray level in the multiview
images are mainly caused by the difference of viewing angles.
In addition, an appropriate inclination angle (e.g., 22◦ for the
ZY-3 satellite) is beneficial to detecting the man-made classes
like buildings [15]. These characteristics make the ZY-3
imagery a potential data source for capturing urban vertical
structure information.

There are two traditional strategies when using high-
resolution multiview images for classification. One is to gen-
erate a digital surface model (DSM) from stereo images as
additional elevation information by using an image matching
method [16]. For example, Li et al. [17] used the normalized
DSM (nDSM) generated from GeoEye images and Open-
StreetMap to distinguish building types. The obtained accuracy
improvement (3%) confirmed the effectiveness of the stereo
images; nevertheless, the performance of this kind of method
relies on the quality of the DSM, which can be affected by the
image matching accuracy, image occlusions, shadows, and so
on [18]. The other traditional strategy concentrates on explor-
ing the multiangle (MA) reflectance information. The MA
reflectance is obtained by converting the original raw digital
numbers (DN) of multiview images into the surface reflectance
values that contain discriminative information of different
objects [19], [20]. For example, Yan et al. [21] constructed a
bidirectional reflectance distribution function (BRDF) model
based on the multiview observations of an unmanned aircraft
vehicle (UAV) platform. Compared with the base case of
digital orthophoto maps (DOM), the reflectance based on
BRDF extrapolation can provide a 24% improvement in over-
all accuracy (OA). Tao and Amr [22] exploited the multiview
information of UAV images to classify wetland land covers,
obtaining a classification result that was superior to that of the
object-based and BRDF-based methods. However, the above-
mentioned studies mainly focused on the spectral reflectance
of stereo images, while neglecting the abundant MA spatial
information that can be described by the features within and
between multiview images on the basis of the texture, shape,
structure, and spatial position (e.g., MA texture patterns).

Under different viewing angles, urban objects with various
3-D structures exhibit different spatial variation characteristics.
For instance, the roof of a building is usually presented in the
nadir-view image and its lateral sides are often shown in the
forward- or backward-view image. This can be used to boost
the interpretation performance for urban scenes but has not yet

been fully investigated. Hence, there is a need to develop novel
and effective features to exploit the angular information in
multiview imagery. For example, Huang et al. [23] considered
the differences of multiview images as additional information
that can reveal urban structures and materials. By analyzing
the differences from the pixel level, feature level, and label
level, the angular difference features (ADFs) were extracted.
The results showed that ADFs can perform well in classifying
urban scenes, especially complex man-made classes. However,
the ADFs were processed and classified as vectors, leading to
the loss of the 3-D contextual structure inherent in MA images.

The above-mentioned features are, however, low-level or
mid-level features (i.e., ones that focus on image details),
and they lack the ability to capture semantic information
from the images [24]. Recently, deep-learning-based methods,
particularly convolutional neural networks (CNNs), have
shown the ability to learn features hierarchically from low
levels to high levels [25]. These deep features, compared with
handcraft low-level or mid-level ones, are more abstract and
robust and have shown powerful discriminative ability [26]
in HRRS image interpretation. In recent research, 3-D-CNN
models have been used to represent and learn different
data/features from remote sensing (RS) images [27]–[31]. For
example, by simultaneously extracting the spectral–spatial
features, Fang et al. [32] built a depthwise-pointwise (DP)
block, which is composed of a 3-D depthwise convolutional
layer and two pointwise convolutional layers [33]. Ji et al. [34]
classified crop types using a 3-D-CNN model to exploit the
temporal information (such as the full crop growth cycle) of
multitemporal data. However, to the best of our knowledge,
there have been few studies that have used 3-D-CNN models
to exploit angular information in multiview satellite images,
which is an approach that has the potential to explicitly
depict 3-D urban structures. Moreover, the integration
of hand-crafted features and deep learning features has
been demonstrated to be an effective way to improve the
classification accuracy [35], [36]. For example, a two-stream
network [35] was constructed by integrating spectral
information and the local binary pattern feature (LBP,
a man-made texture feature proposed in [37]). Compared with
a one-steam network with only spectral images, the addition of
the LBP stream achieves a better classification performance.

In this article, a multiangle gray-level cooccurrence tensor
feature (GLCMMA−T) and a multispectral and multiangle
3-D convolutional neural network (M2-3-DCNN) are proposed
for urban area classification based on the ZY-3 imagery. The
flowchart of the proposed approach is shown in Fig. 1. The
major contributions of this article are summed up as follows.

First, the proposed GLCMMA−T feature converts ZY-3
stereo images into the multiview gray-level cooccurrence
space to capture the variation characteristics of the gray-
level spatial distributions across viewing angles. Second,
in the feature interpretation stage, the novel M2-3-DCNN
method is designed to exploit the spectral and angular
information in the ZY-3 images. The MS and MA GLCM
tensor features are separately interpreted by the spectral and
angular 3-D-CNN streams, respectively, and are fused in
the following layers. The deep fusion of spectral, spatial,
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Fig. 1. Processing flow of the proposed approach for the classification of urban ZY-3 images.

and angular information achieved by M2-3-DCNN can provide
a comprehensive description for urban areas in 3-D space.
Overall, the proposed GLCMMA−T feature and M2-3-DCNN
method are able to fully use and interpret ZY-3 multiview
satellite images over urban areas.

The rest of this article is organized as follows. A description
of the GLCMMA−T feature is provided in Section II. The
architecture of the proposed M2-3-DCNN method is presented
in Section III. The experimental results of the proposed method
and in-depth comparisons with other state-of-the-art multiview
features and deep-learning-based methods for HRRS image
classification are reported in Section IV. This is followed by
a discussion on the parameters and the three components of
the proposed method in Section V. Finally, the conclusions of
this article are given in Section VI.

II. MA TENSOR TEXTURE FEATURE

A. Traditional GLCM

The GLCM is commonly used to analyze the textures
in remote sensing images. It describes the planar spatial
relationship within a local area of an image by measuring the
correlation between the gray levels of two pixels appearing
in a certain distance r and direction θ . Before calculating the
GLCM, the gray tones appearing in the image are usually
quantized as Ng , which determines the size of the cooccur-
rence matrices. In this article, the relative position is defined
by a displacement vector

�

� = (�x , �y) that represents
the separation of the two neighboring pixels in the row and
column directions. The corresponding distance and direction
between the pixel pairs can be defined as r =

�
�2

x + �2
y

and θ = tan−1
�
�y/�x

�
, respectively. Given the displacement

vector
�

�, the element (i , j) of the GLCM is obtained by
counting the frequency of the cooccurrence between the gray
values for pixel pairs within a sliding window, as follows [4]:

P(i, j,
�

�)=#
�
(x1, y1), (x2, y2) ∈ S|[x2 − x1,

y2−y1

�= �

�, I (x1, y1)= i, I (x2, y2)= j
��

(1)

where # denotes the number of elements contained in the set
in (1). Wx and Wy are the size of the moving window. We let
Dx = {0, 1, . . . , Wx −1} and Dy = {0, 1, . . . , Wy −1} be
the horizontal and vertical spatial domains, respectively. The
positions of the Wx × Wy pixels contained in the local area
are represented by S = {(x , y)| x ∈ Dx , y ∈ Dy}, and
I (x1, y1), I (x2, y2) are the gray levels of two pixels at
positions (x1, y1), (x2, y2) ∈ S. Fig. 2 shows an example of
the cooccurrence matrices generated from a region of a ZY-3

Fig. 2. Example of the traditional GLCM computation. (a) ZY-3 nadir image
and the local area within a sliding window. (b) Corresponding GLCM matrices
in four directions.

nadir-view image. Typically, the GLCMs are normalized by
dividing each element by the total number of pixel pairs that
satisfy the predefined spatial relationship.

B. MA GLCM Tensor

The ZY-3 imagery provides an opportunity to apply GLCM
on multiview images to capture the contextual relationship
in 3-D. In particulars, we introduce both inter- and intraangle
GLCM. Under different viewing angles, the differences can
be apparently observed among multiview images, due to
the viewing angles, solar observational cross section [19],
the presence of lateral sides [38], surface anisotropy, and the
occlusions from other objects and shadows [39]. These factors
can all affect the gray-level spatial distributions of multiview
imagery and reflect the 3-D structures of different land-cover
classes, which are essential to capture the vertical structural
information of urban scenes.

The method proposed here aims to describe the spatial
dependence of gray values in multiview images on the basis
of the GLCM conceptual framework, and hence make full
advantage of the MA textural information. To reduce the
computational cost, the gray values of the MA images are
first quantized to Ng gray levels. A sliding window with the
size of Wx × Wy × Na is used to extract the data cube I
that contains Na multiview panchromatic bands and Wx × Wy

spatial pixels. We define Dx = {0, 1, . . . , Wx −1}, Dy = {0,
1, . . . , Wy −1}, and Da = {0, 1, . . . , Na −1} as the spatial
and angular domains, and S = {(x , y, a)| x ∈ Dx , y ∈ Dy ,
a ∈ Da} denotes the row, column, and angle coordinates of
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Fig. 3. Example of the spatial relationship between the neighboring pixels
in multiview images.

all the pixels in data cube I . In our study, since the ZY-3
multiview images are arranged into a 3-D tensor structure,
the position of pixels in the data cube is expressed by (x , y,
a) ∈ S, where a = [0, −1, 1] represents the nadir, forward,
and backward images, respectively. The vector

�

� = (�x , �y,
�a) is used to describe the displacement between pixel pairs
in the spatial and angular domains, and then the distance r
and direction θ between the pixel pairs can be defined as
r =

�
�2

x + �2
y + �2

a , θ = tan−1
�
�y/�x

�
. Fig. 3 shows

an example of the spatial relationship between pixel pairs
in a 3-D data cube. The displacement vectors represented
by

�

� between pixel A and its neighboring pixels B1, B2,
and B3 are (0, 1, −1), (0, 1, 0), and (0, 1, 1), respectively.
In the figure, it is shown that pixels A and B2 are located in
the nadir image (�a = 0 for B2), while pixels B1 and B3

are located in the forward and backward images, with �a

equaling −1 and 1, respectively. Each element (i , j) of the
MA GLCM tensor (GLCMMA−T) records the frequency of the
cooccurrence between gray values for pixel pairs separated by
a displacement vector

�

� within the 3-D data cube I , which
can be described as

P
	

i, j,
�

�



= #
�
(x1, y1, a1), (x2, y2, a2) ∈ S|[x2 − x1, y2

−y1, a2−a1]= �

�, I (x1, y1, a1)= i, I (x2, y2, a2)= j
��

(2)

where # indicates the number of elements, and the gray values
of the two neighboring pixels at positions (x1, y1, a1) and (x2,
y2, a2) of the data cube are represented by i , j ∈{1, 2, . . . ,
Ng}, respectively.

Fig. 4 demonstrates the computation of GLCMMA−T using
a series of displacement vectors (x , y) = [(1, 0); (1, 1); (0, 1);
(−1, 1)], a = [0, −1, 1] and the corresponding directions
[0◦, 45◦, 90◦, 135◦]. The proposed features are divided into
two groups, according to whether the pixel pairs are from the
same image, which are hereafter named the intraangle and
interangle texture, respectively. These two kinds of textures
provide an effective description of both the planar and
vertical structures in urban areas. The intraangle textures are
calculated based on a mono-view image (i.e., �a = 0). At the
same viewing angle, the intraangle textures can capture the

different characteristics of the gray-level cooccurrences in four
directions (0◦, 45◦, 90◦, and 135◦). Moreover, the differences
between the intraangle textures among different viewing
angles are small for low-lying objects [e.g., a road with
no evident variation in its shape and spatial position in the
multiview images in Fig. 4(b)] and slightly larger for high-rise
objects [e.g., the building shown in Fig. 4(d) and (f)].

On the other hand, the interangle textures, calculated using
a combination of multiview images (�a �= 0), can directly
indicate the variation characteristics of the gray-level spatial
distributions under different viewing angles that are more
closely related to the vertical structures of urban objects.
In addition, the differences between the interangle textures
obtained from different combinations of MA images are more
apparent for high-rise objects than for low-lying ones. Taking
the buildings as example, areas F and B contain more pixels
of shadows in the forward image than those in the nadir image,
while the same area in the backward image is more affected
by the pixels of the lateral sides of the buildings. Therefore, it
can be observed that the differences of the interangle textures
among different multiview image pairs are more apparent for
tall buildings than low-lying ones [Fig. 4(e) and (g)]. This can
be explained by the fact that the variations in the observational
cross sections [19] of low buildings at different viewing angles
are less apparent than those of tall buildings. In general,
the above comparison shows that the GLCMMA−T feature can
provide an effective description of the variation characteristics
of urban objects from the multiview images and can improve
the separability of urban land-cover classes. Please note that
if the urban objects have relatively small variations in the
positions and gray values among the viewing angles (e.g., low
objects), the interangle textures will be similar to the intraangle
ones of the nadir image [see Fig. 4(c)].

III. MULTISPECTRAL AND MULTIANGLE 3-D
CONVOLUTIONAL NEURAL NETWORK

The GLCMMA−T feature intrinsically constitutes a third-
order tensor [Fig. 4(h)] with row, column, and angle modes,
which is more likely to preserve the local contextual rela-
tionship of the textures obtained from multiview images.
The traditional methods for processing tensor features usually
involve vectorization, leading to the loss of the spatial context
among the multiview images. This problem can be addressed
by the tensor-based algorithms that are capable of effectively
exploiting the structures and correlations in the MA textures.
In this section, a tensorial interpretation framework named
M2-3-DCNN is further proposed to extract the 3-D structural
information encoded in the GLCMMA−T feature and to learn
high-level features in the spectral and spatial-angular domains
jointly through a two-stream structure.

A. Multiview 3-D-CNN Filter

CNNs are powerful tools for feature learning and classi-
fication that take the spatial correlation into consideration.
Nevertheless, when the input data inherently have tensor
structures, for example, MA images, it is desirable to exploit
the spatial correlations within and between the MA images.
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Fig. 4. ZY-3 MA images (a) and the derived GLCMMA−T features calculated from three areas belonging to the road [(b) and (c) for intraangle and interangle
textures, respectively], factory [(d) and (e) for interangle and interangle textures, respectively], and tall building [(f) and (g) for interangle and interangle
textures, respectively]. The corresponding MA GLCM tensors are shown in (h).

Compared with the traditional 1-D or 2-D networks,
the convolution operations and the weights in a 3-D-CNN
model [28] are 3-D, to maintain the intrinsic data structures.
With the third-order tensor data as input, the 3-D kernels are
applied to the convolution stage to generate the 3-D feature
maps. We define i , j , and a as the positions of the elements
in the 3-D feature map, where i and j are the coordinates
of the planar spatial domain, and a represents the position in
the angular domain. Given the element yi ja

lm at the position
(i , j , a) of the feature map m in the lth layer, the element
of the feature map n in the following (l + 1)th layer can be
obtained by performing the convolution operation with kernel
w ∈ RW×W×W , which is denoted as

yi ja
(l+1)n = F

⎛
⎝b(l+1)n +



m



wi ,w j ,wa

ω
wi w j wa

(l+1)mn y
(i+wi )( j+w j)(a+wa)

lm

⎞
⎠

(3)

where the size of the convolutional kernel is W × W × W .
ω

wi w j wa

(l+1)mn represents the (wi , w j , wa)th value of the kernel in
the (l + 1)th layer between the input feature map m and the
output feature map n, and b(l+1)n is the corresponding bias
tensor. Unlike the 2-D convolution operators, the 3-D ones
can reveal the correlation and difference of images from the
adjacent viewing angles.

B. Proposed M2-3-DCNN Framework

Diverse urban objects with similar spectral properties and
complex vertical structures make it a challenging task to
classify high-resolution images of urban areas, especially
for images containing man-made architectures. Hence, it is
essential to jointly consider the spectral, spatial, and angular
information contained in the multiview images to improve the
separability of urban objects with complex 3-D structures.
The ZY-3 multiview satellite simultaneously collects nadir,
forward, and backward panchromatic bands, as well as MS
bands. To make better use of the ZY-3 imagery for urban
classification, we propose the M2-3-DCNN framework. In the
two-stream structure, the 3-D-CNN model was used as the
basic unit to interpret the MS data cubes and GLCMMA−T

tensor textures, respectively, and both features have a 3-D
structure. As shown in Fig. 5, an MS stream is designed to
consider the spectral tensor features. Meanwhile, the proposed
GLCMMA−T feature is used as input of the MA stream,
which describes both the intraangle and interangle textures.
By regarding the input data as third-order tensors, the network
preserves the spectral–spatial–angular structure inherent to the
features. The fusion of the final learned high-level features,
which involves stacking the outputs of the MS and MA
streams, can effectively describe the urban area in a joint
spectral–spatial–angular manner. These MS and MA samples
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Fig. 5. Proposed M2-3-DCNN framework.

are fed into the two 3-D-CNN streams, each of which contains
two 3-D convolutional layers and one fully connected layer.
The kernel size of the convolutional layers is empirically set as
5 × 5 × 5 with a stride of 2, and the zero-padding strategy [40]
is also applied. The number of kernels in the two convolutional
layers and the following fully connected layer is 64, 128,
and 128, respectively. The feature maps that pass through the
two convolutional layers and one fully connected layer are
then concatenated. It should be noted that the outputs of the
fully connected layers in the MS and MA streams are the
feature vectors denoted as yMS and yMA, whose lengths are
NMS and NMA, respectively. These two feature vectors are
concatenated as a whole feature vector yMS−MA = [yMS, yMA]
with the length of (NMS, NMA). yMS−MA is used as the input
to the following fully connected layer, which can generate an
appropriate description of the implicit correlations between the
two streams from the fused feature vectors. The output feature
vector of this fully connected layer is

y(l+1)n = F

⎛
⎝b(l+1)n +

N MS+N MA

m=1

ω(l+1)mn yMS−MA
lm

⎞
⎠ (4)

where w(l+1)mn and b(l+1)n denote the weight and bias vector,
respectively, which can be regarded as descriptors of the
correspondence between the MS and MA streams. F(·) is the
rectified linear unit (ReLU) activation function. The output
of the fully connected layer (i.e., y(l+1)n) has the potential to
capture the complementary information from the MS and MA
streams. Finally, a softmax layer is used to predict the class
label for each sample.

IV. EXPERIMENTS

A. Data Sets and Study Areas

The images used in this study were acquired by the ZY-3
satellite, composing of the nadir, forward, and backward

panchromatic images and an MS image (red, green, blue, near-
infrared) in the nadir view. The spatial resolution of ZY-3 is
2.1 m for the nadir panchromatic m for the MS image with four
bands and 3.5 m for the forward- and backward-view images.
As the first step of preprocessing, DSMs were acquired
from the stereo pairs by the semiglobal matching (SGM)
approach [41], and all the ZY-3 images were orthorectified
with the digital elevation models (DEMs) derived from the
DSMs. The calculation of GLCMMA−T is related to the spatial
position of pixels. Without orthorectification, it is difficult
to determine whether the variations in gray-level spatial
distributions are caused by topography or different viewing
angles, especially in areas with complex terrain. The forward
and backward images were registered to the nadir image
using a polynomial transformation, with a root-mean-square
value of less than 0.5 pixels for each study area and were
resampled to the spatial resolution of 2.1 m, so that their
coordinates can be aligned. This step is essential for the calcu-
lation of GLCMMA−T and fusion of spectral–spatial–angular
information. Subsequently, the histogram matching method
was then used to perform the relative radiometric calibration
between the two off-nadir images and the nadir image. This
step is able to eliminate the radiation difference between
multiview panchromatic images and ensure that the variations
in gray levels are mainly derived from different viewing
angles. With the aim of improving the spatial resolution
of the MS images, Gram–Schmidt pan-sharpening [42] was
conducted to fuse the MS images with the nadir panchromatic
image.

The study areas were chosen from four representative
cities of China, that is, Wuhan, Hefei, Shanghai, and Xi’an.
It should be noted that these cities have different degrees of
urban development and scene complexities, which allowed
us to investigate the effectiveness and robustness of the
proposed method in urban area classification. The test images
were acquired at different times, with sizes of 2971 × 3612,
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Fig. 6. Study areas and the corresponding RGB composites of the ZY-3 images of Wuhan, Hefei, Shanghai, and Xi’an.

TABLE I

NUMBERS OF TRAINING (TR) AND TEST (TT) SAMPLES PER CLASS FOR THE WUHAN, HEFEI, SHANGHAI, AND XI’AN DATA SETS

Fig. 7. (a) Example of the training and test sample selection. Constraint of distance between them in the (b) horizontal direction and the (c) vertical direction.
(d is the minimum distance between two independent polygons and w represents the window size.)

2835 × 3775, 3559 × 3559, and 3367 × 3429, respectively,
as shown in Fig. 6.

In this study, nine urban land-cover classes were considered
(see Table I). The reference polygons for the four study
areas were first manually delineated through visual inspection
of the ZY-3 nadir images and Google Earth high-resolution
images. These polygons were composed of pixels belonging
to a certain class. To eliminate the spatial autocorrelation, for
the reference polygons of a certain class, the semivariance
analysis [43] was applied to quantitatively measure their
autocorrelation level and determine the distance threshold t .
The minimum distance d between two independent polygons
should be larger than t and only the polygons satisfying this
constraint were preserved. Stratified random sampling [44]
was then adopted to select 50% of the polygons for train-
ing and the other 50% for testing. Subsequently, as shown
in Fig. 7, each polygon was divided into a set of square

windows, and the size of each window is the same as the
one of the spatial window used for extracting GLCMMA−T.
The training and test samples were collected by selecting
the central pixel of each block (see Fig. 7). The numbers of
training and test samples for the four data sets are provided
in Table I.

B. Experimental Setting

1) Parameter Setting of GLCMMA−T: The proposed
GLCMMA−T feature was generated from the multiview images,
with the window size of Wx = Wy = 19, and the dis-
placement vectors were described by the interpixel distance
r = 1 (for a detailed discussion of the window size and
distance value, see Section V-E) and directions θ = [0◦,
45◦, 90◦, 135◦]. These parameters for GLCMMA−T calculation
were determined according to the spatial resolution of the
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TABLE II

DESCRIPTIONS OF THE COMPARABLE METHODS AND THE PROPOSED METHOD

ZY-3 images and the sizes of the objects in the study areas.
The original images were quantized to 16 gray levels by
linear transformation, as suggested in [4]. Hence, the GLCM
matrices calculated using the multiview images from the four
directions formed a three-mode tensor feature with a size
of 16 × 16 × 24, including both the intraangle and interangle
textures.

2) Hyperparameter Setting for the Proposed Neural Net-
work: First, to alleviate the over-fitting problem, the dropout
strategy [52] was applied to the second convolutional layer
in each stream, with the dropout rate set to 0.5, according
to [52]. All the networks were run on a desktop computer
with TensorFlow-GPU-1.13.1, an Intel Core i9-9900X CPU
(at 3.50 GHz), 128 GB RAM, and an 11 GB GeForce RTX
2080 Ti GPU. For the training of M2-3-DCNN, the learn-
ing rate was initially set to 0.001 and was reduced by 1/e
(where e is the Euler number) when the loss value did not
decrease in two consecutive iterations. The Adam optimization
method [53] was adopted to optimize the cross-entropy loss
function, and the batch size was 64. The hyperparameters
of the deep-learning-based methods (see Table II) used in
the comparison were set according to the original articles.
It should also be noted that a lot of labeled samples are
required in the training procedure of a deep network. However,
the availability of spatially independent and well-annotated
training samples is limited due to the high cost of manual
labeling [54], [55]. To solve this dilemma, data augmenta-
tion [56] was used to increase the amount of training data.
The new samples were created by applying deformations to
the annotated samples, which is an approach that requires little

additional computation and does not alter the original labels.
Specifically, a series of image transformations were applied in
the spatial dimension for the data augmentation, that is, rota-
tion, horizontal and vertical flipping, and copying [57], so that
the network can be more robust to spatial deformations. The
training samples were empirically augmented to 25 000 per
category.

3) Comparable Methods: In the experiments, a number
of state-of-the-art algorithms were taken as benchmarks,
as listed in Table II. The compared methods included two
novel hand-crafted multiview features and two of the most
recent CNN-based algorithms designed for HRRS image
classification.

C. Experimental Results

The results of all the experiments for the four data sets are
presented in Tables III–VI, respectively, where the numbers
in bold represent the highest accuracy for each class. The
corresponding classification maps are shown in Figs. 8–11,
and the zoomed-in classification maps are provided in Fig. 12.
In addition to the overall and class-specific accuracies,
McNemar’s test [58] is also used to indicate whether
the differences between the classification results of the two
methods are statistically significant (Table VII). The following
conclusions can be drawn:

1) The classification performance using the three features
extracted from the multiview images, that is, nDSM,
ADF, and GLCMMA−T, is first analyzed. It can be
seen that M2-3-DCNNS+MA gives better results than
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TABLE III

CLASSIFICATION RESULTS FOR THE WUHAN DATA SET

TABLE IV

CLASSIFICATION RESULTS FOR THE HEFEI DATA SET

TABLE V

CLASSIFICATION RESULTS FOR THE SHANGHAI DATA SET

TABLE VI

CLASSIFICATION RESULTS FOR THE XI’AN DATA SET

RFS+nDSM and RFS+ADF, with significant increments of
about 18.3% and 12.7% in OA, respectively. The reason
why nDSM is inferior to the proposed method is that
in some situations, the height information affected by
mismatched pixels is not accurate enough to distinguish
urban objects with complex vertical structures [23],
as in the confusion between residential buildings
with different heights and factories in Fig. 12 [b2 (as
shown in the red rectangles)]. In contrast to nDSM,
GLCMMA−T can more adequately exploit the implicit

angular information and obtain a superior classification
performance (e.g., the 38.2% increase in the accuracy
for low-rise residential buildings, denoted as LRB
for convenience in Tables III–VII). Using another
feature extracted from multiview images, RFS+ADF,
gives significantly better results than RFS+nDSM, with
an average increment of 5.6% in OA. However,
RFS+ADF is still inferior to the proposed work. The
OA improvements achieved by M2-3-DCNNS+MA over
RFS+ADF are partly due to the fact that the tensor-based
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Fig. 8. Classification maps of (a) RFS+nDSM, (b) RFS+ADF, (c) AMDF-ResNetS, (d) AMDF-ResNetS+NFB, (e) ResUNet-aS, (f) ResUNet-aS+NFB, and
(g) M2-3-DCNNS+MA for the Wuhan data set.

Fig. 9. Classification maps of (a) RFS+nDSM, (b) RFS+ADF, (c) AMDF-ResNetS, (d) AMDF-ResNetS+NFB, (e) ResUNet-aS, (f) ResUNet-aS+NFB,
(g) M2-3-DCNNS+MA, and (h) ground-truth reference for the Hefei data set.

GLCMMA−T feature captures both the interangle
and intraangle information (i.e., the angular–spatial
information), but the vector-based ADF feature may
result in the loss of spatial structures and incomplete
utilization of the information in the multiview images.
Taking the low-rise residential buildings and roads

as examples, the accuracy improvements achieved by
M2-3-DCNNS+MA are 33.3% and 48.2% on average
for the four data sets, respectively, compared with
RFS+ADF. The misclassifications of these two categories
using RFS+ADF are marked by the red rectangles
in Fig. 12 (a3). In short, the proposed method which
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Fig. 10. Classification maps of (a) RFS+nDSM, (b) RFS+ADF, (c) AMDF-ResNetS, (d) AMDF-ResNetS+NFB, (e) ResUNet-aS, (f) ResUNet-aS+NFB,
(g) M2-3-DCNNS+MA, and (h) ground-truth reference for the Shanghai data set.

Fig. 11. Classification maps of (a) RFS+nDSM, (b) RFS+ADF, (c) AMDF-ResNetS, (d) AMDF-ResNetS+NFB, (e) ResUNet-aS, (f) ResUNet-aS+NFB,
(g) M2-3-DCNNS+MA, and (h) ground-truth reference for the Xi’an data set.

jointly uses spectral–spatial–angular information
is superior to the recently developed hand-crafted

spectral–angular feature extraction methods, from both
the perspective of ground and above-ground objects.
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Fig. 12. Zoomed-in classification maps for (a) Wuhan, (b) Hefei, (c) Shanghai, and (d) Xi’an data sets.

TABLE VII

MCNEMAR’S TEST BETWEEN M2-3-DCNNS+MA AND THE COMPARED METHODS. THE SIGNIFICANTLY DIFFERENT METHODS

ARE INDICATED AS ∗∗ WITH γ > 3.84 AT A 95% CONFIDENCE LEVEL AND ∗ FOR γ > 2.71 AT A 90% LEVEL

2) Two recently proposed deep learning methods that learn
the spectral–spatial structure of the land covers for
HRRS image classification were also tested in this study.
For a fair comparison, inputs with the spectral feature
alone and a stack of spectral and multiview bands were
considered. By importing the spatial features learned
by the deep networks, it can be observed that the
accuracies of AMDF-ResNet and ResUNet-a are higher
than those of the hand-crafted feature methods described
earlier (Tables III–VI), especially for roads (with a
27.6%–60.0% increment in accuracy), as shown by the
cyan rectangles in Fig. 12 (c2–4 and c6). In addition, for
both the AMDF-ResNet and ResUNet-a architectures,
the addition of multiview features can improve the
classification accuracy slightly, which therefore encour-
ages us to further exploit MA information. Compared

with AMDF-ResNetS+NFB and ResUNet-aS+NFB,
the proposed M2-3-DCNNS+MA shows a significantly
better classification performance [see Table VII and
the cyan rectangles in Fig. 12 (d4, d7, and d8)],
which demonstrates the advantage of deep fusion of
the spectral–spatial–angular information. In summary,
it can be said that the proposed method is significantly
superior to the recent state-of-the-art methods. Detailed
descriptions and analysis of each component in
M2-3-DCNNS+MA are provided in Section V.

V. DISCUSSION

In the following, the three components of the proposed
method are discussed, that is, the excavation of spatial–angular
information from multiview images, the fusion of the
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Fig. 13. Accuracy of each category when using the MS or MA stream alone and when using both these streams for (a) Wuhan, (b) Hefei, (c) Shanghai, and
(d) Xi’an data sets.

multisource information, and the effect of the 3-D convolu-
tion. The robustness of the parameter of GLCMMA−T is also
analyzed.

A. Comparison Between GLCMM A−T and GLCM

To demonstrate the advantage of the MA-image-derived pla-
nar and vertical textures, the traditional GLCM [4] calculated
from four directions of the nadir image was compared. The
parameters for generating the traditional GLCM, including
the window size and displacement vector, were the same as
those for GLCMMA−T. For a fair comparison, the design of
M2-3-DCNNS+N was the same as that of M2-3-DCNNS+MA,
except that GLCMMA−T was replaced by the traditional
GLCM. As seen in Table VIII, the performance differences
can be mainly attributed to the better classification of
GLCMMA−T on the above-ground objects (with accuracy
increases of 5.5%, 9.6%, 7.0%, and 2.8%, on average,
for low-rise residential buildings, middle-rise residential
buildings, high-rise residential buildings, and industrial
buildings (IBs), respectively).

B. Effect of Fusing MS and MA Information

The proposed M2-3-DCNN framework simultaneously
extracts the spectral and spatial–angular information with a
two-stream architecture. To demonstrate the function of this
architecture, three benchmark methods were designed. The
first two used only one stream with either the MS or MA

TABLE VIII

ACCURACY INCREMENTS ACHIEVED BY M2-3-DCNNS+MA

OVER M2-3-DCNNS+N

feature as input, and the third method stacked the MS and
MA features as input (i.e., a data-fusion approach) and fed
this into one stream. In Fig. 13, it can be clearly seen that the
MA stream performs better in classifying the buildings with
different heights, while the MS stream is better at identifying
the natural land covers (e.g., water, soil, vegetation) that have
apparent spectral characteristics. In particular, an interesting
example is the IBs, which are better classified by the MS
stream. This phenomenon can be attributed to two factors:
1) the IBs usually have a low height, leading to a small angular
difference; and 2) the color of the roofs for most of the IBs is
blue or red. These factors make the MS features more appro-
priate than the MA features for describing the characteristics
of the IBs. By courtesy of the concatenation-based fusion [59]
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TABLE IX

OA OF THE DATA-LEVEL AND FEATURE-LEVEL FUSION-BASED AMDF-RESNETS+NFB, RESUNET-AS+NFB, AND M2-3-DCNNS+MA,
AS WELL AS THE RESULTS OF MCNEMAR’S TEST BETWEEN THEM, WHERE ∗∗ INDICATES γ > 3.84 AT THE 95% CONFIDENCE

LEVEL AND ∗ FOR γ > 2.71 AT A 90% LEVEL

Fig. 14. OA of M2-3-DCNN with a series of window sizes for the four
study areas.

of the MS and MA information, M2-3-DCNNS+MA is superior
to the MA single-stream network in almost all the categories,
and it also presents advantages over the MS stream in the
three classes: residential buildings and roads (for the Shanghai
and Xi’an data sets). Hence, it is of value to jointly exploit
the complementary multisource information for complex urban
area classification.

The advantage of fusing the complementary MS and MA
information has been underlined by the experimental results.
However, the fusion of the spectral cubes and the GLCMMA−T

tensor textures by M2-3-DCNN can be carried out at both the
feature level (i.e., the proposed method) and the data level
(i.e., the fourth and sixth benchmark methods). For the purpose
of comparison, we achieved the data-level M2-3-DCNN, that
is, the spectral data cubes and GLCMMA−T were stacked
and input into the single 3-D-CNN stream, and the feature-
level AMDF-ResNetS+NFB or ResUNet-aS+NFB method, that is,
the 3-D-CNNs were replaced by AMDF-ResNet or ResUNet-a
(without the softmax layer) in the two-stream architecture, and
the input of these two streams were MS and multiview data
cubes, respectively.

In Tables IX and X, the OAs of these two fusion
approaches are presented, as well as the results of McNemar’s
test between them. It can be found that for all the data sets,
the feature-level fusion of M2-3-DCNN performs significantly
better than the data-level fusion and improves the OA by
2.8% on average. For AMDF-ResNetS+NFB and ResUNet-
aS+NFB, using feature-level fusion can improve the OA by
1.1% and 0.8%, respectively, compared with their data-level

TABLE X

MCNEMAR’S TEST BETWEEN M2-3-DCNNS+MA AND DATA-LEVEL AND

FEATURE-LEVEL FUSION-BASED RESUNET-AS+NFB, AND

RESUNET-AS+NFB. THE SIGNIFICANTLY DIFFERENT
METHODS ARE INDICATED AS ∗∗ WITH γ > 3.84

AT A 95% CONFIDENCE LEVEL AND ∗ FOR

γ > 2.71 AT A 90% LEVEL

fusion approach. These results demonstrate that the deep
feature learning in a separate manner from two independent
3-D-CNNs (i.e., MA and MS) is more capable of distin-
guishing complicated urban objects than one-time learning
in a feature stacking manner. In addition, it should be noted
that our results are also consistent with the finding in [35]
and [59], in that late fusion (feature-level) is better than early
fusion (data-level), and our research further extends this to the
semantic classification of MS and MA images. Furthermore,
our M2-3-DCNNS+MA can still significantly outperform
AMDF-ResNet and ResUNet-a base on feature-level fusion,
with increment of 1.6% and 2.3% in OA, respectively. Based
on the above analysis, it can be said that the superior accuracy
achieved by our proposed method mainly benefits from the
proposed GLCMMA−T multiview tensor features and the
two-stream 3-D-CNN network. Among the multiview images,
high-rise objects will show apparent variations in textures,
while low-lying ones usually present similar textural patterns.
In this regard, the intraangle and interangle textures defined
in GLCMMA−T can describe these planar and vertical charac-
teristics of urban objects more effectively. On the other hand,
in contrast to the 2-D networks, for example, AMDF-ResNet
or ResUNet-a, 3-D-CNN is able to maintain the local contexts
and structures of spectral data cubes and multiview tensor
textures, which, therefore, fully exploits the spectral–spatial–
angular information contained in the ZY-3 images.

C. Advantages of 3-D-CNN Over Other Popular 2-D
Networks

To further mine the cross-channel information (i.e., spectral
bands for the MS images and MA texture for the multiview
images), we embedded the 3-D convolution into the network
structure, so as to maintain the advantage of 3-D convolution
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TABLE XI

THE CLASSIFICATION RESULTS OF THE FOUR TWO-STREAM NETWORKS, WITH EACH STREAM USING 2D-CNN, VGG-19, RESNET-50, AND 3D-CNN,
RESPECTIVELY, FOR THE FOUR DATASETS (THE BOLD NUMBERS REPRESENT THE HIGHEST ACCURACY FOR EACH CLASS)

in excavating the spectral–spatial–angular information.
Considering the burdensome parameters of the 3-D convolu-
tion filter and the use of the oversized receptive field in deep
networks (e.g., 224 × 224 for ResNet-50 [49] with 50 layers)
for HRRS image classification, the proposed method uses
a lightweight architecture with two 3-D convolution blocks.
To analyze the rationality of the proposed method, several
popular 2-D networks with more complex architectures were
used for comparison, that is, VGG-19 [60] and ResNet-50.
In this section, the three two-stream networks that fuse the MS
images and GLCMMA−T are denoted as M2-2-DCNNS+MA,
M2-VGG-19S+MA, and M2-Resnet-50S+MA, respectively:

1) M2-2-DCNNS+MA has the same architecture as
M2-3-DCNNS+MA, except that the convolutional kernels
are 2-D filters with the same spatial size;

2) M2-VGG-19S+MA uses the same fusion strategy as
M2-3-DCNNS+MA, except that each stream has been
replaced by VGG-19;

3) M2-Resnet-50S+MA is built in a similar fashion to
M2-VGG-19S+MA. The inputs were spatially interpolated
to fit the requirements of VGG-19 and ResNet-50.

The classification accuracies and the results of McNemar’s
test are provided in Tables XI and XII. For the different
deep networks, the OA improvements achieved by M2-
3-DCNNS+MA are 2.7%–7.0%, compared with M2-2-
DCNNS+MA, M2-VGG-19S+MA, and M2-Resnet-50S+MA. The
3-D-CNN combined with GLCMMA−T is particularly effective
in classifying buildings and roads, showing a 7.3% increase
in the accuracy for low-rise residential buildings. Compared
with the networks with more complex architectures, that is,
VGG-19 and Resnet-50, the 3-D-CNN used in each stream
has fewer parameters and a lower complexity. In addition,
the floating-point operations (FLOPs) of the proposed
M2-3-DCNNS+MA total 0.13 billion, which is 0.3% and
1.4% of the FLOPs of M2-VGG-19S+MA (39.84 billion)
and M2-Resnet-50S+MA (9.43 billion), respectively. Hence,

TABLE XII

MCNEMAR’S TEST BETWEEN M2-3-DCNNS+MA AND THREE

2-D NETWORKS (M2-2-DCNNS+MA, M2-VGG-19S+MA, AND

M2-RESNET-50S+MA). THE SIGNIFICANTLY DIFFERENT

METHODS ARE INDICATED AS ∗∗ WITH γ > 3.84
AT 95% CONFIDENCE LEVEL AND ∗ FOR

γ > 2.71 AT 90% LEVEL, RESPECTIVELY

the proposed M2-3-DCNNS+MA requires fewer training
samples and can save on the computational cost.

D. Advantages of M2-3-DCNN Over Other Tensor Classifier

Tensor classifiers, such as the support tensor machine
(STM) [61], can be adopted to classify the combined spectral
data cubes and GLCMMA−T (denoted as STMS+MA) while
maintaining their tensorial structures. The classification
accuracies are compared in Table XIII. It can be seen that
M2-3-DCNN can significantly improve the OA by 3.0%–5.6%
compared with STM. The improvement of OA is mainly
attributed to better classification of middle-rise residential
buildings, factory buildings, roads, and bare soil, with
average accuracy increments by 8.1%, 4.9%, 9.9%, and 5.7%,
respectively. These results also demonstrate the advantage of
deep fusion of spatial and angular features.

E. Influence of the Window Size, Displacement Value, and
Proportion of Training Samples

The spectral data cubes and the GLCMMA−T feature are
obtained using a local window, and its size is related to the
spatial resolution of the image and the objects of interest.
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TABLE XIII

CLASSIFICATION RESULTS OF STMS+MA AND M2-3-DCNN AND MCNEMAR’S TEST BETWEEN THEM FOR FOUR DATA SETS. THE SIGNIFICANTLY

DIFFERENT METHODS ARE INDICATED AS ∗∗ WITH γ > 3.84 AT A 95% CONFIDENCE LEVEL AND ∗ FOR γ > 2.71 AT A 90% LEVEL

TABLE XIV

EXPERIMENTAL RESULTS USING DIFFERENT DISTANCE

VALUES FOR THE HEFEI DATASET

To analyze the impact of the window size on the classification
performance, a series of experiments were implemented with
the following values of Wx × Wy : 5 × 5, 7 × 7, 11 × 11,
15 × 15, 19 × 19, and 23 × 23. Fig. 14 gives an illustration
of the relationship between the window size and the classi-
fication accuracy. It can be observed that for all the study
areas, the OA values of M2-3-DCNNS+MA increase with the
increase in parameters Wx and Wy until the size is larger than
19 × 19. This effect of the window size can be explained
by the fact that small windows cannot provide sufficient
spatial and angular information, while large sizes may result
in reduced separability of samples with the inclusion of more
pixels from the neighboring objects.

The experimental results using different spatial distances
are shown in Table XIV. It can be seen that the classification
accuracies of M2-3-DCNNS+MA using the three displacement
values (i.e., r = 1, 3, or 5) are quite similar, and the results
obtained by r = 1 are slightly superior to those obtained by
r = 3 and r = 5, by 1.6% and 3.1% in OA, respectively.
Furthermore, the CNN also has the ability to capture the
spatial relationships in a neighborhood [62]. Therefore, in this
study, we only used one spatial distance for computing the
GLCMMA−T feature (r = 1).

In addition, we have investigated the impact of the number
of training samples on the classification results. As shown
in Fig. 15, with the proportion of training polygons varying
from 25% to 75%, the OA of M2-3-DCNNS+MA has been
improved by 5.9%–7.0%. It is a common sense that a larger

Fig. 15. Classification results of M2-3-DCNNS+MA with 25%, 50%, and
75% of the reference polygons for training samples.

proportion of training samples can lead to higher classification
accuracies.

However, it can be observed that our method also has sat-
isfactory performance with small number of training samples,
for example, M2-3-DCNNS+MA with 25% training samples can
still outperform RFS+nDSM and RFS+ADF with 50% training
samples.

F. Additional Experiments on Worldview-2 (WV-2) Images

We have conducted an additional experiment using WV-2
images of Wuhan with two viewing angles. The RGB com-
posites and the ground-truth reference are shown in Fig. 16.
The classification result of our proposed M2-3-DCNNS+MA

is provided in Table XV. We also compare our method with
the state-of-the-art multiview features, for example, the nDSM
and ADFs, and two deep-learning-based methods: AMDF
and ResUNet. The input of the two networks includes the
spectral and multiview images, denoted as AMDF-ResNetS+NF

and ResUNet-aS+NF, respectively. It can be seen that our
M2-3-DCNNS+MA can also be adapted to the WV-2 images
and improve the OA by 3.1%–16.5% compared with other
methods.
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Fig. 16. (a) RGB composites of the WV-2 image of Wuhan. (b) Ground-truth reference.

TABLE XV

CLASSIFICATION RESULTS FOR THE WORLDVIEW-2 DATA SET

VI. CONCLUSION

The ZY-3 imagery, with MS and multiview bands, has the
potential to achieve accurate classification of urban areas.
In this article, a novel GLCMMA−T has been proposed,
which consists of using intraangle and interangle textures.
The intraangle textures are obtained from a single-view band,
while the interangle textures are calculated from different
combinations of multiview bands from the ZY-3 images.
The GLCMMA−T feature can depict the vertical structures
in urban areas by capturing the variation characteristics of
the gray tones under different viewing angles. Furthermore,
to fully exploit the abundant information in the ZY-3 multiview
satellite images, the M2-3-DCNNS+MA framework has been
designed. The spectral tensor feature is the input to the MS
stream, and the GLCMMA−T feature is interpreted by the MA
stream. The deep features learned from the two streams are
concatenated and used as inputs for the fully connected layer to
exploit the implicit information in the spectral–spatial–angular
domain.

The classification performance of the proposed M2-3-
DCNNS+MA when applied on the ZY-3 images over four
study areas was compared with the performance of other
state-of-the-art methods. A series of experiments were carried
out to further verify the effectiveness of each component
in the proposed method. The GLCMMA−T, as well as the
deep excavation and fusion of the joint spectral–spatial–
angular information, can improve the separability of urban

objects. We explored the potential of angular information
in multiview images to describe the 3-D urban structures
by designing an MA feature extraction and interpretation
framework. In the future, we will work toward on the proposed
multiangular tensor for the classification and change detection
of time-series RS images. When applied to multitemporal
images, the GLCMMA−T could describe the multitemporal
texture characteristics or phonological variations.
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