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Abstract: In China, ground-level ozone has shown an increasing trend and has become a serious
ambient pollutant. An accurate spatiotemporal distribution of ground-level ozone concentrations
(GOCs) is urgently needed. Generalized linear models (GLMs) and Bayesian maximum entropy
(BME) models are practical for predicting GOCs. However, GLMs have limited capacity to capture
temporal variations and can miss some short-term and regional patterns, while the performance of
BME models may degrade in cases of sparse or imperfect monitoring networks. Thus, to predict
nationwide 1 km monthly average GOCs for China, we designed a novel hybrid model containing
three modules. (1) A GLM was established to accurately describe the variability in GOCs in the space
domain. (2) A BME model incorporating GLM residuals was employed to capture the temporal
variability of GOCs in detail. (3) A combination of GLM and BME models was developed based on
the specific broad range of each submodel. According to the cross-validation results, the hybrid model
exhibited superior performance, with coefficient of determination (R2) values of 0.67. The predictive
performance of the large-scale and high-resolution hybrid model is superior to that in previous
studies. The nationwide spatiotemporal variability of the GOCs derived from the hybrid model
shows that they are valuable indicators for ground-level ozone pollution control and prevention
in China.

Keywords: ground-level ozone; national scale; China; spatiotemporal distribution; hybrid model

1. Introduction

In recent years, increasing ground-level ozone concentrations (GOCs) have attracted
worldwide attention because of their adverse effects on human health, climate, and vegeta-
tion [1,2]. To better understand these adverse effects, an accurate and high-resolution GOC
distribution is urgently needed.

The prediction of GOCs has become a research topic of interest in the atmospheric
environment community. In view of model construction (Table 1), two broad types of
models have been employed to predict GOCs: deterministic models and statistical models.
Deterministic models, such as air quality models [2,3], weather research and forecasting
models [4,5], and chemical transport models [6], can predict GOCs based on the theoret-
ical description of ozone formation processes, but the computation process is relatively
complex [7], and it is difficult to obtain high-resolution products (e.g., 1 km).
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Table 1. Model survey of recent studies on GOC prediction.

Model Study Area Temporal/
Spatial Resolution R2 RMSE (µg/m3) Reference

Deterministic model

Site-specific Daily/- - - [8]
National Annual/- - - [9]

City Daily/750 m - - [10]
City Daily/50 km - - [11]

Statistical model

GLM
Site-specific - 0.56–0.80 - [12]
Site-specific - 0.35–0.81 - [13]
Site-specific - 0.34–0.71 8.07–14.24 [14]

BME
City Monthly/1 km 0.65 7.06 [15]
City Monthly/- - - [16]
City Daily/- - - [6]

Others

National Daily/- 0.74 7.2 [17]
Site-specific Seasonal/- - - [18]

National Monthly/0.1◦ 0.60–0.87 - [19]
Site-specific Daily/- - 18.4–42.7 [20]

The explanatory variables used to predict GOC include meteorological conditions and
environmental pollutants. First, as the most frequently used variables, meteorological con-
ditions (e.g., temperature, wind and precipitation) strongly influence ozone formation and
deposition. Specifically, temperature, a proxy for solar radiation, accelerates/decelerates
the speed of photochemical reactions in GOCs [2,21]; wind usually affects GOCs by in-
fluencing atmospheric mixing, dispersion, and transport [15]; and precipitation leads to
a reduction in photochemical reaction efficiency [22]. Second, several environmental pol-
lutants originating from human activity [13] and natural sources [23] are also applied to
predict GOCs. According to the source appointment performed by the Ministry of Envi-
ronment, ground-level ozone is a by-product of many human activities, including traffic
emissions, coal combustion, and industrial emissions [24]. Pollutants emitted by natural
sources are considered in prediction models due to their correlation with photochemical
reactions in ozone formation [20]. In general, an increase in explanatory variables can
improve the predictive performance of a model. However, explanatory variables across
a broad geographic area on a large scale are not easy to acquire at present [25].

In China, urbanization and industrialization have led to severe ground-level ozone
pollution [26,27]. This emerging severity of ozone pollution presents a new challenge for
emission control strategies. According to a survey of mainstream research, most studies
have focused on site-specific predictions [9,13,14,25,28] or city scales [5,10,11,22,29]. Mean-
while, in situ measurements of GOCs in China remain insufficient to assess the nationwide
effects of ozone pollution [9]. Thus, an increasing number of studies have focused on
the prediction of GOCs in some areas of China (such as cities or provinces) [25,29]. A few
scholars have tried to build models at the national scale for China, such as Zhan et al.
(2018) [30] and Liu et al. (2020) [19]. However, such studies are mostly performed at
a relatively rough resolution (i.e., 0.1 degrees or even coarser).

In recent years, statistical models, such as generalized linear models (GLMs) [12,14]
and Bayesian maximum entropy (BME) models [8,31], have become more practical in
GOC prediction by employing correlations between ozone measurements and related
explanatory variables [12,32]. GLM can accurately describe the variability in GOCs in the
space domain by using a nonlinear regression framework [12] but has limited capacity
to capture temporal variations and can miss some short-term and regional patterns [14].
BME is an interpolation method that assigns a series of weights to observed monitoring
site data to compute concentrations at measurement sites. While a BME model is capable
of describing the temporal variability of GOCs in detail, its performance degrades in cases
of sparse or imperfect monitoring networks [15]. Other statistical models, such as machine
learning techniques and land use regression models, were also used to predict air pollution
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concentrations. However, “black-box like” machine learning methods are insufficient
to explain and analyze the relationship between input and output variables [17,19,20],
and land use regression models are usually conducted on a relatively small geographical
scale [15].

According to recent studies, combining a coarse estimate from a regression model
and a refined variation from an interpolation model may have merit [15,33]. For example,
the combination of a land use regression (LUR) model and a BME model could effectively
increase the predictive accuracy for pollutant concentrations, such as GOCs in Quebec [15]
and PM2.5 concentrations in China [33]. However, LUR models are somewhat inadequate in
capturing the nonlinear relationship between GOCs and related explanatory variables [34].
Inspired by these works and the advantages of GLMs and BME models, we designed
a novel hybrid model that combines a GLM and a BME model to achieve a satisfactory
estimation of monthly average concentrations at a high spatial resolution (i.e., 1 km) across
China in 2018. According to the predictive abilities and data accessibility, land surface
temperature (LST), bias-corrected total precipitation (BCTP), total column production of
precipitation (TCPP), 2 m specific humidity (SH), relative humidity after moisture (RHAM),
road density (RD), longitude (LON), latitude (LAT), and day number sequence (DNS)
were utilized. Cross-validation was applied to test the model performance. Using the
hybrid model, we derived the nationwide spatiotemporal distributions of monthly GOC
and conducted spatiotemporal pattern analysis, which are helpful to control, understand,
and prevent ground-level ozone pollution in China.

2. Study Areas

This study takes mainland China as the research area. Large-scale real-time GOCs
have been regularly monitored since 2013 via a national air quality monitoring network in
China [9,30]. The coordinates of the national monitoring sites and the hourly ground-level
ozone records from 13 May 2014, to 1 August 2019, are acquired from the China National
Environmental Monitoring Center (CNEMC). The monitoring sites are mainly located in
East, Central, and South China, but they are relatively sparse in North, Northeast, North-
west, and Southwest China [35] (Figure 1). We estimated the daily average concentration of
ozone for each site when at least 75% of the hourly measurements were available, according
to [15].
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3. Hybrid Model: GLM + BME

In this study, a hybrid model was developed to predict nationwide monthly average
GOCs at a 1 km spatial resolution. The three major modules (see Figure 2) constituting
the proposed hybrid model are described in Sections 3.2–3.4. Section 3.2 describes the
variability in GOCs in the space domain by using a GLM. Then, a BME model incorporating
information from the GLM was employed to capture the temporal variations in GOCs
in Section 3.3. Finally, the information from GLM and BME models were combined to
obtain more accurate predictions based on the specific broad range of each submodel
in Section 3.4.
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3.1. Materials

The list of utilized explanatory variables was summarized (see Table 2). Multisource
geospatial data, including LST, BCTP, TCPP, SH, RHAM, and RD, were obtained and
resampled to a uniform grid cell (i.e., 1 km × 1 km) by using ArcGIS 10.5, ENVI 4.7, and
MATLAB R2014a. For example, LST (spatial resolution: 1 km × 1 km) was derived from
the Moderate Resolution Imaging Spectroradiometer (MODIS) product MYD11A1 [36].
BCTP, TCPP, SH, and RHAM (spatial resolution of both: 0.667◦ × 0.5◦) were obtained
from the Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2) and resampled by nearest-neighbor interpolation [37]. All the meteorological
products ranged from 13 May 2014, to 1 August 2019. The RD value D was calculated
based on Equation (1).

D = L/A (1)

where L is the total length of the major roads extracted from OpenStreetMap (OSM)
(i.e., motorway, trunk, primary and secondary highways) within a circular area with
a 1 km radius, and A is the circular area. The multisource geospatial data, together with
geolocation information (i.e., LON and LAT) and temporal information (i.e., DNS), were
used as explanatory variables in building the hybrid model. All the data (including ground-
level ozone measurements and explanatory variables) were matched by their grid cell ID
and DNS for model development and validation.



Remote Sens. 2021, 13, 4324 5 of 15

Table 2. List of explanatory variables.

Explanatory Variable Unit Spatial Resolution Temporal Resolution Preprocessing Method

LST oC 1 km × 1 km Day Spatial overlay
BCTP kgm−2s−1 0.667◦ × 0.5◦ Day Nearest-neighbor interpolation
TCPP kgm−2s−1 0.667◦ × 0.5◦ Day Nearest-neighbor interpolation

SH kgkg−1 0.667◦ × 0.5◦ Day Nearest-neighbor interpolation
RHAM 1 0.667◦ × 0.5◦ Day Nearest-neighbor interpolation

RD km/km2 Polyline Year D = L/A
LON ◦ NA NA NA
LAT ◦ NA NA NA
DNS NA NA NA NA

LST: land surface temperature, BCTP: bias-corrected total precipitation, TCPP: total column production of precipitation, SH: 2 m specific
humidity, RHAM: relative humidity after moisture, RD: road density, LON: longitude, LAT: latitude and DNS: day number sequence.

3.2. GLM Module

The GLM module is performed to produce monthly and seasonal average GOCs at a
1 km spatial resolution (i.e., MGOCsGLM and SGOCsGLM). Daily average concentrations of
eligible site-days (DGOCss,t), station-days explanatory variables (Vars,t), and wall-to-wall
explanatory variables at a 1 km spatial resolution (Varwall) were used as data sources. This
step mainly included the building of GLM, variable selection, and prediction of 1 km daily
nationwide GOCs (DGOCsGLM).

First, a GLM for predicting daily GOCs was constructed based on the nonlinear rela-
tionship between daily concentrations and explanatory variables of eligible site days [12]:

g(µdm) = log
µdm

1− µdm

= FTβ (2)

where µdm is the daily average concentration of monitoring site m on day d, g(·) is the log
link function, and β represents the regression coefficient vector. F = (F0 = 1, F1, . . . , Fn)

T is
a vector that represents the explanatory variables in the regression model, n is the number
of explanatory variables except for the constant term F0 = 1, and T denotes transpose. The
GLM analysis was carried out using the glm function in Rstudio 3.5.1.

Second, a variable selection procedure based on the Akaike information criterion
(AIC) was utilized to identify the variables included in the final GLM. The variables were
added one by one in the initial model. At each step, the significance of the added variable
to the model was tested. Any variable whose p-value was higher than 0.05 was excluded.
According to the selection procedure, LST, BCTP, RHAM, RD, LON, LAT, and DNS were
left in the final GLM. Variable selection was conducted using Rstudio 3.5.1.

Third, using the wall-to-wall explanatory variables (Varwall), spatiotemporal charac-
teristics of daily GOCs (DGOCsGLM) were predicted by the final GLM. Then, DGOCsGLM
were further aggregated into MGOCsGLM and SGOCsGLM. One of the MGOCsGLM is
shown in Figure 3. As shown in Figure 3, the monthly average GOCs in November 2018
exhibited spatial heterogeneity across China and high monthly average concentrations
tended to occur in South, Central, and East China.

3.3. BME Module

The spatiotemporal distribution of GOCs derived from the GLM model (Section 3.2)
described spatial variability characteristics in GOCs well; however, even when a time
variable (i.e., DNS) was included, they were deficient in capturing temporal variability in
detail [12]. Thus, a BME model incorporating information from the GLM was employed
to obtain the 1 km monthly average concentrations (MGOCsBME). The data sources
included the measured monthly average concentrations of monitoring sites (MGOCss,t)
and the DGOCsGLM derived from Section 3.2. This step mainly included the establishment
of the BME model based on hard data and soft data, the construction of an empirical
spatiotemporal covariance model, and the prediction of monthly residual concentrations
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at a 1 km spatial resolution (RGOCsBME). Hard data are usually represented by accurate
measurements obtained from real-time observation devices and numerical simulations.
Soft data refer to information that can be used to improve estimates by compensating for
the limited amount of measured data, including incomplete and qualitative observations,
which are usually expressed in terms of interval values, probability statements, empirical
charts, etc.
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First, a BME model was constructed by using MATLAB R2014a and BMElib 2.0b [38].

ZBME(R(s, t)) = ZBME(R(p)) =
∫

p f (p)dp (3)

where ZBME represents the GOCs, R(s, t) = R(p) denotes a spatiotemporal random field
(RF), p denotes a spatiotemporal point, s is the geographical location, and t is the temporal
information. The posterior probability density function f (p) is obtained from the prior
probability density function fG, which can be modeled as follows [39]:

f (p) = fG(p|phard, pso f t) =
fG(p, phard, pso f t)

fG(phard, pso f t)
(4)

where phard refers to hard data and pso f t refers to soft data.
In this paper, the hard data and soft data were obtained from Equations (5) and (6), respectively:

phard = CM(s, t)− SGOCsGLM(s) (5)

pso f t = DM(s, t)− SGOCsGLM(s) (6)

where CM(s, t) is the measured monthly average GOC of monitoring site s at time t,
DM(s, t) is the distribution of the measured monthly average GOC described by a Gaussian
probability density function, and SGOCsGLM(s) is the seasonal average GOC of monitoring
site s derived from DGOCsGLM.

Second, an empirical spatiotemporal covariance model based on hard data and soft
data was used to describe the stochastic processes affecting GOCs. A nested theoretical
model consisting of two components (i.e., c1(•) and c2(•)) was applied to fit the empirical
covariance model.

c(h, τ) = C1•c1(h, τ, as1, at1) + C2•c2(h, τ, as2, at2) (7)

where h is the spatial lag; τ is the temporal lag; C1 and C2 are the sill coefficients of
the two components, respectively; as1 and at1 are the space and time ranges of the first
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component, respectively; and as2 and at2 are the space and time ranges of the second
component, respectively.

Figure 4 shows that nested theoretical covariance model well represents the empirical
spatiotemporal covariance. As shown in Figure 4, the first component (sill = 0.9) described
most of the variability; this component consists of an exponential model in space with
a range of approximately 1 DD (decimal degrees), approximately 111 km on the Earth’s
surface, and a spherical model in time with a range of 6 months. The second component
(sill = 0.1) consists of a spherical model in space with a range of 5 DD, approximately
555 km on the Earth’s surface, and an exponential model in time with a range of 4 months.
The short-range interactions addressed by the first component of the fitted theoretical
covariance model are consistent with the spatiotemporal scale of emissions from traffic
or industry, whereas the long-range interactions described by the second component are
consistent with the scale of transport and dispersion over regional domains affected by
weather patterns and meteorological conditions [40].
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Third, considering the computational cost over such a large geographical area, we used
the BME model to predict the monthly residual concentrations at a 10 km spatial resolution
(RGOCsBME_10km), which indicated the difference between measured monthly average
GOCs and the seasonal average GOCs derived from the GLM. Then, we resampled each of
the RGOCsBME_10km to 1 km × 1 km grid cells through spatial interpolation to derive the
RGOCsBME. Finally, SGOCsGLM was added back to RGOCsBME to obtain MGOCsBME.

3.4. Hybrid Module

In general, models combining a regression model and interpolation of regression resid-
uals could provide more accurate predictions for pollutant concentrations [33]. However,
in areas without extensive monitoring sites, the strong uncertainty existing in interpolation
may reduce the prediction accuracy of the BME model [33,41]. Thus, this step was to
obtain more accurate predictions for monthly average GOCs at a 1 km spatial resolution
(MGOCshybrid). We constructed the hybrid module based on the GLM and the BME model
to better predict the spatiotemporal variability of GOCs at a high spatial resolution. The
data sources (i.e., MGOCsGLM and RGOCsBME) were derived from Sections 3.2 and 3.3,
respectively. This step mainly included the elucidation of the specific distance and the
combination of information based on the specific broad range of each submodel.

First, the monitoring sites were categorized into seven groups according to the mini-
mum spatial lag between each monitoring site and other monitoring sites. The seven spatial
lag classes were defined as 0–20 km, 20–40 km, 40–60 km, 60–80 km, 80–100 km, 100–120 km,
and >120 km. MGOCsGLM and MGOCsBME were calculated for each measured monthly
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average GOC. For each spatial lag class, we calculated the percent change in R2 from
the GLM to the BME model (e.g., {[R2

BME-R2
GLM]/R2

GLM} × 100) (Figure 5). A positive
value indicates that the BME model performs better than the GLM; otherwise, the GLM
is superior. As shown in Figure 5, the 100 km corresponding to the inflection point was
elucidated as the specific distance.
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Second, we combined the information from GLM and BME models according to the
distance between the measurement point and its closest monitoring site (dist).

MGOCshybrid =

{
MGOCsBME dist ≤ dist0

MGOCsGLM dist > dist0
(8)

where dist0 is the specific distance within which BME outperformed the GLM and beyond
which the GLM was superior to the BME. According to Equation (8), the hybrid model
was constructed by combining the information from the BME model up to approximately
100 km from a monitoring site and information from the GLM beyond that distance.

3.5. Accuracy Evaluation

A site-based 10-fold cross-validation method was utilized to evaluate the predictive
performance of different models. The monitoring sites were randomly partitioned into
10 relatively equal-sized subsets and represented with subset numbers (i.e., 1, . . . , 10).
Each subset served exactly once as the source of validation samples. The models were
trained using the monitoring data from the remaining nine subsets and then used to make
predictions for the validation samples. The process was repeated 10 times so that each mea-
sured concentration had a paired predicted concentration. The predictive performance was
measured with the coefficient of determination (R2) and root mean square error (RMSE).

R2 = 1−

m
∑

i=1
[yi − ŷi]

2

(yi − y)2 (9)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (10)

where yi is the measured concentrations of validation sample i (i = 1, · · · , m), m is the
number of validation samples, y is the mean of yi, and ŷi is the predicted concentrations.
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4. Experimental Results

According to the modeling procedure in Section 3, we established the hybrid model
and verified its prediction accuracy, as described in Section 4.1. Then, we utilized the
hybrid model to obtain the 1 km monthly GOCs in Section 4.2.

4.1. Model Validation

As shown in the scatterplots of ozone observations (x-axis) against predicted values
(y-axis) for each model (Figure 6), the hybrid model exhibits higher predictive perfor-
mance (R2 = 0.67, RMSE = 15.87 µg/m3) than the GLM (R2 = 0.57, RMSE = 17.88 µg/m3)
and BME model (R2 = 0.65, RMSE = 15.96 µg/m3). In addition, for locations more
than 100 km away from the nearest station, we compared the prediction accuracy of
the hybrid model and the BME model (Figure 7). As shown in Figure 7, the hybrid
model (R2 = 0.53, RMSE = 19.08 µg/m3) has better predictive ability than the BME model
(R2 = 0.45, RMSE = 20.71 µg/m3) in areas without extensive monitoring sites.
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We also evaluated the predictive performance of the hybrid model for different
seasons (Figure 8) and geographical regions (Figure 9). The seasons were defined as
spring (March–May), summer (June–August), autumn (September–November), and winter
(December–February). As shown in Figure 8, the model performance showed seasonal
variation, with a lower value of R2 in winter and a higher value in summer. This result
is consistent with those reported by Mo et al. (2021) [35], who predicted nationwide
ground-level ozone in China.
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As shown in Figure 9, the model performance exhibited spatial variations, with R2

between 0.56 and 0.81. The best performance was achieved in East, Central, and North
China, with R2 values of 0.81, 0.80, and 0.77, respectively. A similar spatial pattern has
also been reported in the literature [9,30,35]. The spatial variation could be affected by
the sampling density and terrain condition. Dense monitoring stations improved the
prediction accuracy of the hybrid model in East and Central China, while sparse monitoring
stations reduced the prediction accuracy in Southwest China. It has been acknowledged
that topographic effects have impacts on air convection, winds, precipitation and aerosol
components [9], which in turn affect the predictive performance of the hybrid model. The
relatively flat terrain in North and Northeast China resulted in higher predictive accuracy
than the hilly and plateau landforms in the western part of China. Given the higher
spatial resolution (i.e., 1 km × 1 km) and greater precision, the hybrid model is highly
recommended for predicting GOCs at the national scale. Thus, we used the hybrid model
to predict the 1 km monthly average GOCs across China.

4.2. Mapping of GOCs across China

Figure 10 illustrates the nationwide monthly average GOCs at a 1 km spatial reso-
lution for China in 2018 predicted by the hybrid model. China has a vast territory with
differences in population density, economic development level, industrialization level,
topography, and other aspects in various regions, resulting in spatiotemporal heterogeneity
in GOCs [42,43]. Temporally, the monthly average GOCs in most parts of China showed
consistent change trajectories during the study period. They exhibited an increasing trend
from January to May, which was followed by persistently high levels from May to August
and then a decreasing trend from August to December. Summer is the most polluted
season. According to previous studies, this is mainly attributed to seasonal variations
in meteorological conditions; for instance, strong solar radiation and high temperatures
lead to high concentrations in summer, while less sunlight and lower temperatures inhibit
ozone formation in winter [9]. Spatially, the monthly average GOCs were higher in North,
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East, and Northwest China and lower in Southwest China. North and East China are the
population centers of China and have well-developed industries and agriculture. The
large amounts of VOCs emitted from some petrochemical and organic industries and
artificial sources resulted in their high GOCs. Northwest China is characterized by a high
average elevation, strong solar radiation, low rainfall, and large temperature differences,
which provide beneficial conditions for atmospheric photochemical reactions. The monthly
average GOCs in Northwest China were particularly high in summer, while long winters
with low temperatures inhibited ozone formation to some degree. Areas with relatively
low monthly average GOCs were mainly located in Southwest China because local mete-
orological conditions (e.g., rainy and foggy, less sunlight and low temperature) and low
precursor emissions were not favorable to ozone formation.
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5. Discussion

In this study, a hybrid model that combines a GLM and a BME model was proposed
to predict nationwide GOCs at a 1 km spatial resolution. The major findings of this paper
are summarized in Section 5.1, the spatiotemporal heterogeneity of ozone distribution is
illustrated in Section 5.2, the ozone exposure analysis based on the GOCs are discussed in
Section 5.3, and the advantages and possible problems of the proposed model are described
in Section 5.4.
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5.1. Major Findings

There are two important findings in this paper. First, the fitted theoretical covariance
model in Figure 4 indicates that the ground-level ozone measurements contributed sig-
nificantly to the prediction of ≤111 km from the monitoring site. Second, our research
demonstrates that the BME model was preferable for predicting GOCs within 100 km from
a monitoring site, whereas the GLM performed better beyond that distance. Please kindly
note that current studies [15] also argue for the inferior performance of BME in dealing
with sparse monitoring sites, which is consistent with our result. On this basis, our work
further presents the suggested distance, which can help colleagues choose suitable models
regarding specific data accessibility.

5.2. Spatiotemporal Heterogeneity

The distribution of GOCs in China had spatiotemporal heterogeneity. Monthly average
GOCs were higher in summer and lower in winter. The GOCs tend to form and accumulate
to higher levels in the northern part of China. Hotspots located in Northwest and North
China are attributed to local high temperatures, low rainfall, dusty weather, and ozone
transport. Increased latitude led to higher concentrations in Northwest China than in
Southwest China, but the concentrations in Southwest China were even higher in winter
because the terrain obstructs ozone input from southbound westerly airflow. Highly
populated areas, including the northern parts of Central and East China, show higher
GOCs than other areas in the considered range.

5.3. Ozone Exposure Analysis Based on the GOCs

Ground-level ozone pollution induces numerous adverse human health problems.
According to the air quality guideline proposed by the World Health Organization (WHO),
the GOCs above 100 µg/m3 can be hazardous to public health [30]. Long-term exposure
to high level of GOCs (i.e., >100 µg/m3) not only causes cardiovascular and respiratory
diseases but also increases morbidity and mortality from chronic obstructive pulmonary
disease (COPD) [34,44,45].

On the basis of the predicted GOCs provided by the hybrid model in this paper, we can
further analyze the spatiotemporal distribution of ozone exposure for alleviating or even
avoiding the human health hazards caused by ground-level ozone pollution. Figure 10
reveals the following:

(a) The monthly average GOCs tended to be higher than 100 µg/m3 from May to August
in 2018.

(b) About 28% of the Chinese population lived in areas (mainly distributed in Northeast,
North, and Northwest China) with monthly average GOCs higher than 100 µg/m3

during the above periods.

Using the predicted GOCs of high spatial resolution (i.e., 1 km × 1 km) provided
by the hybrid model, ozone exposure at provincial scale or below (e.g., county scale and
village scale) can be obtained. Taking the provincial scale as an example, Inner Mongolia
(i.e., the purple box in Figure 10) as one of the severe pollution provinces has higher
monthly average GOCs than other provinces in summer, which is associated to the high
temperatures, low rainfall, high altitude, dusty weather, and ozone transport. Shandong
(i.e., the pink box in Figure 10) as a large populous province (accounts for about 7.2% of
the Chinese population) with well-developed industries and agriculture has 5 months
(from April to August) with monthly average GOCs higher than 100 µg/m3, and this is
attributed to the large amounts of ozone precursors emitted from some petrochemical,
heavy industries, and artificial sources [46–48].

For the megacity cluster region in China, the Beijing–Tianjin–Hebei region (BTH) has
the most months (about 5 months) with monthly average GOCs higher than 100 µg/m3.
The high GOCs in BTH may be caused by the emissions of precursor pollutants and the
meteorological conditions conducive to photochemical reaction [48]. In addition, because
of the significantly increased rainfall in BTH in summer, NOx was easily converted to
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nitrate under high temperature and humidity conditions, which reduced the efficiency
of GOC removal by vapor-phase chemistry, thus leading to ozone pollution. In future
work, we will investigate the prediction of long-term concentrations (e.g., historical ozone
concentration beyond the model years) and concentrations with finer temporal resolution
(e.g., daily level) to meet the requirement of exposure assessment.

5.4. Advantages and Possible Problems of the Proposed Model

The advantages of the hybrid model included the desirable retrieval accuracy (R2 = 0.67,
RMSE = 15.26 µg/m3) at high spatial resolution and the superior generality for nationwide
mapping. In particular, for locations more than 100 km away from the nearest station, the
hybrid model (R2 = 0.53, RMSE = 19.08 µg/m3) outperformed the BME model (R2 = 0.45,
RMSE = 20.71 µg/m3). In addition, the R2 values of the hybrid model reached 0.81, 0.80,
and 0.77 for East, Central, and North China, respectively. The hybrid model also exhibited
satisfactory performance for the four seasons, especially summer (R2 = 0.66).

The predictive performance of the large-scale and high-resolution hybrid model is
superior to that of previous deterministic models and is comparable to that of current
statistical models (Table 3). First, the hybrid model outperforms two Weather Research and
Foresting (WRF)-Community Multiscale Air Quality (CMAQ) methods [34,49], indicating
the superiority of statistical models. Second, the qualitative indices of the high spatial
resolution (i.e., 1 km × 1 km) hybrid model are comparable to others’ rough statistical
models, which indicates that the proposed work can provide finer spatial information with
comparable confidence. In more detail, the hybrid model yields a similar R2 to previous
nationwide studies conducted at a 0.1-degree spatial resolution using the eXtreme Gradient
Boosting algorithm (R2 ranged from 0.60 to 0.87) [19] and random forest method (R2 = 0.71
and RMSE = 19 µg/m3) [30]. Thus, the hybrid model is highly recommended for predicting
GOCs at the national scale.

Table 3. Comparison with other’s results.

Spatial Resolution R2 RMSE

Liu et al. (2018) >0.1◦ >0.6 -
Lin et al. (2018) 36 km >0.5 -
Liu et al. (2020) 0.1◦ 0.60 to 0.87 -

Zhan et al. (2018) 0.1◦ 0.71 19 µg/m3

Proposed hybrid model 1 km 0.67 15.26 µg/m3

The main limitation of the hybrid model originated from the seven explanatory
variables utilized, which have been shown to partially explain the complex formation of
ground-level ozone. Please note that collecting relevant explanatory variables for large-
scale mapping is difficult and time-consuming. Therefore, we appeal to relevant authorities
to open more data, which will contribute to the prediction of high-resolution GOCs over
wide areas.

6. Conclusions

To predict nationwide monthly average GOCs at a 1 km spatial resolution for China
in 2018, a hybrid model that combines a GLM and a BME model was developed based
on a specific broad range of each submodel. The hybrid model was constructed based
on the BME model for measurements within 100 km from their nearest monitoring sites
and GLM when the distance was beyond 100 km. The hybrid model exhibited satisfactory
performance (R2 = 0.67, RMSE = 15.26 µg/m3) in predicting nationwide GOCs at high
spatial resolution (i.e., 1 km). Although the derived nationwide spatiotemporal charac-
teristics of GOCs may be uncertain in some areas, they offer valuable information on the
spatiotemporal patterns of GOCs on the national scale, which is helpful for ground-level
ozone pollution control and prevention in China.
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