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A B S T R A C T   

Hierarchical classification of land cover can be used to describe the Earth’s surface with different scales and 
properties. However, existing studies have rarely considered hierarchical information for land-cover classifica-
tion, and have ignored dependencies in the hierarchical structure. In this study, we propose a hierarchical 
category structure-based convolutional recurrent neural network (HCS-ConvRNN). The HCS-ConvRNN method 
constrains the input through the leaf node of the hierarchical structure based input layer, and then constructs the 
dependencies among different layers in a top-down manner, in order to classify the pixels into the most relevant 
classes in a layer-by-layer manner. A total of 219 Moderate Resolution Imaging Spectroradiometer (MODIS) 
images of China from 2015 to 2017, at a 5-day interval, were used in the reported experiments. It is shown that: 
1) the results of HCS-ConvRNN have rich spatial details; 2) the accuracy at each level of HCS-ConvRNN is better 
than that of MOD12Q1; and 3) generally HCS-ConvRNN can obtain a better classification performance than other 
networks such as the convolutional neural network (CNN) and gated recurrent unit (GRU). In summary, the 
proposed HCS-ConvRNN method can effectively achieve hierarchical land cover classification, and has the po-
tential for accurate land cover classification at a large scale.   

1. Introduction 

Land cover is an important variable when investigating the proper-
ties of the Earth’s surface. Describing the properties of different land- 
cover classes and producing accurate land-cover maps is essential for 
the understanding of global environmental change (Gomez et al., 2016). 
To date, a series of land-cover products have been produced at different 
spatial and temporal scales (ESA., 2017; Huang et al., 2021a; Yang and 
Huang, 2021). In the research related to global climate / environmental 
change, land-cover products in a wide range of temporal and spatial 
scales are still very important (Huang et al 2021b). 

Time series MODIS images are often used in land cover dynamic 
monitoring, vegetation dynamics and so on. For example, global land 
cover types were mapped by MODIS Land Cover Type Product 
(MOD12Q1) (Sulla-Menashe et al., 2019), thus the information of 
different dimensions of land cover, land use, and surface hydrology can 
be hierarchically delineated. The upper layers of the hierarchical 

category contain information related to the biotic and abiotic land- 
surface features at a large scale, e.g., land-cover can be classified into 
barren, vegetation, water, and permanent snow/ice at the top layer of 
MOD12Q1. On the other hand, the deeper layers of the hierarchical 
category distinguish the land-cover attributes related to vegetation, 
landforms, etc. For instance, vegetation can be further classified as 
shrubs, forests, etc. (Sulla-Menashe et al., 2011). Therefore, classifying 
land cover under a hierarchical classification system and generating 
classification maps of different levels is an appropriate way to improve 
the ecological significance of each class, and can provide more flexible 
environmental model parameters for global change studies. 

The rest of this paper is organized as follows. Section 2 reviews the 
related classification methods. Section 3 introduces the materials used in 
this study. Section 4 describes the proposed HCS-ConvRNN method. The 
results are presented in Section 5. Section 6 includes discussions and 
comparison with other algorithms. Finally, conclusions are given in 
Section 7. 
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2. Related work 

Based on whether to consider the hierarchical relationship of land- 
cover in classification, the existing land-cover classification studies 
can be divided into two groups. One of the land-cover classifications is 
regarded as a black box without considering the hierarchical relation-
ship. For instance, the supervised classifiers in machine learning, such as 
SVM and RF, are used to identify all interested classes independently 
(Fenske et al. 2020). Forcibly mixing different levels of land-cover can 
lead to overestimation of high-level abstract land-cover (Gong et al., 
2013) and logical contradiction between different levels of land-cover 
categories (Sulla-Menashe et al., 2011). Alternatively, existing studies 
concerned hierarchical structure information can be categorized into 
two groups, i.e., bottom-up and top-down paradigms. The latter directly 
predicts each parcel with a bottom class label, and then assigns associ-
ated labels at higher layers according to the bottom-to-top mapping (Ma 
et al., 2019b; Sulla-Menashe et al., 2011). Because there are many cat-
egories at the bottom level, the problem of samples imbalance is serious, 
and the performance of classifiers may degrade with the increase of the 
number of categories, leading to inferior interpretation accuracy (Gong 
et al., 2013; Zhang et al., 2021). The latter approach first classifies the 
parcels into the top class level (e.g., Coastal wetland), and then dis-
criminates these parcels into its sub-class labels (e.g., Lagoon). Decision 
tree and its variants (Mao et al. 2020; Zhao et al. 2021) are the most 
popular classifiers for the latter approach, since the category hierar-
chical information as well as class-sensitive rules can be easily modeled. 
Nevertheless, both paradigms have only focused on the local layers of 
the category structure, and they have ignored the transmission and de-
pendencies among the different layers of the whole hierarchy. For 
instance, the determination of a class is not only affected by the parent 
class, but also influence the child classes. Consequently, it is important 
to utilize the associations and dependencies among the different layers 
in the hierarchical structure to improve the accuracy of hierarchical 
classification. However, little consideration has been given to this in the 
existing research. 

With the rapid development of deep learning in the field of remote 
sensing, great success has been achieved in remote sensing image 
analysis tasks such as land-use and land-cover classification and target 
detection (Li et al., 2019; Ma et al., 2019a; Yuan et al., 2020, Wambugu 
et al. 2021). However, to date, very few studies have applied deep 
learning to address the issue of hierarchical classification. Gbodjo et al. 
(2020) proposed a hierarchical pre-training strategy, which involved 
training the network from the top layer of the hierarchy and then 
training the next layer using the previously learned weights. This hier-
archical pre-training strategy allowed the model to first focus on the 
high-level classification problems (such as crop and non-crop), and then 
gradually adapted to the next layer corresponding to more detailed and 
complex classification problems. However, as mentioned above, these 
methods cannot predict all the classes in the whole hierarchy simulta-
neously, and they ignore the transmission and dependencies among 
different layers, and also overlook the impact of each layer’s result on 
the overall structure. By assuming that each pixel should have a label at 
each category level, Turkoglu et al. (2021) designed a data-driven three 
level hierarchical network. In this network, the sematic feature of each 
level was solely learned from the samples of current level, and then was 
copied as input feature to next stage. It is noted that the assumption is 
not suitable for the hierarchical land cover task. For instance, as seen in 
Fig, 1, a Tree open sample only has labels at layer 1 and 2 (but does not 
have labels at the subsequent layers). In this case, this hierarchical 
network may import wrong information to the subsequent category 
layers. 

Recurrent neural networks (RNNs) have the ability to transfer in-
formation between layers. In terms of the network structure, RNNs can 
memorize the information in the previous layer to affect the output of 
the subsequent layer, so that the output of the network is not only 
related to the current input, but also to the output of the previous stage 

(Connor et al., 1994; LeCun et al., 2015). Benefiting from this merit of 
RNN, Huang et al. (2019) proposed the hierarchical attention-based 
recurrent neural network (HARNN) for text classification. The key 
module of HARNN was the hierarchical attention-based memory (HAM), 
which was designed to construct the dependencies between text se-
mantic representations and classes, and to transfer the text semantic 
representations of the corresponding layer to the next layer. In such a 
way, HARNN classified all the classes of each level in the whole hier-
archical structure. However, the RNN structure should be potential but 
has been not used for the hierarchical land cover classification. There are 
two reasons that limit the application of HARNN (Huang et al. 2019) for 
hierarchical land cover classification. First, the core module of HARNN 
(i.e., the recurrent operation) is only designed for capturing the hier-
archical category relationship, but the phenological information, which 
is important for land cover classification (e.g., vegetation), is ignored. 
Second, the assumption of HARNN is that each sample has a label at each 
category layer, which is same to that in Turkoglu et al. (2021), and is not 
suitable for the hierarchical land cover task. 

In this context, the objective of this research is to address the task of 
land-cover classification under a sophisticated hierarchical classification 
system. Based on dense MODIS time-series features, a hierarchical 
category structure based convolutional recurrent neural network (HCS- 
ConvRNN) is proposed. HCS-ConvRNN can realize information trans-
mission among different layers of the hierarchical category structure 
through the RNN. Its novelty is that the association and dependencies 
among the hierarchies are considered for land-cover classification. 
Furthermore, HCS-ConvRNN can obtain the classification results of all 
the classes in the hierarchical category structure, which can be projected 
to different classification schemes for various application requirements. 

3. Materials 

3.1. Study area 

The study area covers China, with an area of approximately 9.6 
million square kilometers, spanning tropical, subtropical, warm 
temperate, middle temperate, and sub-frigid climate zones. China con-
tains almost all the land-cover classes in the existing classification sys-
tems, which makes it suitable for the study of land-cover classification 
with a sophisticated hierarchical classification system. 

3.2. MODIS data 

The MODIS Nadir Bidirectional Reflectance Distribution Function 
Adjusted Reflectance (NBAR) product (MCD43A4) is the main input of 
the land-cover classification. The MCD43A4 provides cloud-screened 
and atmospherically corrected daily surface reflectance, which can 
capture more information about seasonal vegetation dynamics and rapid 
land-surface changes (Wang et al., 2018). Thus, MCD43A4 data from 
2015 to 2017 (i.e., 1096 images in total) were used to describe the 
phenological information. To reduce the computational cost, the pro-
posed work directly chose the daily MCD43A4 data at a 5-day interval, 
which were then smoothed and gap-filled using penalized splines to 
obtain high-quality and minimal-omission data. In this way, a total of 
219 images were employed. For each period in the dense time series, the 
mean values of the 3 years (2015, 2016, 2017) were calculated. 

3.3. Hierarchical classification system 

The hierarchical classification system adopted in this paper is the 
land-cover classification system of the MOD12Q1 product. The classi-
fication system is based on the Land Cover Classification System (LCCS) 
from the Food and Agricultural Organization (FAO), which can reflect 
different dimensions of land cover, land use, and surface hydrology 
(Sulla-Menashe et al., 2019). The hierarchical category structure of the 
classification system (Fig. 1) consists of four layers, including a total of 
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23 land-cover classes. For each layer, we define the label at the bottom 
layer of the hierarchical category structure as the leaf node class. For 
example, the Barren, Tree Open, Shrub Dense, and Croplands classes in 
Fig. 1 are the leaf node classes at the first, second, third, and fourth 
layers, respectively. 

3.4. Training and test samples 

Many studies have attempted to extract training samples from 
existing land-cover products in order to mitigate the workload of sample 
collection (Xie et al., 2019; Zhang and Roy, 2017). With reference to the 
methods of Xie et al. (2019), in this study, a series of operations, 
including temporal constraint, spatial filtering, spectral filtering, and 
manual checking, were used for MOD12Q1 to control the confidence 
and reliability of training data. 

Based on the LACO-Wiki land-cover validation platform (See et al., 
2017), the test samples were selected by referring to the high-resolution 
Google images, vegetation index curves, geotagged photos, and spectral 
features. In the experiments, a total of 900 test samples (250 m × 250 m 
for each) were used in the study area. The number of training and test 
samples for each category is shown in Table 1, and their distribution is 
shown in Fig. 2. 

4. Methodology 

4.1. Hierarchical category structure based convolutional recurrent neural 
network (HCS-ConvRNN) 

The HCS-ConvRNN method proposed in this paper (Fig. 3) mainly 
consists of three parts: 

1) the feature representation layer (FRL) to extract the dense tem-
poral features of MODIS images; 

2) the leaf node discriminant function to determine whether the 
sample is located in the leaf node of the hierarchical category system 
(LNIL see Fig. 3b); 

3) the hierarchical attention-based convolutional recurrent layer 
(HACRL), and Fig. 3c describes the association between the features and 
the land-cover classes of each layer in a top-down manner: 

4.1.1. The feature representation layer (FRL) 
FRL includes three steps: 1) MCD43A4 data are used to extract the 

dense temporal features; 2) the dense temporal features are enhanced; 
and 3) the hierarchical category structure is input into the network. 

The features extracted for each sample involved: 1) the spectral 

Fig. 1. The hierarchical classification system.  

Table 1 
Training samples and test samples.  

Layer Class Training 
samples 

Test 
samples 

L1 Barren 8732 86 
Permanent Snow /Ice 6335 12 
Water 7938 54 
Vegetated 125,479 462 

L2 Tree Dense 43,732 220 
Tree Open 5901 28 
Tree Sparse 15,405 14 
Groundcover Dense 48,732 158 
Groundcover Sparse 11,709 42 

L3 Evergreen Needleleaf 4306 9 
Evergreen Broadleaf 15,605 37 
Deciduous Needleleaf 4733 29 
Deciduous Broadleaf 6967 78 
Broadleaf/Needleleaf Mix 7818 27 
Broadleaf Evergreen/Deciduous Mix 4303 40 
Shrub Dense 7286 28 
Shrub /Grass Mix 7223 13 
Grass Dense 34,223 117 
Sparse Shrub 7513 25 
Sparse Grass 4196 17 

L4 Natural Herbaceous 16,605 22 
Natural Herbaceous/Croplands 
Mosaics 

7232 34 

Croplands 10,386 61  
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values in the B1, B2, and B4-B7 bands; 2) the two-band enhanced 
vegetation index (EVI2) (Jiang et al., 2008); 3) the NDSI (Salomonson 
and Appel, 2004); 4) the NDWI (Gao, 1996); and 5) two versions of the 
normalized difference infrared index (NSII1, NSII2) (Ji et al., 2011). 
Subsequently, the features of all the time periods were combined into 
theVdata = (t1, t2, ⋯, tN) ∈ RN×F, where N denotes the total number of 
time periods (N = 73 in this study) and F denotes the dimension of the 
features at each period (F = 11 in this study). An unsupervised neural 
network, bi-directional long short term memory (Bi-LSTM) (Graves and 
Schmidhuber, 2005), was conducted to enhance and transfer the dense 
temporal features Vdata = (t1, t2,⋯, tN) ∈ RN×F toV = (t’

1, t’
2, ⋯,

t’
N) ∈ RN×2u, where u represents the hidden neuron dimension of Bi- 

LSTM. Bi-LSTM not only learns the long temporal dependencies be-
tween the input dense temporal features, but also learns the contextual 
information in both forward and backward directions simultaneously, 
which is conducive to enhancing the semantic representation of the 
samples (Graves and Schmidhuber, 2005). 

We embedded the land-cover hierarchical category structure γ into 
the network in the form of a matrixS = (S1, S2, ⋯, SL), to obtain the 
attention score of different classes in each layer. The matrix S consists of 
a category embedding matrix Sl for each layer. The way to obtain the 
attention score of the proposed network Sl ∈ RCl×da can be referred to 
HRANN (Huang et al. 2019), where Cl is the total number of classes in 
layer l, and da is the number of output channels of the convolutional 
layer in the convolutional category attention module of the HACM 
module. At the beginning, the attention score of each class in each layer 
was randomly initialized to a small positive number, and the sum of all 
attention scores in each layer was 1. Afterwards, during the training 
process, the attention score of each class in each layer was gradually 
learned by the back propagation optimization. 

4.1.2. The leaf node of the hierarchical structure based input layer (LNIL) 
When processing the samples of leaf nodes, transferring their de-

pendency to the subsequent layers may introduce wrong information. 

Thus, we designed the LNIL layer in HCS-ConvRNN, and in this way, the 
subsequent layers can be skipped when dealing with the samples of leaf 
nodes. During the network training, the current loss value is determined 
by the results of the previous and current layers, and the gradients of 
these layers are fed back, which is independent of the parameters of the 
subsequent layers. Therefore, the input is constrained by the LNIL to 
determine whether the label of the sample is the leaf node class of the 
current layer. If true, the result is directly output after the HACM 
module; otherwise, the information is passed to the next layer. 

4.1.3. The hierarchical Attention-based convolutional recurrent layer 
(HACRL) 

The HACRL labels the most relevant classes layer by layer in a top- 
down manner based on the hierarchical classification system. HACRL 
consists of a stack of HACM modules in each layer. The HACM module 
was proposed for capturing the association between dense temporal 
features and classes at different layers, conveying the information 
among the layers, and predicting the classification results of each layer. 
Fig. 4 shows the details of the HACM module, which consists of three 
components: 1) the class convolutional attention module (CCAM); 2) the 
class prediction module (CPM); and 3) the class transmission module 
(CTM). HACM module can be considered as an improved version of the 
HAM unit (Huang et al., 2019) by importing convolution block into 
CCAM and CPM to further extract time-varying information from dense 
time series. The benefits of this improvement are described below, and 
verified in a series of ablation experiments (see Section 6.1). 

1) Class Convolutional Attention Module (CCAM): CCAM estab-
lishes the association between the dense temporal features and hierar-
chical classes, and then extracts the current layer information based on 
this association. Thus, the inputs of CCAM are the enhanced features V 
and the dependencies ωl− 1 passed down from the previous layer. The 
outputs of the CCAM are the associated sample-category representation 
rl
att and the attention matrixWl

att. The mechanism of CCAM is introduced 
as follows. Firstly, to highlight the l-th layer featuresVl, the enhanced 

Fig. 2. The distribution of test samples.  
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features V are multiplied by the dependenciesωl− 1 ∈ RN×2u: 

Vl = ωl− 1∙V,Vl ∈ RN×2u (2)  

where ∙ indicates the entry-wise product operation. As convolution 
operation can effectively extract local time-varying feature from the 
dense time series images, 1D convolution is then performed onVl. Sub-
sequently, the result is activated by the tanh function to extract the time- 

varying informationOl: 

Ol = tanh
(
Wl

a ⊗ Vl) (3)  

where ⊗ is the 1D convolution operation and Wl
a is a convolution kernel 

of size ka and channelda. 
Different land-covers show different spectral and temporal infor-

mation. Therefore, assigning different weights through the attention 
mechanism can effectively highlight the characteristics of each category 
(Huang et al., 2019; Lin et al., 2017). In the proposed framework, the 
attention mechanism is used to capture the associations between the 
sample features and each category in the hierarchy. Please note that Sl is 
used to obtain the attention weights of the different categories in layer l. 
In the attention mechanism, the category embedding matrix Sl and the 
activation Ol are multiplied, and then the attention weights Wl

att are 
computed through the softmax function: 

Wl
att = softmax

(
Sl∙Ol

)
(4)  

whereWl
att = (Wl

1, Wl
2, ⋯, Wl

Cl ) ∈ RCl×N, and Wl
i denotes the attention 

score of the i-th class in the current layer, where each element in this 
vector represents its contribution to the i-th class at each period in the 
dense time series. 

Subsequently, the weighted category association representation is 
obtained by multiplying the attention weight matrix Wl

att and the 
featuresVl. The results are then averaged and pooled to obtain the 
associated sample-category representation for the l-th layerrl

att ∈ R2u: 

rl
att = avg

(
Wl

att∙V
l) (5) 

Fig. 3. The hierarchical category structure based convolutional recurrent neural network: (a) The feature representation layer (FRL); (b) the leaf node of the hi-
erarchical structure based input layer (LNIL); and (c) the hierarchical attention-based convolutional recurrent layer (HACRL). Vdata denotes the extracted dense 
temporal features, HACM represents the hierarchical attention-based convolutional memory module, ɷ denotes the dependency information passed between layers, 
and P is the probability of each layer’s output. 

Fig. 4. The details of the proposed HACM module.  
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2) Class Prediction Module (CPM): CPM makes a prediction for the 
current layer. The features of N periods are combined into an average 
embedding V = avg(t’

1, t’
2,⋯, t’

N) ∈ R2u to obtain the overall semantic 
representation. The purpose of the CPM is to combine the overall se-
mantic representation V and the associated sample-category repre-
sentationrl

att, in order to introduce the information from the previous 
layer and make predictions for the classes of each layer. In current layer, 
the CPM consists of a convolutional layer, a pooling layer, and a fully 
connected layer, to better capture the local features from previous 
feature transformation. The probabilities are then computed after acti-
vated by the softmax function: 

xl
c = φ

(
Wl

c ⊗
[
V ⊕ rl

att

]
+ bl

c

)
(6)  

f l = φ
(

Wl
f ∙poolingps

(
xlc
)
+ blf

)
(7)  

Pl = softmax
(
Wl

s∙f
l + bls

)
(8)  

where Wl
c is the convolution kernel of size kc and channeldc, bl

c ∈ Rdc×1 is 
the corresponding bias, φ is the rectified linear unit (RELU) activation 
function, and pooling denotes the pooling operation. Wl

f is the weight of 
the fully connected layer, bl

f ∈ Rv×1 is the corresponding bias, and v 

denotes the neuron dimension of the fully connected layer. Wl
s ∈ RCl×v is 

the weighting matrix that connects the fully connected activation and 
the class output units, and bl

s ∈ RCl×1 is the corresponding bias. The 
category with the highest probability in Pl is the output label at the 
current layer. 

3) Class Transmission Module (CTM): CTM transmits the de-
pendency between the features and the classes to the next layer. In the l- 
th layer, different classes information contributes differently to the 
prediction, which can be used as a trade-off parameter to modify the 
attention matrix weightsWl

att. As shown in (9), Wl
att is weighted by Pl to 

obtain the weighted category attention matrixKl: 

Kl = broadcast
(
Pl)∙Wl

att (9)  

whereKl = (kl
1, kl

2, ⋯, kl
Cl ) ∈ RCl×N, kl

i indicates the weighted attention 
score of the i-th category, and broadcast(.) enables matrices with 
different shapes to have compatible shapes for the arithmetic operations 
(i.e., the entry-wise products). 

Average pooling is then performed in dimensionCl. Next, this 
average pooling result is broadcast toωl, which has the same structure as 
V, to transmit the category-related information of the current layer: 

ωl = broadcast
(
avg

(
Kl) ) (10)  

whereωl = (ωl
1,ωl

2,⋯,ωl
N) ∈ RN×2u, and ωl

i ∈ R2u measures the associa-
tion between the whole previous layer and the i-th period in the dense 
time series. Finally, ωl is passed to the next layer. 

4.2. Loss function 

We develop a multi-task loss function to efficiently train the pro-
posed network. To reduce the effect of the category imbalance (see 
Fig. 1), the local loss values of each layer are weighted according to the 
number of samples of each category. Moreover, in order to reduce the 
logical errors of the layer, i.e., sample labels that do not strictly obey the 
relationships of the classes and subclasses at each layer, a logic loss 
function is added. The logic loss function is based on the prediction 
labelYl− 1

P . The theoretically logical prediction result of this layer is 
inferred according to the logical transformation relationship 
matrixwlogic ∈ RCl×Cl− 1 : 

wlogic(i,j) =

{
0, iisnotthesubclassofj

1, iisthesubclassofj (11) 

When compared with the actual label Yl of the current layer, if the 
logical result is the same as the actual one, the logical loss value Ll

logic at 
that layer is set to 0; otherwise, the value of Ll

logic is increased, as shown 
in (12): 

Ll
logic =

{

0, Yl− 1
P ∙ wlogic = Yl1,Yl− 1

P ∙wlogic ∕= Yl (12) 

The final loss function in each layer of the classification task is shown 
in (13): 

Lossl =
ntotal

nclass

∑L

l=1
ε
(
Pl, Yl)+ Ll

logic

(
Yl− 1

P ∙wlogic,Yl
)

(13)  

where Yl is the binary label vector. The cross-entropy ε(Â⋅, Â⋅) is used to 
minimize the local loss. ntotal is the number of total samples, and nclass is 
the number of samples of each class at l-th layer. 

In addition, to address the category imbalance issue, a multi-task loss 
function is used to balance the weights of each layer and combine the 
classification losses of each layer so as to achieve a better performance 
(Kendall et al., 2018). The final loss function can be written as: 

Loss =
∑L

l=1
(

1
σ2

l
Lossl + logσl) (14)  

where σl is the noise parameter of each layer, which is used to charac-
terize the inter-task uncertainty. 

5. Experiments and results 

5.1. Parameter setting 

According to the suggestion by (Huang et al., 2019), we used random 
search to select the main parameters of the network, where the hidden 
layer dimension (u) was set to 128 in the Bi-LSTM layer, the size (ka) of 
the convolution kernel Wl

1 was set to 5, the number of channels (da) was 
set to 100 in the CCAM, the size (kc) of the convolution kernel Wl

c was set 
to 5, the number of channels (dc) was set to 64 in the CPM, and the 
dimension of all the fully connected layer cells (v) was set to 256. We 
initialized the parameters in HCSConv-RNN with a truncated normal 
distribution with a standard deviation of 0.1. For the training of the 
HCSConv-RNN method, we used the Adam optimizer with a learning 
rate of 1 × 10-3, and also used dropout with a dropout rate of 0.5 to 
prevent overfitting and gradient clipping. All the networks were run on a 
desktop computer using TensorFlow-GPU-1.14 with an Intel Core i9- 
7980X CPU (2.60 GHz), 112-GB RAM, and a 11-GB GeForce RTX 1080 
Ti GPU. 

5.2. Hierarchical classification results 

The land-cover classification maps for the four levels are presented in 
Fig. 5. The OA and kappa coefficients of the land cover classification 
results of each level were also calculated (see Table 2). It can be seen that 
with the increase of classification levels, finer grained classes are more 
difficult to identify. As claimed by Sulla-Menashe et al. (2019), large- 
scale land cover classification is challenging owing to the spectral sim-
ilarity of mixed land cover categories, and the classification accuracy for 
the deep level complex categories is low. 

J. Li et al.                                                                                                                                                                                                                                         



International Journal of Applied Earth Observation and Geoinformation 108 (2022) 102744

7

6. Discussions 

6.1. Comparison with MOD12Q1 

The accuracy of the land-cover classification results is compared 
with that of the MOD12Q1 (i.e., the most recent product) in Table 3. The 
MOD12Q1 product classified each layer of its hierarchical classification 

system in parallel with a RF classifier. Fig. 6 lists the F1 scores (i.e., the 
geometric average of user and producer accuracy) for each land-cover 
class under different levels. In general, the accuracy of the proposed 
method is higher than that of MOD12Q1 at all the four levels. With the 
increase of the classification level, the classification system becomes 
more complex, and the difference between MOD12Q1 and HCS- 
ConvRNN becomes greater. For instance, in L3 and L4, respectively, 

Fig. 5. Results of the land-cover classification: (a) level 1; (b) level 2; (c) level 3; (d) level 4.  

Table 2 
Accuracy Assessment Results.  

Level Index HCS-ConvRNN 

L1 OA  0.9218 
Kappa  0.8009 

L2 OA  0.6172 
Kappa  0.5338 

L3 OA  0.4853 
Kappa  0.4343 

L4 OA  0.4527 
Kappa  0.4137  

Table 3 
Accuracy Comparison Between HCS-ConvRNN and MOD12Q1.  

Level Index HCS-ConvRNN MOD12Q1 

L1 OA  0.9218  0.9201 
Kappa  0.8009  0.7984 

L2 OA  0.6172  0.6156 
Kappa  0.5338  0.5256 

L3 OA  0.4853  0.4592 
Kappa  0.4343  0.3994 

L4 OA  0.4527  0.4087 
Kappa  0.4137  0.3640  
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HCS-ConvRNN has 2.61% and 4.4% higher OA values and 3.49% and 
4.97% higher Kappa values than MOD12Q1. 

In addition to the quantitative evaluation, zoomed-in regions under 
different levels are shown in Fig. 7 to demonstrate more details for the 
hierarchical classification. In L1, for the Water class, HCS-ConvRNN can 
extract the small water bodies. In L2, the land-cover classes of both 
products have similar spatial distribution patterns, but still differ in the 
details. For example, in Fig. 7(a), HCS-ConvRNN is able to extract 
Groundcover Sparse, while MOD12Q1 has difficulty in identifying this 
class. As shown in Fig. 7(b), in the areas containing both forest and 
farmland, HCS-ConvRNN can effectively distinguish the Tree Sparse 
class from other groundcover vegetation. However, MOD12Q1 seems 
insensitive to the distinction between Tree Sparse and low vegetation, 
and it often misclassifies low vegetation as trees. In L3, there are more 
omissions for MOD12Q1 in the agroforestry areas (Fig. 7(b)), especially 
for the class of Grass Dense. MOD12Q1 misclassifies Grass Dense as Tree 
Sparse in L3 as well. Moreover, as shown in Fig. 7(c), MOD12Q1 has 
difficulty in detecting the shrub classes (i.e., Shrub Dense, Shrub/Grass 
Mix, and Sparse Shrub) in L3, but the shrub classes can be identified by 
HCS-ConvRNN. In L4, MOD12Q1 also present some logical errors. For 
instance, in Fig. 7(b), some pixels are classified as Croplands by 
MOD12Q1 in L4 which are identified as Tree Sparse in the previous 
levels. In contrast, for HCS-ConvRNN, the Tree Sparse class and other 
low vegetation can be successfully distinguished in the previous levels, 
which reduces the logical errors and maintains a better logical consis-
tency between the classes in the hierarchical classification system. 

6.2. Comparison with related methods 

To demonstrate that the HCS-ConvRNN method proposed in this 
paper shows a superior performance in terms of accuracies in land-cover 
hierarchical classification, we compared it with other networks. Since 
the dense temporal feature Vdata = (t1, t2,⋯, tN) ∈ RN×F used in this 
study is a two-dimensional feature containing both temporal and spec-
tral information, we considered two deep networks for hyperspectral 
imagery as comparisons, namely, a convolutional neural network 
CNN_temp (Hu et al., 2015) and a GRU_temp (Mou et al., 2017). The 

CNN_temp method used convolution structure to mine local temporal 
features, and GRU_temp utilized gated recurrent unit structure to mine 
global temporal features. For a fair comparison, in this experiment, we 
also trained CNN_temp and GRU_temp with a hierarchical pre-training 
strategy (Gbodjo et al., 2020), and denoted them as CNN_hiearchy and 
GRU_hieracrchy, respectively. The OA and the class-average F1 scores of 
all methods are shown in Fig. 8. 

It can be seen that, the classification accuracy of HCS-ConvRNN is 
higher than that of the CNN_temp method at all levels. With regard to 
the GRU_temp, except for the OA of L2, HCS-ConvRNN obtains a higher 
OA than the GRU_temp method in most cases. However, note that OA 
may be affected or biased by the unbalanced number of samples, and 
hence, the class-average F1 score for each method is also calculated. In 
terms of class-average F1 score, HCS-ConvRNN outperforms CNN_temp 
and GRU_temp. This shows that our method considers the hierarchical 
relationship between classes and can achieve better accuracy. Similarly, 
the classification accuracy of HCS-ConvRNN is higher than that of 
CNN_hierarchy and GRU_hierarchy in most cases. This indicates that our 
proposed method is better than the existing ones by considering the 
hierarchical relationship (Gbodjo et al., 2020). 

Two additional methods were conducted to analyze the effectiveness 
of the proposed method (Table 4). Method 1 used the proposed hierar-
chical deep structure, which was pre-trained on level 1 and then trans-
ferred to level 2, 3, and 4. Method 2 directly trained random forest at 
level 4 using the detailed label. From Table 4, it can be seen that the 
effectiveness of the proposed HCS-ConvRNN is verified in terms of the 
accuracy. 

6.3. Ablation experiments 

To demonstrate the effectiveness of each module of the proposed 
method, we conducted a series of ablation experiments (Table 5). The 
ablation experiments include the following parts:  

1) HCS-ConvRNN: The proposed method.  
2) –MTL: the multi-task loss was replaced by a summation of the cross- 

entropy loss and the logical loss of each layer. 

Fig. 6. F1 scores for each land-cover class under the different levels.  
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Fig. 7. Zoomed-in regions of the classification results of HCS-ConvRNN and MOD12Q1.  

Fig. 8. Accuracy comparison between HCS-ConvRNN and the related networks.  
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3) –CON: the convolutional and pooling layers in HACM were deleted 
from 2) and replaced with fully connected layers.  

4) –LNI: i.e., HARNN proposed by Huang et al. (2019), the LNIL was 
further removed from 3) 

In general, it can be found that the proposed HCS-ConvRNN method 
obtains the highest accuracy in most levels, while the recurrent network 
with the basic hierarchical structure (-LNI) has the lowest accuracy, 
especially in the higher levels (e.g., L3 and L4). 

Specifically, HCS-ConvRNN added a multi-task loss function 
compared to -MTL, to balance the losses of each layer during the training 
process, which can improve the classification accuracy at all the layers. 

Compared with –CON, -MTL added convolutional layers to improve 
the accuracy, and the improvement of the classification accuracy in the 
higher levels is relatively high, indicating that, for hierarchical classi-
fication, convolution can better extract the dense temporal features of 
the classes under deeper layers. The accuracy of –CON is decreased by ~ 
1% in the four levels. When compared with HCS-ConvRNN, its OA de-
creases by 0.77%, 2.08%, 1.21%, and 1.51%, respectively, and Kappa 
decreases by 1.69%, 2.03%, 1.83%, and 2.14%, respectively. 

Lastly, -LNI is the basic hierarchy-based recurrent network, which 
transmits features directly into the memory units of each layer in the 
HACRL, without additional filtering, and therefore, it tends to lead to the 
accumulation of wrong information transmission and misclassification 
in that layer. For instance, a certain sample only has a label in the first 
layer, and does not have labels in the next layers, but the features can be 
still passed into the memory units of the subsequent layers, leading to 
misclassification. Consequently, for -LNI, the accuracy decreases sub-
stantially in the deeper levels. This phenomenon indicates that the LNIL 
can greatly reduce the misclassification in the hierarchical classification 
structure, while maintaining the transmission of correct information 
between layers and reducing the logical errors in the results. 

7. Conclusions and outlook 

In this study, a hierarchical category structure based convolutional 
recurrent neural network (HCS-ConvRNN) method is proposed. The 
HCS-ConvRNN method considers the characteristics of the sample labels 
under the land-cover class hierarchy, and constrains the input of the 
network through the leaf node of the hierarchical structure based input 
layer (LNIL). Subsequently, it constructs dependencies among the 

different layers in a top-down manner to obtain the classification results 
for each layer. 

Qualitative and quantitative comparisons between HCS-ConvRNN 
and the MOD12Q1 product showed that HCS-ConvRNN can exhibit 
richer spatial details. The classification accuracy of HCS-ConvRNN was 
found better than that of MOD12Q1 at all levels, and the difference 
became greater as the classification level became deeper. When 
compared with other networks, i.e., CNN and GRU, HCS-ConvRNN 
provided better classification performance in most cases. In summary, 
the HCS-ConvRNN method proposed in this paper can achieve a better 
performance in hierarchical classification of land cover. 

It should be noted that, although the proposed HCS-ConvRNN 
method can effectively exploit the dependency in a multi-layer cate-
gory system, the accuracy of the classes (e.g., Shrub Dense and Shrub/ 
Grass Mix) at the deeper layers is still not satisfactory. This suggests that 
the current data and features are inadequate for a complex classification 
system, and higher-resolution data could possibly be considered to deal 
with this issue (Li et al., 2017). Furthermore, the embedding of 
geographical knowledge and the establishment of a knowledge graph 
can play a critical role in complex and hierarchical land-cover classifi-
cation (Lin et al., 2022), which will be considered in our future work. 
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