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ABSTRACT
High Spatial and Spectral Resolution (HSSR) remote-sensing images can provide rich 
spectral bands and detailed ground information, but there is a relative lack of research 
on this new type of remote-sensing data. Although there are already some HSSR datasets 
for deep learning model training and testing, the data volume of these datasets is small, 
resulting in low classification accuracy and weak generalization ability of the trained 
models. In this paper, an HSSR dataset Luojia-HSSR is constructed based on aerial 
hyperspectral imagery of southern Shenyang City of Liaoning Province in China. To our 
knowledge, it is the largest HSSR dataset to date, with 6438 pairs of 256 × 256 sized 
samples (including 3480 pairs in the training set, 2209 pairs in the test set, and 749 pairs 
in the validation set), covering area of 161 km2 with spatial resolution 0.75 m, 249 Visible 
and Near-Infrared (VNIR) spectral bands, and corresponding to 23 classes of field-validated 
ground coverage. It is an ideal experimental data for spatial-spectral feature extraction. 
Furthermore, a new deep learning model 3D-HRNet for interpreting HSSR images is 
proposed. The conv-neck in HRNet is modified to better mine the spatial information of 
the images. Then, a 3D convolution module with attention mechanism is designed to 
capture the global-local fine spectral information simultaneously. Subsequently, the 3D 
convolution is inserted into the HRNet to optimize the performance. The experiments 
show that the 3D-HRNet model has good interpreting ability for the Luojia-HSSR dataset 
with the Frequency Weighted Intersection over Union（FWIoU） reaching 80.54%, indi
cating that the Luojia-HSSR dataset constructed in this paper and the proposed 3D-HRnet 
model have good applicable prospects for processing HSSR remote sensing images.

ARTICLE HISTORY 
Received 14 January 2022  
Accepted 22 April 2022 

KEYWORDS 
High Spatial and Spectral 
Resolution (HSSR); remote- 
sensing image classification; 
deep learning; Convolutional 
Neural Network (CNN)

1. Introduction

High Spatial and Spectral Resolution (HSSR) 
remote-sensing images can provide both rich spec
tral information and detailed spatial information 
of the ground surface, which support researchers 
to detect and identify various targets that are 
difficult to derive from traditional images. Thus, 
HSSR images are becoming a potential and impor
tant information source in the fields of earth sur
face information extraction, resource, and 
ecological environment monitoring. However, at 
present, most high spectral remote sensing sys
tems are airborne and there is only a limited 
number of hyperspectral satellites in orbit for 
civil use (Zhong et al. 2021). Thus, HSSR images 
usually only cover a small spatial area, which 
hinders the related research of accurate informa
tion interpretation (Rangnekar et al. 2020). 
Meanwhile, the spatial resolution of multispectral 
remote sensing images has been increasing, and a 
large number of datasets have been constructed to 

train and test deep learning networks, which have 
significantly improved the feature extraction effec
tiveness from high spatial resolution remote sen
sing images(Gong 2018; Grekousis, Mountrakis, 
and Kavouras 2015; Rawat and Wang 2017; 
Zhang, Zhang, and Du 2016; Scheirer et al. 2012; 
Hu, Gong, and Zhang 2018; Gong et al. 2021; 
Heipke and Rottensteiner 2020). In general, it is 
imperative to study how to use deep learning 
techniques to improve the efficiency and accuracy 
of HSSR image interpretation (Zhang and Du 
2012; Zhang and Luo 2020; Ghamisi et al. 2017; 
Khan et al. 2018; Li et al. 2019).

There exist two types of problems with the hyper
spectral datasets used in the current deep learning 
models. One of the issues is that the sample images 
are often with relatively low spatial resolution, which 
makes it difficult for fine target recognition. The other 
issue is although both spectral and spatial resolutions 
are high, the volume (or size) of the sample data is 
small. The models trained by these small datasets may 
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reduce the number of parameters and the generaliza
tion ability of the models. Specifically, examples of 
such small HSSR datasets include the Washington 
DC Mall,1 Pavia University and Pavia Center,2 

University of Houston (2018), AeroRIT (Rangnekar 
et al. 2020), WHU-Hi (Zhong et al. 2020, 2018). Notice 
that the largest one has only 7.6 million pixels.

In this context, we acquired hyperspectral images of 
the southern Shenyang City of Liaoning Province in 
China with an airborne spectro-radiometer AMMHS, 
and constructed a sample dataset Luojia-HSSR with 
6438 pairs of 256 × 256 sized samples (including 3480 
pairs in the training set, 2209 pairs in the test set, and 
749 pairs in the validation set), corresponding to 23 
classes of field-validated ground coverage. “Luojia” is 
the name of a beautiful hill located in the Wuhan 
University campus, which is often known as the alias 
of the university. The dataset has 249 Visible and 
Near-Infrared (VNIR) spectral bands with a spatial 
resolution of 0.75 m. The dataset covers an area of 
161 km2 with about 249 million pixels. To the best of 
our knowledge, this is the largest HSSR dataset so far. 
Furthermore, to take full advantage of the rich spectral 
and detailed spatialinformation of Luojia-HSSR, we 
proposed a new deep learning model 3D-HRNets. It 
extended the HRNet to its 3D version, in order to 
inherit the advantages of HRNet in processing high 
spatial resolution data, and simultaneously represent
ing the hyperspectral information by 3D convolution.

The main innovations of this paper involve two 
aspects. From the dataset point of view, an HSSR 
dataset Luojia-HSSR was produced. To the best of 
our knowledge, it is the largest open-source hyper
spectral remote sensing dataset, and it is an ideal 
experimental data for spatial-spectral feature extrac
tion. On the other hand, from the methodology point 
of view, firstly we found that the spatial information is 
as important as spectral signals for the HSSR image 
interpretation. In this regard, we adopted HRNet as 
the backbone and modified the conv-neck in the 
HRNet for the spatial information mining of the 
images. Secondly, in order to explore the spectral 
information of HSSR images, we designed a 3D con
volution module with attention mechanism, which is 
capable of capturing the global-local fine spectral 
information simultaneously. Next, in the experiments, 

we found that I we could achieve the optimal accuracy 
and computational cost by inserting 3D convolution 
into the first stage of the HRNet architecture.

2. Related work

This section reviews and analyzes the existing hyper
spectral test datasets and hyperspectral deep learning 
networks.

2.1. Existing hyperspectral test datasets

We analyzed the existing open-access hyperspectral 
image datasets and compared them with our con
structed Luojia-HSSR dataset (Table 1). It can be 
seen that the size of Luojia-HSSR dataset is signifi
cantly larger than the existing ones, and the number of 
categories is also more than others. It can be said that 
Luojia-HSSR is an important complement to hyper
spectral remote sensing dataset as well as the relevant 
research on deep learning.

2.2. Current hyperspectral network

In addition to the hyperspectral datasets, deep learning 
models are another key factor for the intelligent inter
pretation of hyperspectral remote sensing images. 
Convolutional Neural Networks (CNN) is one of the 
representative models for deep learning of remote sen
sing data (Goodfellow, Bengio, and Courville 2016; Ma 
et al. 2019; Ding, Zhang, and Bruzzone 2020; Hamida 
et al. 2016), and is also widely used for hyperspectral 
image interpretation (Ghamisi et al. 2017; Khan et al. 
2018; Li et al. 2019). This section summarizes the cur
rent main stream convolutional neural network models 
for hyperspectral data interpretation.

The number of CNN filters is proportional to the 
data channels. Therefore, the number of filters has to 
be increased for hyperspectral images with more 
bands, leading to an increase in computational cost. 
For this reason, researchers often reduce the number 
of dimensions of high-spectral images to apply the 
convolutional networks, which however, may lead to 
loss of spectral information. To solve this problem 
aroused by the spectral dimension reduction, 
researchers attempted various methods, such as 

Table 1. Open-access hyperspectral image datasets.

Name of dataset Sensor Platform

Raw Image Sample Data

CategorySize(pixels) Spatial Res.(m) Bands Range(μm) Size(million pixels)

Washington DC Mall HYDICE Aerial 1208 × 307 1.5–3.0 210 0.40–2.40 0.02 7
Pavia University ROSIS Aerial 610 × 610 1.3 103 0.43–0.85 0.04 9
Pavia Center ROSIS Aerial 1096 × 1096 1.3 102 0.43–0.85 0.14 9
Univ. of Houston ITRES Aerial 4786 × 1202 1.0 48 0.38–1.05 5.73 20
AeroRIT Headwall Aerial 1973 × 3975 0.4 372 0.397–1.003 7.61 5
WHU-Hi-HanChuan Headwall UAV 1217 × 303 0.109 270 0.40–1.00 0.36 16
WHU-Hi-LongKou Headwall UAV 550 × 400 0.463 270 0.40–1.00 0.22 9
WHU-Hi-HongHu Headwall UAV 940 × 475 0.043 270 0.40–1.00 0.44 22
Luojia-HSSR AMMHS Aerial 161 (km2) 0.75 249 0.39–0.98 249.00 23
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integrating 2D convolution with 1D convolution and 
introducing attention mechanisms. For example, 
Hamida et al. (2016) proposed a CNN that takes into 
account the given pixel space and spectral neighbor
hood to complete the spectral and spatial feature clas
sification in an alternating manner. Specifically, by 
using a 3D patch as input, the first layer adopted 
a c × 1 × 1 convolution kernel to reduce the spectral 
dimension, and then a 1 × m × m convolution kernel 
was used to reduce the spatial dimension, where c 
and m mean channel and size. Finally, two fully con
nected layers were utilized to complete the 
classification. Luo et al. (2018) proposed a 2D convo
lution-based HSI-CNN model, where spectral space 
features from a 1D target pixel and its neighborhood 
were extracted, with these extracted features as input 
to obtain several 1D feature maps by convolution 
operations. Subsequently, the 1D feature maps were 
superimposed into a 2D matrix, as the input to 
a standard CNN. In addition, most of the existing 
hyperspectral data interpretation frameworks adopted 
a patch-based approach, i.e. the images were divided 
into a series of small overlapping blocks for local 
learning, which may cause high computational cost. 
Zheng et al. (2020) addressed this problem by propos
ing a fast patch-free global sampling learning model 
FPGA, and introduced a spectral attention-based 
mechanism to extract spectral features before fusing 
them with spatial features.

To extract hyperspectral image features more 
directly, researchers designed some 3D convolutional 
neural networks. For example, Chen et al. (2016b) 
proposed a 3D CNN-based regularized deep learning 
model to extract spectral and spatial features. He, Li, 
and Chen (2017) proposed a multi-scale 3D convolu
tional neural network model M3D-DCNN, consist
ing of 10 convolutional layers, 1 fully connected 
layer, with a total network depth of 5, to learn multi- 
scale spatial and spectral features in an end-to-end 
manner. Roy et al. (2020) proposed an attention- 
based 3D CNN model A2S2-ResNet, which 

introduced an adaptive spectral-spatial kernel atten
tion module to identify spectral and spatial features. 
Zou et al. (2020) proposed the SS3FCN model, which 
used a patch-free approach to take the original hyper
spectral image patches as input. This processing 
improved the utilization of sparsely labeled images 
and mitigated the impact on model performance 
caused by the insufficient sample size. However, 
most of the convolutions currently used for proces
sing spectral information used small spectral recep
tive field, which can capture local detail information 
but are insufficient for dealing with the global spec
tral features.

3. LuoJia-HSSR dataset construction

We constructed an HSSR dataset Luojia-HSSR based 
on hyperspectral images of the southern Shenyang 
City of Liaoning Province in China.

3.1. Study area and data sources

The study area is shown in Figure 1, with a total area of 
161 km2, between 122°28′ – 123°06′ E and 41°12′ – 41° 
47′ N in the southern temperate sub-humid zone. The 
highest elevation is 23.5 m and the lowest elevation 
is 5.5 m.

We acquired hyperspectral image data of the study 
area as the data source to produce the test dataset, with 
the land-cover data of the region as the reference or label.

(1) Hyperspectral image
With the airborne spectrometer AMMHS produced 

by Shanghai Institute of Technical Physics, Chinese 
Academy of Sciences, we acquired the VNIR hyper
spectral image in September 2020. After the geometric 
and radiation correction, we obtained the images and 
the main information is described as follows:

● Coordinate system and projection: 
WGS_1984_UTM_Zone_51 N.

Figure 1. Study area.
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● Geometric accuracy: 1.5–3.0 m.
● Spatial resolution of the image: 0.75 m.
● Image coverage area: 161 km2.
● Image spectral resolution: ≤ 5 nm.
● Band information: the total number of bands 249, 

half-peak width of 4.5, wavelength 391.4597 to 
984.0651 nm.

(2) Land-cover data
The land-cover label is derived from the product of 

dynamic land-cover monitoring program completed in 
2020 by the Ministry of Natural Resources of China. 
The product was delineated manually based on remote 
sensing images with 0.8–2.0 m spatial resolution 
according to China’s national standards (Ministry of 
Natural Resources of People’s Republic of China 
2021). The minimum polygon outlined was 
20 × 20 m2, and the quality control was also carried 
out according to the national standards (State 
Administration for Market Regulations and National 
Standardization Administration of China 2020).

3.2. Luojia-HSSR dataset production

We generated the Luojia-HSSR dataset with 6438 pairs 
of samples covering 161 km2 (approximately 
249 million pixels), including 749 pairs for validation, 
3480 pairs for training, and 2209 pairs for test. The size 
of each sample is 256 × 256 pixels. Each pair of 
samples corresponds to its land-cover label. The 
details of the Luojia-HSSR dataset are shown in 
Table 2 and examples are shown in Figure 2.

The steps to produce the dataset are summarized as 
follows.

(1) Source image cropping: The hyperspectral 
images of the study area were cropped into 224 
blocks that do not overlap with each other.

Table 2. Category and size of samples in the Luojia-HSSR 
dataset.

No Category

Size of the total dataset (pixel)

training test validation

1 Background
2 Paddy field 7,231,379 37,346,621 2,345,314
3 Dry farmland 12,635,929 67,046,593 2,211,887
4 Tree-shrub orchard 1,218,853 93,346 25,260
5 Nursery 1,712,244 164,685 35,800
6 Arboreal forest 7,071,538 7,373,012 1,936,021
7 Shrubwood 227,602 12,566 1,394
8 Planted forest 6,865,887 1,146,854 572,918
9 Natural grassland 7,630,018 4,320,481 1,582,805
10 Planted grassland 3,518,628 1,468,681 653,703
11 Building 8,448,979 10,484,865 1,543,215
12 Highway 3,695,549 1,742,615 775,781
13 Country road 2,192,085 690,222 630,130
14 Other structure 370,631 42,611 6,240
15 Open dump 375,420 79,977 214,808
16 Trampled surface 3,222,037 488,707 370,406
17 Other hardened surface 1,139,517 273,894 168,340
18 Greenhouse 7,383,986 3,011,781 2,789,396
19 Dug land 122,292 24,016 53,532
20 Soil surface 203,058 68,764 137,528
21 Sandy surface 498,730 116,973 225,562
22 River 3,259,902 1,516,104 1,649,836
23 Canal 3,149,885 976,954 551,062
24 Pond 7,493,295 1,578,257 784,796

Total: 249,001,757

Figure 2. Examples of samples in Luojia-HSSR (a)Urban (b)Sub-urban (c) Countryside (d) Water and road.
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(2) Land-cover polygon extraction: The cropped 
hyperspectral images were overlapped with the corre
sponding land-cover reference data, involving 48 land 
cover categories in our study area. Two steps were 
processed for matching the images and the labels: 
including rough matching based on the GCS-WGS 
-1984 coordinate, and the fine matching by manual 
adjustment, were conducted for matching the hyper
spectral images and the land-cover polygons. The level 
of misalignment between the images and the labels 
was 2 — 3 pixels.

(3) Data set partitioning: The data was cropped 
into a set of blocks with the size of 1024 × 1024 pixels, 
which were then divided into training, validation, and 
test sets. To ensure that each dataset contains 
a reasonable proportion of land-cover classes, we 
adopted an iterative stratification method for multi- 
label data classification (Szymański and Kajdanowicz 
2017; Szymanski and Kajdanowicz 2019). This method 
considered the second-order relationship between 
labels so that a more balanced sample distribution 
can be obtained.

(4) Overlap sampling: The 1024 × 1024 samples 
were further cropped into the patches with the size of 
256 × 256 pixels at an interval of 128 pixels. The 
patches where invalid values (background) account 
for more than 80% were deleted.

(5) Sample category adjustment: The sample size 
varies greatly between categories in this dataset due to 
the uneven spatial distribution of land cover. For 
instance, paddy field accounts for 45.7% of the study 
area, while roads only account for 2%, which may 
cause bias in model training (Khoshgoftaar, Hulse, 
and Napolitano 2010; Chen et al. 2016a; Xu et al. 
2019). Therefore, we deleted these categories with a 
small sample size or combined them with other similar 
categories, resulting in a total of 23 land cover 
categories.

(6) Adjustment of sample size: To ensure 
a reasonable ratio and distribution for different land 
cover classes, we randomly reduced the number of the 
large-size samples in the training set, including paddy 
fields, dry farmland, arboreal forest, natural grassland, 
and building. In contrast, the small-size categories 
(such as tree-shrub orchard, shrubwood, and open 
dump) were aggregated by flipping, to ensure 
a balanced sample size distribution.

3.3. Strengths of Luojia-HSSR

Luojia-HSSR will benefit the society from the follow
ing aspects:

(1) Data size and landscape diversity: All the existing 
sample sets in Table 1 were collected in small areas 
within one city. Whereas Luojia-HSSR was collected in 

an area covering 161 km2, which is hundreds of times 
larger than the existing ones and covers towns, villages, 
farmland, forest, etc., with a variety of landscapes.

(2) Classification system: Luojia-HSSR has more 
categories (24 land cover classes) than the existing 
datasets, which can provide better algorithm tests 
and validation.

(3) Luojia-HSSR has both high spatial resolution 
and high spectral resolution, which is an appropriate 
experimental data for fine spatial-spectral feature 
mining of remote sensing images.

4. 3D-HRNet

3D CNN is widely used for hyperspectral image pro
cessing because of its advantages in processing multi
dimensional data, while HRNet has obvious 
advantages in high spatial resolution image processing 
(Wang et al. 2020). To make full use of the HSSR 
information of Luojia-HSSR, a new framework 3D- 
HRNet is proposed in this paper.

Figure 3 shows the 3D-HRNet framework, where 
Figure 3(a) is the overall structure of the 3D-HRNet, 
consisting of a spectral module and a spatial module. 
The spectral module is designed to extract the hyper
spectral information (Figure 3(b)). It has two 3D con
volutions with one attention module between them. 
The spatial module is used to capture the spatial 
information with 4 stages of 2D multi-scale convolu
tion layers (Figure 3(c)).

4.1. The spectral module of 3D-HRNet

The spectral module should: (1) make full use of the 
rich spectral information of the HSSR imagery; and (2) 
conduct adaptive extraction of information in the 
important or relevant bands. For this purpose, we 
designed the spectral module of the proposed 3D- 
HRNet, consisting of two large 3D convolution ker
nels and an attention module (Figure 3(b)). The details 
of the spectral module are described as follows:

(1) Extracting both global and local spectral fea
tures by combining large and small 3D convolution 
kernels

Both global and local spectral features need to be 
extracted from the hyperspectral data in order to exploit 
the rich spectral information of the HSSR imagery. But 
the traditional spatial 3D convolution structure based 
on stacked small kernels is not appropriate for global 
spectral information representation. Peng et al. (2017) 
found that although stacked small filters can reduce the 
computational complexity, however, when classifica
tion and localization tasks are performed simulta
neously (e.g. pixel-by-pixel prediction for the semantic 
segmentation), a large kernel (with an effective 
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receptive field) always works better than the stacked 
small filter. Considering this, in this study, we com
bined a large convolutional kernel and a small convolu
tional kernel to extract spectral information, in order to 
minimize the effect of spatial dimension reduction and 
retain sufficient spatial details.

Specifically, the first 3D convolution has a larger 
convolutional kernel k1 to capture the global spectral 
information while a 1 × 1 spatial convolution is used 
to retain the original information. The second 3D 
convolution has a smaller convolutional kernel k2 to 
capture the local spectral information, while a 3 × 3 

Figure 3. 3D-HRNet framework (a) Overall structure (b) Spectral module (c) Spatial module.
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spatial convolution is taken to capture the spatial 
features. Both 3D convolutions are normalized by 
batch normalization, and the Relu activation function 
was employed to increase the nonlinearity of the 
model.

The parameters of the initial 3D patch can be writ
ten as (N, C1, B1, W, H), where N represents the Patch 
Size, C is the initial number of channels, B is the initial 
number of bands, W and H represent the spatial width 
and height of the patch, respectively. In the spectral 
module, we keep the high resolution of the spatial 
domain unchanged to ensure that the rich spatial 
details can be input into the spatial module. After the 
first and second 3D convolution, the number of chan
nels and bands of Patch has been changed, and the 
parameters become (N, C2, B2, W, H) and (N, C3, B3, 
W, H), respectively. In the experiments (Section 5), we 
will discuss the effect of parameter settings.

(2) Adaptive spectral feature extraction with 
attention mechanism

The rich spectral bands of hyperspectral data 
can greatly increase the interpreting workload. 
Therefore, it seems necessary to filter out unim
portant information and improve the processing 
efficiency by focusing on the significant or inter
ested bands. Hu, Shen, Sun (2018) achieved better 
results by using attention mechanism to deal with 
channel relations. Similarly, Zheng et al. (2020) 
used band weighting to improve the accuracy of 
the model. In this study, we designed an attention 
module between the two 3D convolutions. Via the 
attention module, the weight for each band was 
calculated, and the adaptive band selection was 
implemented according to the weights. Notice 
that the attention module only processes the spec
tral information.

Specifically, we firstly reduce the spatial dimension by 
3D global average pooled (GAP-3D) to the output feature 
map of the first 3D convolution, resulting in a 1D spectral 
feature map whose parameters are (N, C2, B2). Then the 
band weighting is conducted by two fully connected 
layers FC1 and FC2. The activate function Sigmoid is 
used to control the weight to the range of [0, 1] in FC2. 
In this way, the parameters of the 1D spectral feature map 
become (N, C2, B2/r) after FC1, where r is the parameter 
used to balance the model capability and computation 
workload. Finally, the band weights learned are multi
plied with the original spatial information, and the results 
are fed into the second 3D convolution.

4.2 Spatial module of 3D-HRNet

The spatial module of 3D-HRNet is based on the 
HRNet model that was proposed by Wang et al. 
(2020) for dealing with the location-sensitive problem 

in computer vision. It achieved excellent results in the 
recognition of small targets and semantic segmenta
tion of high spatial resolution images.

Figure 3(c) is the structure of the spatial module of 
3D-HRNet. It consists of three stages: (1)) starting 
from high-resolution convolutional streams, (2)) gra
dually adding high-resolution convolutional streams 
to low-resolution convolutional streams, and (3)) con
necting multi-resolution convolutional streams in par
allel to achieve multi-resolution fusion by exchanging 
information between the parallel streams.

5. Results and discussion

To analyze the effectiveness of the 3D-HRNet and 
Luojia-HSSR dataset proposed in this paper, we 
compared 3D-HRnet with a number of state-of- 
the-art models in the hyperspectral image and mul
tispectral image processing. The experiments used 
3480 pairs ofthe training set and 2209 pairs ofthe 
test set of the Luojia-HSSR. The hyperspectral 
models used all the 249 hyperspectral bands while 
the multispectral models only processed 3 RGB 
bands. The average of cross-entropy loss function 
was used, and the parameters were set as patch size 
8, learning rate 3e-3, momentum 0.90, and weight 
decay 5e-4. Convergence was reached after 114 
epochs of training with the SGD method on two 
Nvidia Tesla v100 GPUs on the PyTorch library. 
The Frequency Weighted Intersection over Union 
(FWIoU) was employed to evaluate the perfor
mance of models, it is an extensive version of 
Mean Intersection over Union (MIoU) and is 
used to combat class imbalance. It is more reason
able to use this matric on our dataset, for the class 
has a dominate sample size needs to be weighed 
compared to other classes. 

FWIoU ¼
1

PN
i¼0
PN

j¼0 Sij

XN

i¼0

Pk
j¼0 SijSii

PN
j¼0 Sij þ

PN
j¼0 Sji � Sii 

Where N represents the number of land use/land 
cover class which equals to 23 in our experiment; 
i represents the real classes; j represents the predicted 
class; Sij represents the number of false positives.

5.1. Results

We selected six models to compare with our proposed 
3D-HRNet, including the 3D hyperspectral model 3D 
CNN (Chen et al. 2016b), A2S2-ResNet (Roy et al. 2020), 
SS3FCN (Zou et al. 2020), the 2D hyperspectral model 
HSI-CNN (Luo et al. 2018), FPGA (Zheng et al. 2020), 
the multispectral model HRNet (Wang et al. 2020). All 
the seven models were tested on the Loujia-HSSR 
dataset.
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To ensure a fair comparison between different net
work models, in the experiments, the prediction meth
ods were unified by designing a unified prediction end, 
i.e. to replace the fully connected layer in the last layer 
of all patch-based methods with a 1 × 1 convolution. 
In this way, the effect of encoder feature extraction of 
each method can be fairly compared. The results of the 
experiment are shown in Table 3. It can be clearly seen 
that the FWIoU of 3D-HRNet reaches 0.805, signifi
cantly higher than other models in the comparison.

In Figure 4, the classification maps generated by 
different models were visually compared. It can be 
seen that FPGA did not provide satisfactory results 
in spatial domain. Specifically, the generated polygons 
are fragmented and the edges are not clear enough, 
indicating its insufficient ability in representing spatial 
information. The performance of HRNet is better in 
terms of spatial morphology and position accuracy of 
polygons, which shows its capability to capture finer 
spatial details. However, HRNet produced a large 
number of misclassifications owing to its inability in 
exploiting spectral information. For example, in case 

3, the large dry farmland on the left in was wrongly 
recognized as a pond by HRNet. In contrast, the pro
posed 3D-HRNet can effectively extract both spatial 
and spectral characteristics, and its classification 
results are closest to the ground truth. In case (4), 
the road between the paddy fields was not marked in 
the reference since its size is smaller than the mini
mum mapping unit defined in the land-cover moni
toring program by the Ministry of Natural Resources 
of China, but it was identified by the three models.

5.2. Effect of size of training set

We conducted further experiments to investigate the 
effect of training data size on accuracy of the models, 
including HRNet, FPGA, and 3D-HRNet. The train
ing sample set is divided into 5 levels according to the 
sample data size, and the results are shown in Figure 5.

From Figure 5, it can be seen that:
(1) 3D-HRNet can provide significantly higher clas

sification accuracy compared to other models. 
Especially in the case of small samples, the accuracy 
achieved with only 15% of the training dataset is 
comparable to that with 100% of the training dataset, 
which indicates that the 3D-HRNet model can achieve 
a satisfactory accuracy with limited samples.

(2) As sample size increases, the HRNet model 
using only three bands (RGB) perform converge to 
the 2D hyperspectral model FPGA. This phenomenon 
conveys the information that the feature extraction 
capability of the 2D hyperspectral model is insufficient 
for representing the Luojia-HSSR dataset.

Table 3. Performance of different models tested with Luojia- 
HSSR.

Type of model Bands used Model FWIoU

Multi-spectral model 3 HRNet 0.680
2D Hyperspectral model 249 HSI-CNN 0.640

FPGA 0.709
3D Hyperspectral model 249 3D CNN 0.615

A2S2-ResNet 0.496
SS3FCN 0.475
3D-HRNet 0.805

Figure 4. Visual inspection of different network models tested with Luojia-HSSR (a) Image (b) HRNet (c) FPGA (d) 3D-HRNet (e) 
Ground truth.
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5.3. Effect of parameter volume

We also compared the performance of the three mod
els of HRNet, FPGA and 3D-HRNet with different 
parameter sizes. We firstly set the parametric volume 
of each model to make them comparable. For HRNet, 
we considered HRNet-18, HRNet-30, HRNet-40 and 
HRNet-48, where the suffixes such as “-18” represent 
the number of channels of convolutional layers. 
Similarly, the 3D-HRNet model is also named 3D- 
HRNet-18, 3D-HRNet-30 and 3D-HRNet-48, respec
tively, according to the number of convolutional chan
nels. For FPGAs, we adjusted the number of 
parameters from two aspects. One is to increase the 
channel to make the network “wide”, and the model is 
named FPGA-Wide-11 m. The other is to add more 

layers to construct a deeper network, and the model is 
named FPGA-Deep-11 m. The suffixes “-11 m” means 
the number of parameters is 11 million.

The classification accuracy of each model with dif
ferent parameter volumes is compared in Table 4 and 
Figure 6. These experimental results show that the 
accuracy of 3D-HRNet is significantly better than 
that of HRNet and FPGA with the same volume of 
parameters.

5.4. 3D-HRNet ablation experiment

In this section, we designed 11 groups of experiments 
to analyze the parameter sensitivity of 3D-HRNet by 
adjusting the spatial and spectral variables. Five 
groups were performed with original HRNet to ana
lyze the effect of introducing 3D convolution to the 
spectral domain. The results are shown in Table 5, in 
which the models were named based on the rule 
“model type – number of spatial dimensions – num
ber of spectral dimensions – status of using 3D- 
convolution”. For example, “3D-HRNet-256-249-1st 
2 L-AT” means the model is 3D-HRNet, the input of 
the spatial module is 256 × 256 pixels, the input of the 
initial spectral module is 249 bands, the first 2 layers 
of the spectral module used 3D convolution, and the 
attention mechanism was used. For the 6th to 10th 
groups, 3D-HRNet was considered, where 3D CNNs 
with dimensions (126, 1, 1) and (8, 3, 3) were used in 
the spectral module, and only the spatial modules 
were adjusted according to the status of 3D 
convolution.

Figure 5. The effect of sample data size on model accuracy.

Table 4. Effect of parameter number of the training set on 
model accuracy.

Type of model
Bands 
used Model

Number of 
parameters FWIoU

Multi-spectral 
model

3 HRNet-18 11,785,698 0.6800
HRNet-30 31,418,814 0.6709
HRNet-40 55,184,504 0.7006
HRNet-48 79,043,808 0.7013

2D Hyperspectral 
model

249 FPGA-Origin 2,840,834 0.7089
FPGA-Wide 

-11 m
11,533,920 0.4034

FPGA-Deep 
-11 m

11,511,842 0.6825

FPGA-Deep 
-31 m

31,624,790 0.7018

3D Hyperspectral 
model

249 3D-HRNet 
-18

12,398,434 0.8054

3D-HRNet 
-30

32,031,550 0.7720

3D-HRNet 
-48

79,656,544 0.7917

Figure 6. Effect of parameter volume on model accuracy.
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The experimental results showed that group 8 of 
experiment achieved the best results with accuracy of 
0.805. The details of each group are analyzed as 
follows:

(1) The 1st and 2nd groups used the original HRNet 
with spatial dimensions 64 and 256 as inputs of the 
spatial module, respectively, and spectral dimension 
was 3 (RGB) bands, without using 3D CNN. The 
FWIoUs were 0.6800 and 0.7606, respectively. It can 
be found that for 2D HRNet, the classification accu
racy can be effectively improved by merely increasing 
the spatial input dimension (from 64 to 256). Since the 
spatial resolution of Luojia-HSSR is very high, the less 
dimension reduction signifies that more details can be 
retained to obtain higher accuracy.

(2) Group 3 still used the original HRNet. 
Compared with group 1, the spatial dimension of the 
input was wet to 64, but the spectral dimension was 
increased to 249. In this case, we obtained an FWIoU 
of 0.5707, which was lower than group 1. This experi
ment indicates that for 2D HRNet, only introducing 
more spectral information cannot effectively improve 
the classification accuracy.

(3) Group 4 also adopted the original HRNet with 
the same spatial and spectral dimensions as group 1. 
But here, we replaced all the convolutional layers in 
the spatial and spectral modules by a 3D CNN with 
dimension (3, 3, 3). In this case, we obtained FWIoU 
of 0.6974, which had a 1.7% improvement over group 
1. This result reflects that for 2D HRNet, the classifica
tion accuracy can also be improved by introducing 3D 
convolution in the case of equivalent spatial and spec
tral dimensions.

(4) In the case of group 5, FWIoU 0.7128 was 
obtained (1.5% better than group 4) by increasing 
the spectral dimension of group 4. It showed that 3D 
convolution can effectively learn spectral information, 
and increasing the spectral dimension can improve the 
classification accuracy. However, the computational 
burden (Batch Size/GPU) was doubled.

(5) We started to test the proposed 3D-HRNet 
model from the group 6. The parameters of this 
group were kept the same as those of group 5, i.e. the 
spatial dimension of the output of the spectral module 
was 64, and the spectral dimension was set as 249. The 
2D spatial module was adopted, after completing the 
3D convolution of the spectral module. The FWIoU 
was 0.7511, slightly higher than group 5, but at the 
same time, the computational burden was reduced by 
half. It indicated that the computational burden can be 
effectively reduced by the 3D-HRNet proposed in this 
paper.

(6) For group 7, we increased the spatial module 
input dimension to 256 (compared to group 6). The 
FWIoU was improved by 2.63%. This result showed 
that the 3D-HRNet model performed better in proces
sing HSSR data by simultaneously exploiting the rich 
spectral and detailed spatial information.

(7) Group 8 further added an attention module 
between the two 3D CNN of the spectral module, 
compared to group 7. The accuracy was further 
improved to 0.8054, indicating that the introduction 
of the attention mechanism in the spectral module of 
the 3D-HRNet model can raise the classification 
accuracy.

(8) Groups 9 and 10 were designed to test the effect 
of the depth of the 3D convolution of the spatial 
module on the accuracy. In group 9, all six convolu
tions of stage 1 in the spatial module were replaced by 
3D convolutions of dimension (3, 3, 3), compared to 
group 8. It was found that the computational burden 
was greatly increased while the accuracy decreased by 
23%. In group 10, we reduced the spatial input dimen
sion from 256 in group 9 to 128 and found the accu
racy was 0.7625, and the computational pressure was 
reduced to normal. These two groups of experiments 

Table 5. Effect of input dimension and convolution structure 
on accuracy.

No Model
Spatial 
Input Bands

Status of using 
3D CNN

Batch 
Size/ 
GPU FWIoU

1 HRNet-64- 
RGB

64 RGB No 4 0.6800

2 HRNet-256- 
RGB

256 RGB No 4 0.7606

3 HRNet-64-249 64 249 No 4 0.5707
4 HRNet-64- 

RGB-all 
layers

64 RGB Spatial & 
Spectral: 
(3,3,3)

4 0.6974

5 HRNet-64- 
249-all 
layers

64 249 Spatial & 
Spectral: 
(3,3,3)

2 0.7128

6 3D-HRNet-64- 
249-1st 2 L

64 249 Spectral: 1st 2 
Layers

4 0.7511

7 3D-HRNet 
-256-249- 
1st 2 L

256 249 Spectral: 1st 2 
Layers

4 0.7774

8 3D-HRNet 
-256-249- 
1st 2 L-AT

256 249 Spectral: 1st 2 
Layers

4 0.8054

9 3D-HRNet 
-256-249- 
STG1

256 249 Spectral: 1st 2 
Layers 
Spatial: 
Stage1 
(3,3,3)

1 0.5748

10 3D-HRNet 
-128-249- 
STG1

128 249 Spectral: 1st 2 
Layers 
Spatial: 
Stage1 
(3,3,3)

4 0.7625

11 3D-HRNet 
-256-249- 
4 L

256 249 Spectral: 
Stack of 4 
small kernel 
layer

2 0.7749
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demonstrated that we should find a balance between 
the input dimension of the spatial module and the 
depth of convolution.

(9) In order to compare the difference between the 
stacked small kernels and the large kernels in 3D- 
HRNet, in group 11, we replaced the two three- 
dimensional convolutions of the spectral module 
used in group 8 by a series structure with 4 layers of 
small convolutions. The accuracy was 3.05% lower 
than that of group 8. This phenomenon indicated 
that using large spectral kernel convolutions was ben
eficial for extracting the global spectral features and 
hence improving the accuracy.

Overall, the experiments show that increasing 
the spatial dimension in the 2D network can effec
tively improve the classification accuracy. Next, by 
comparing the 2D and 3D networks, it is shown 
that introducing 3D convolution can further boost 
the accuracy when the same spatial and spectral 
information is considered. Further experiments 
demonstrate that by adopting large kernel convolu
tion and attention module, not only the accuracy 
can be further improved, but also the computa
tional burden can be reduced.

5.5. Experiments on other datasets

To test the robustness of 3D-HRNet, we selected 2 
open-access hyperspectral image datasets, 
University of Houston (2018) and AeroRIT 
(Rangnekar et al. 2020), for additional experiments. 
We divided the datasets into training set and test 
set, and the patch size is 128 × 128 pixels owing to 
the small size of the test images. In this way, Univ. 
of Houston was divided into 98 training sets and 
112 test sets, and the AeroRIT was composed of 
449 training sets and 470 test sets. The result in 
Table 6 shows that 3D-HRNet is also better than 
HRnet and FPGA in the two additional datasets, 
which indicates the reliability of the proposed 3D- 
HRNet.

6. Conclusion

In this paper, we produced the HSSR remote sen
sing dataset, Luojia-HSSR, for interpretation of 
hyperspectral remote sensing data. To the best of 
our knowledge, Luojia-HSSR is the largest hyper
spectral test dataset. Moreover, we proposed a new 
network 3D-HRnet by combining the advantages of 

3D convolution and HRNet, for processing this 
new type of HSSR remote sensing data, by simul
taneously exploiting its rich spectral and spatial 
information. The experiments showed that the pro
posed 3D-HRnet achieved promising classification 
ability for the Luojia-HSSR dataset, and obtained 
significantly higher accuracy compared to other 
state of the art neural networks. The results of 
this paper laid a good foundation for further 
research and provided cogent support for the inter
pretation of HSSR imagery.

Notes

1. https://engineering.purdue.edu/~biehl/MultiSpec/ 
hyperspectral.html.

2. h t t p : / / w w w . e h u . e u s / c c w i n t c o / i n d e x . p h p /  
Hyperspectral_Remote_Sensing_Scenes#Pavia_ 
University_scene.
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