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A B S T R A C T   

As an important indicator of urbanization, accurate and long-term global artificial impervious surface area (ISA) 
monitoring is vital to biodiversity, water quality assessment, urban heat island, etc. However, the existing several 
30-m global ISA datasets exhibit large inconsistencies, due to their differences in training samples and mapping 
methods. In this context, we proposed a global ISA mapping method by considering the inconsistency of the 
existing products, based on which we further generated a new 30-m global ISA dataset (GISA 2.0). Specifically, 
we divided the mapping area into A-Grids and M-Grids in terms of their consistency degrees. An automatic 
mapping method was proposed for classifying the A-Grids, by extracting training samples from the consistent 
regions of existing datasets. In the case of M-Grids, where the existing ISA datasets showed large inconsistency, 
we proposed to add manually interpreted samples, to strengthen the classification in these areas. We randomly 
selected over 120,000 test samples from 207 global grids. The results showed that GISA 2.0 achieved a F1-score 
of 0.935, better than GISA 1.0 (0.893), GAIA (0.721) and GAUD (0.809). A further assessment based on 118,822 
ZY-3 test samples indicated that the overall accuracy and F1-score of GISA 2.0 outperformed the existing ones. 
GISA 2.0 will be freely available at irsip.whu.edu.cn/resources/resources_en_v2.php.   

1. Introduction 

Impervious surfaces area (ISA) generally refers to artificial structures 
such as parking lots, roads, roofs, open spaces, etc. As an important 
indicator of urban sprawl and ecological quality, ISA monitoring can not 
only provide information on human activities but can be also used for 
ecological management, such as water quality assessment and storm
water taxation (Luo and Lau, 2019; Song et al., 2020). In addition, it 
plays an important role in land use and cover change studies, and is 
valuable for urban infrastructure construction and sustainable devel
opment. Therefore, it is vital to document accurate ISA extent and dy
namics to achieve a range of urban studies for a better understanding of 
anthropogenic implications associated with urbanization (Friedl et al., 
2010; J. Gong et al., 2020). 

During the 70s and 80s in the last century, ISA mapping was mainly 
conducted via aerial observation platform. With the development of 
satellite remote sensing, satellite imagery has been widely used to esti
mate ISA at different scales, such as Moderate Resolution Imaging 

Spectroradiometer (MODIS), Defence Meteorological Satellite Program- 
Operational Line Scan System (DMSP-OLS) Night Light (NTL) data. The 
commonly used methods for ISA estimation from MODIS imagery 
included machine learning and spectral mixture analysis. NTL data, on 
the other hand, can effectively reflect socio-economic development, and 
hence was also widely used for estimating impervious surface. For 
instance, thresholding algorithms were employed to extract ISA from 
NTL data (Lu et al., 2014), but it was difficult to determine the optimal 
thresholds and deal with mixed pixels. Meanwhile, due to the saturation 
phenomenon, lack of onboard radiometric calibration, and blooming 
effect, ISA mapping via DMSP-OLS data may result in overestimation of 
ISA extent (Zhuo et al., 2015). To improve the accuracy of ISA mapping, 
existing literature has investigated the incorporation of NTL and MODIS 
data, through the construction of the urban or impervious index, e.g., 
NUACI (Shao and Liu, 2014), MNDISI (Liu et al., 2013), or by consid
ering auxiliary census data (Lee et al., 2018). However, due to their 
relatively coarse spatial resolution, small and scattered villages in sub
urban or rural regions cannot be well characterized via MODIS or DMSP- 
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OLS data. 
Landsat data are more capable of detecting ISA at various scales 

(local, regional, or global), due to its wide spatial coverage, high spatial 
resolution, and fine revisit frequency. Traditional methods, such as 
spectral indices, spectral mixture analysis, machine learning, and 
regression analysis, have been adopted to perform pixel-wise or sub- 
pixel ISA mapping (Kaspersen et al., 2015; Sun et al., 2011; Wu and 
Murray, 2003). Likewise, Landsat images were often combined with 

multi-sources data to improve the ISA mapping performance, such as 
synthetic aperture radar (SAR) data that is sensitive to urban geomet
rical structures (Zhang et al., 2014). At the sub-pixel scale, Xu et al., 
(2018) proposed an improved LSMA (Linear Spectral Mixture Analysis) 
method by combining the Normalized Difference Building Index (NDBI) 
and the Normalized Difference Vegetation Index (NDVI), resulting in 
better mapping accuracy. 

High-resolution (HR) images, captured by QuickBird, IKONOS, 

Fig. 1. Comparison of the existing global ISA datasets.  

Fig. 2. The flowchart for the production of GISA 2.0.  
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WorldView, ZY-3, etc. are potential for more precise extraction of ISA 
(Hamedianfar and Shafri, 2016). However, owing to the limitations in 
spatial coverage, revisit cycles, data cost, and processing burden, HR 
imagery was mainly used for ISA mapping at local scales. Notably, with 

the development of computing and storage capabilities, 10-m global ISA 
mapping has become achievable, such as the global human settlement 
layers (GUP) generated by the German Aerospace Center with a spatial 
resolution of 12 m (Esch et al., 2013), and the 10-m Finer Resolution 

Fig. 3. Classification of A-Grids (taking Vancouver, Canada as an example).  

Fig. 4. Process of GISA 2.0 mapping for M-Grids (taking Songyuan, China, as an example).  
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Observation and Monitoring of Global Land Cover (FROM_GLC10) ob
tained from Sentinel-2 data (Gong et al., 2019). However, it should be 
pointed out that, although high-resolution ISA datasets provided us with 
more spatial details, they generally lacked time-series updating, and 
suffered from image mosaic, cloud contamination, as well as other data 
quality issues. 

In general, medium-resolution Landsat imagery remains the most 
appropriate data source for large-scale ISA dynamic monitoring. 
Meanwhile, the appearance and development of the Google Earth En
gine (GEE) platform (Gorelick et al., 2017) greatly promoted large-scale 
ISA mapping, by courtesy of its strong ability of cloud computing and 
data storage. Till now, several Landsat-derived global ISA datasets have 
been produced, including: (1) Global Human Settlement Layer (GHSL) 
(Pesaresi et al., 2016), which was constructed by the Joint Research 
Centre of European Commission using symbolic machine learning 
methods with training data extracted from coarse resolution dataset; (2) 
Global Urban Dynamics Map (GAUD, 1985–2015) (Liu et al., 2020), 
where urban dynamics were extracted using temporal segmentation 
from annual Normalized Urban Area Convergence Index (NUACI); (3) 
Global Artificial Impervious Area (GAIA, 1985–2018) (P. Gong et al., 
2020), which was extracted using an “Exclusion-Inclusion” algorithm; 
(4) Global ISA dataset (GISA 1.0, 1972–2019) (Huang et al., 2021), 
where training samples were extracted from existing products and re
sults were obtained by adaptive RF classifiers. In particular, GISA 1.0 
documented the global ISA map before 1985 and thus possessed a 
relatively longer time span (1972 to 2019) than other global datasets. 

Although these existing datasets showed consistency to some degree, 
they exhibited a large amount of differences. For instance, these datasets 
were more consistent in the city cores, but showed relatively large dis
agreements over suburban or rural regions (see Fig. 1). This can be 
attributed to their differences in mapping methods and training samples. 
Therefore, the main objective of this paper was to generate a more ac
curate and consistent global ISA dataset (written as GISA 2.0) by 
focusing on the inconsistent regions between these existing global ISA 
datasets. To this end, in this study, we proposed an integrated classifi
cation approach for global ISA mapping based on the spatial–temporal 
consistency of the existing products. Sepecifically, the novelty of this 
study includes: 

i) A new method that aims to integrate the existing global ISA 
datasets is proposed for improving the accuracy of global ISA mapping. 
The proposed method divides the mapping grids into M-grids and A- 
grids, in terms of the disagreement degree between the existing ISA 
datasets. Different mapping strategies are proposed for M- and A-grids, 
respectively. 

ii) For the A-grids, an automatic mapping method is proposed, by 
extracting and refining the training samples from the consistent regions 
of the existing datasets. 

iii) For the M-grids, a different mapping strategy is proposed, by 
integrating both automatically and manually generated samples. In the 
meantime, a time-series sample transfer method is designed, to make full 
use of the manually-interpreted samples. 

The rest of this paper was organized as follows. We introduced the 
method framework in Section 2. Results were reported by visual com
parison and accuracy assessment in Section 3, followed by discussions in 
Section 4. Finally, Section 5 concluded the paper. The GISA 2.0 is freely 
available at: irsip.whu.edu.cn/resources/resources_en_v2.php. 

2. Methodology 

The flowchart for the production of GISA 2.0 is shown in Fig. 2. We 
first extracted consistent regions from existing annual or multi-temporal 
global datasets and divided the global terrestrial surface into grids based 
on the degree of consistency. The mapping result was generated for each 
grid and the classification strategies were different in terms of the 
consistency degrees. Finally, GISA 2.0 was assessed by independent test 
samples and compared with existing datasets. 

2.1. Integrated classification approach for global ISA mapping 

2.1.1. Consistency of existing datasets 
The core idea of this study is to generate a new global ISA dataset 

(GISA 2.0) by focusing on the disagreement (or inconsistent) regions of 
existing datasets, since the consistent regions often have high classifi
cation certainty and accuracy, but the inconsistent regions often show 
classification uncertainty and errors. To this end, we obtained the 
inconsistent grids in terms of the existing global ISA datasets and 

Fig. 5. Global distribution of test samples and ISA density for ISA test samples.  
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proposed two different mapping methods for consistent and inconsistent 
grids, respectively. Details are introduced as the following steps: 

Step 1: Given the 185 km swath width of a Landsat image, we divided 
the global terrestrial surface with square grids of 100 km (about half of 
the swath) side length. The 100 km square grid was much smaller than 
those employed by existing literature (e.g. 3.5◦ grid in GAIA), which can 
better characterize local geographic landscapes. Specifically, for each 
year, we first calculated the ISA density within each grid as: 

Dy,n =
Uy,n

Sn
× 100% (1)  

where Uy,n denoted the total area of ISA union of all the datasets for the 
grid n in year y, and Sn represented the area of the grid. The small and 
subtle partition (i.e., 100 km for each grid) might result in a large 
number of grids with low ISA density, which can significantly increase 
the computational cost. Therefore, in this research, we focused mainly 
on the top 10% of grids with the highest ISA density (1353 grids in total), 
which would be re-mapped and updated. In addition, the selected grids 
were further divided into 7 grades according to the ISA density using the 

Jenks natural breaks classification method (Hu and Huang, 2019). 
Step 2: The degree of consistency between existing datasets was then 

calculated for each grid. Specifically, we aggregated the pixel area that 
was labeled as ISA in all the datasets in year y (Iy,n), and also obtained 
the ISA area in each dataset (Si,y,n). The consistency for multiple datasets 
in that year (i.e., Cy,n) was defined as: 

Cy,n = 1 −
∑N

i Pi,y,n

N
(2)  

with Pi,y,n =
Iy,n

Si,y,n
(3)  

where N referred to the number of existing datasets available in the year 
y. A higher value of Cy,n (e.g., closer to 1) signified better consistency of 
the existing global ISA datasets within the grid. 

Step 3: Finally, we classified the grids within each grade into two 
categories, namely A-Grids and M-Grids according to the following 
criteria: 

A − Grids : Cy,n < μ+ 1.5σ (4)  

M − Grids : Cy,n ≥ μ+ 1.5σ (5)  

where μ and σ denoted the mean and standard deviation of the consis
tency degree for the considered grids, respectively. Grids with consis
tency value larger than the threshold were determined as M-Grids, 
which exhibited higher disagreement among the existing datasets and 
were therefore difficult to classify. For the M-Grids, we strengthened 
their classification by introducing a large number of manually- 
interpreted samples. On the other hand, the grids with relatively 
larger consistency were defined as A-Grids, where we automatically 
extracted training samples from the consistent regions, in order to 
adaptively improve the current results. 

2.1.2. Automatic ISA mapping for A-grids 
The accuracy and reliability of the existing datasets in the A-Grids 

were relatively better compared to the M-Grids, and thus ISA mapping in 
the A-Grids was carried out in a fully automated manner, so as to reduce 
the workload of sample collection. 

We first determined the potential mapping regions by extracting all 
pixels with inconsistent labels in the grids (e.g., red color in Fig. 3). 
Specifically, the ISA and non-ISA training samples were randomly 
selected within a 500-m buffer of the consistent regions among the 
existing global datasets (white rings in Fig. 3). Finally, the possible 
outliers within training samples were filtered out via the temporal- 
spatial-spectral method adopted in the GISA 1.0 (Huang et al., 2021). 
In A-Grids, the training samples were extracted from the consistent re
gions of multiple existing datasets, and in this way, the workload of 
manual sampling can be effectively reduced. This is necessary for the 
global-scale mapping, and also guarantees that our new products 
(written as GISA 2.0) are synthesized and updated based on the existing 
ISA datasets. 

Classification results were obtained by the random forest classifiers, 
and the input features consisted of the spectral channels, spectral index, 
time-series and phenological information, elevation, and slope calcu
lated from the digital elevation model (DEM). Please notice that the 
classifiers as well as the features used in GISA 2.0 were the same as those 
in GISA 1.0 (Huang et al., 2021). 

2.1.3. ISA mapping for M-Grids 
Different from A-Grids, in the M-Grids, there existed a large number 

of omission and commission errors in the existing datasets, and their 
consistent regions were very small. Therefore, the mapping reliability of 
the existing datasets in the M-Grids was low. Considering this, the 
mapping strategy we proposed for M-Grids is different from A-Grids 
(Fig. 4). Firstly, we considered the inconsistent pixels (same as A-Grids) 

Fig. 6. Consistency between existing global ISA datasets during 1985–2018.  
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Fig. 7. Global distribution and occurrence frequency of M-Grids and A-Grids during 1985–2018.  

Table 1 
Accuracy assessment of GISA 2.0 compared to existing datasets based on the manually-interpreted test samples.  

A-Grids & M-Grids 

GISA 2.0 ISA Non-ISA UA (%) GISA 1.0 ISA Non-ISA UA (%) 

ISA 16,384 577 96.60 ISA 15,555 1143 93.15 
Non-ISA 1715 89,914 98.13 Non-ISA 2544 89,348 97.23 
PA (%) 90.52 99.36  PA (%) 85.94 98.73  
OA (%) 97.89 F1-score of ISA 0.935 OA (%) 96.60 F1-score of ISA 0.894 
GAIA ISA Non-ISA UA (%) GAUD ISA Non-ISA UA (%) 
ISA 11,253 1882 85.67 ISA 13,220 1353 90.72 
Non-ISA 6846 88,609 92.82 Non-ISA 4879 89,138 94.81 
PA (%) 62.17 97.92  PA (%) 73.04 98.50  
OA (%) 91.96 F1-score of ISA 0.721 OA (%) 94.26 F1-score of ISA 0.809 
A-Grids        
GISA 2.0 ISA Non-ISA UA (%) GISA 1.0 ISA Non-ISA UA (%) 
ISA 8475 313 96.44 ISA 8171 520 94.02 
Non-ISA 625 45,187 98.64 Non-ISA 929 44,980 97.98 
PA (%) 93.13 99.31  PA (%) 89.79 98.86  
OA (%) 98.28 F1-score of ISA 0.948 OA (%) 97.35 F1-score of ISA 0.919 
GAIA ISA Non-ISA UA (%) GAUD ISA Non-ISA UA (%) 
ISA 6458 689 90.36 ISA 7760 964 88.95 
Non-ISA 2642 44,811 94.43 Non-ISA 1340 44,536 97.08 
PA (%) 70.97 98.49  PA (%) 85.27 97.88  
OA (%) 93.90 F1-score of ISA 0.795 OA (%) 95.78 F1-score of ISA 0.870 
M-Grids        
GISA 2.0 ISA Non-ISA UA (%) GISA 1.0 ISA Non-ISA UA (%) 
ISA 7909 264 96.77 ISA 7384 623 92.22 
Non-ISA 1090 44,727 97.62 Non-ISA 1615 44,368 96.49 
PA (%) 87.89 99.41  PA (%) 82.05 98.62  
OA (%) 97.49 F1-score of ISA 0.921 OA (%) 95.85 F1-score of ISA 0.868 
GAIA ISA Non-ISA UA (%) GAUD ISA Non-ISA UA (%) 
ISA 4795 1193 80.08 ISA 5460 389 93.35 
Non-ISA 4204 43,798 91.24 Non-ISA 3539 44,602 92.65 
PA (%) 53.28 97.35  PA (%) 60.67 99.14  
OA (%) 90.00 F1-score of ISA 0.640 OA (%) 92.72 F1-score of ISA 0.735  
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and Non-ISA region in M-Grids as mapping regions (blue color in Fig. 4). 
In order to strengthen the mapping accuracy of M-Grids, we employed 
both automatically-generated (see Section 2.1.2) and manually- 
interpreted training samples. The manually added samples were 
mainly located at: i) regions with ISA omission, and ii) inconsistent 

regions among existing ISA datasets, in order to focus on the errors 
existed in the current ISA datasets. In terms of the sample size, a total of 
50 sample units (polygons) were manually added to each M-grid, with 
an average 10 pixels for each unit (see Section 4.3 for details). In 
particular, the manually-interpreted samples should be located in the 

Fig. 8. Comparison between different global ISA datasets (taking Wuhan and Madrid as examples).  
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inconsistent regions to correct the classification errors and reduce the 
uncertainties. 

Given the high reliability of manually-interpreted samples, we 
transferred them to previous or subsequent time periods according to the 
irreversibility assumption, i.e., the transition from ISA to Non-ISA rarely 
happens (P. Gong et al., 2020; Huang et al., 2021; Li et al., 2015). 

Specifically, taking the year y for instance, the ISA samples generated by 
visual interpretation in M-Grids were used for ISA mapping in the year y 
and its subsequent years, while visually-interpreted Non-ISA samples 
were used in the year y and its previous years. Note that the transferred 
samples should be outside the consistent regions among the existing ISA 
datasets. In this way, we tried to make full use of visually-interpreted 

Fig. 9. Comparison of GISA 2.0 with GHSL, GAUD, GAIA and GISA 1.0 in the M-Grids. The Landsat 5 images are shown with the false-color combination (band 4, 3, 
and 2). 
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samples through the time-series transfer. The classification results in the 
M-Grids were then acquired via the random forest classifier and multi- 
source features, as described in Section 2.1.2. 

2.2. Accuracy assessment 

The accuracy of GISA 2.0 was assessed by 124,190 samples that are 
independent from training samples. As demonstrated by Stehman and 
Foody (2019), we used cluster sampling to determine the location of 
these test samples, involving 207 randomly selected grids. The sample 
collection was carried out at five-year intervals (i.e. 1985, 1990, 1995, 
2000, 2005, 2010, 2015, and 2018). In each period, the grids (A-Grids 
and M-Grids) used for accuracy assessment were randomly selected. In 
particular, the selection of grids on each continent was stratified by its 
population density. For example, A-Grids for Africa in 2015 were first 
sorted by the population density, and a grid with its population density 
above the median and another grid with its population density below the 
median were randomly selected. In such a way, samples from different 
urban sizes and densities were selected for validation, but not only from 
big urban areas. Subsequently, within each grid, 100 ISA and 500 Non- 
ISA samples were visually interpreted, by referring to the Google Earth 
and Landsat images (Huang et al., 2021). The spatial distribution of the 
test samples and ISA density around the ISA test samples (1 km buffer) 
was shown in Fig. 5. It can be seen that the test samples involved not 
only high-density ISA samples in large cities, but a large number of low- 

Fig. 10. OA and F1-score of ISA between GISA 2.0 and existing datasets in A- and M-Grids.  

Table 2 
Accuracy assessment of GISA 2.0 compared to existing datasets based on the ZY- 
3 test samples.  

ZY-3 test samples 

GISA 
2.0 

ISA Non-ISA UA 
(%) 

GISA 
1.0 

ISA Non-ISA UA 
(%) 

ISA 34,308 6421 84.23 ISA 32,541 5630 85.25 
Non- 

ISA 
5169 72,924 93.38 Non- 

ISA 
6936 73,715 91.41 

PA 
(%) 

86.91 91.91  PA 
(%) 

82.43 92.91  

OA 
(%) 

90.24 F1- 
score of 
ISA 

0.855 OA 
(%) 

89.42 F1- 
score of 
ISA 

0.838 

GAIA ISA Non-ISA UA 
(%) 

GAUD ISA Non-ISA UA 
(%) 

ISA 32,816 7710 80.98 ISA 32,765 5755 85.06 
Non- 

ISA 
6661 71,635 91.49 Non- 

ISA 
6712 73,590 91.64 

PA 
(%) 

83.13 90.29  PA 
(%) 

83.01 92.75  

OA 
(%) 

87.91 F1- 
score of 
ISA 

0.821 OA 
(%) 

89.51 F1- 
score of 
ISA 

0.809  
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density samples in suburban and rural regions. Moreover, the distance 
between samples should be larger than 1 km to guarantee their spatial 
independence. In such way, 124,190 global test samples were generated. 
The accuracy of GISA 2.0 was assessed by overall accuracy (OA), User’s 
Accuracy (UA), Producer’s Accuracy (PA), and F1-score. The F1-score 
indicates the balance between UA and PA. 

Moreover, we also employed over 110,000 test samples extracted 
from the ZiYuan-3 (ZY-3) global built-up dataset for the accuracy 
assessment of GISA 2.0. Liu et al., (2019) proposed a multi-angle built- 
up index to extract built-up areas from high resolution (2 m) ZY-3 data in 
45 global cities. This built-up dataset was used as a test sample set in this 
research, due to its high overall accuracy and high spatial resolution (2 
m). We defined an ISA test sample if more than 80% of its area (30 m ×
30 m) was identified as built-up, while a Non-ISA sample was chosen 
when no built-up pixel was found within it. Moreover, the distance be
tween test samples should be greater than 300 m to ensure their spatial 
independence, and each sample was visually inspected in terms of the 
high-resolution ZY-3 images. In this way, we obtained 39,477 ISA and 
79,345 Non-ISA test samples. 

3. Results 

3.1. Consistency analysis of existing global datasets 

In this study, we analyzed the spatial–temporal consistency between 
existing global ISA datasets. As seen from Fig. 6, generally, the consis
tency between the existing datasets showed an increasing trend during 
1985–2018. This phenomenon can be attributed to the lower image 
quality and data availability in the early stages, and along with the 
launch of Landsat-7 and Landsat-8, the consistency between existing ISA 
datasets was raised gradually. 

Fig. 7 illustrates the global distribution of M-Grids and A-Grids, and 
the colors of the grids represent their occurrence frequency during 1985 
to 2018. In general, it can be seen that the inconsistent regions are 
distributed widely over the world, including both rapidly urbanized 
areas, e.g., Asia, and developed areas, e.g., North America, and Europe. 
In terms of grid types, M-Grids are more frequent in Asia and Africa, 
such as North China Plain and Gulf of Guinea (Fig. 7), whereas A-Grids 
are more common in North America and Europe. The M-Grids exhibit 
large inconsistency among existing datasets and should be focused on in 
our research. 

Fig. 11. Comparison of M-Method and A-Method in two M-Grids in northern China and southern Africa, respectively, as examples, in order to demonstrate the effects 
of our proposed mapping strategies. 
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3.2. Accuracy assessment of GISA 2.0 

3.2.1. Accuracy assessment using visually-interpreted test samples 
The accuracy assessment is shown in Table 1. GISA 2.0 achieved the 

highest OA of 97.89%, with an increase of 1.29%, 5.93%, and 3.63%, 

with respect to GISA 1.0, GAIA, and GAUD, respectively. The ISA F1- 
score of GISA 2.0 is 0.935, which exceeds GISA 1.0, GAIA, and GAUD 
by 0.041, 0.214, and 0.124, respectively. It should be noted that the UAs 
of ISA among these global ISA datasets are generally similar, whereas 
GISA 2.0 notably outperforms GISA 1.0, GAIA and GAUD, by 4.58%, 
28.35%, and 17.48%, respectively, in terms of ISA PA. This suggests that 
GISA 2.0 suffers less from ISA omissions. From Fig. 8, taking a closer 
look at ISA dynamics, GISA 2.0 shows a generally similar expansion 
pattern with other datasets. 

In the case of M-Grids, the manually-interpreted samples were 
introduced to improve the mapping accuracy of inconsistent regions. As 
can be seen in Fig. 9, GISA 2.0 was able to obtain more accurate results 
than the existing ones. For instance, GISA 2.0 succeeded to identify the 

Fig. 12. Global ISA expansion observed from GISA 2.0.  

Table 3 
Accuracy comparisons of different mapping method.  

Mapping method OA F1-score of ISA 

GISA 1.0  95.726%  0.8560 
GISA 2.0 A-Method  96.672%  0.8861 
GISA 2.0 M-Method  97.472%  0.9204  
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dry river channels as Non-ISA while the other ones showed false alarms. 
The accuracy assessment revealed that the overall accuracy (OA) of 
GISA 2.0 was 97.49% in the M-Grids, and it achieved the highest ISA F- 
score of 0.921, with an increase of 0.053, 0.281, and 0.186, with respect 
to GISA 1.0, GAIA and GAUD, respectively (Table 1). In particular, the 
OA of GISA 2.0 was higher than 97.5% in most of years, and its F1-socres 
all exceeded 0.9. Compared with other datasets, the accuracy of GISA2.0 
was better and more stable throughout the years (Fig. 10(a)-(b)), indi
cating that our proposed method as well as the generated dataset ach
ieved satisfactory results in inconsistent regions (i.e. M-Grids). This also 
demonstrated that the classification performance can be effectively 
improved by enhancing the quality and quantity of training samples 

from the inconsistent regions. 
As for the A-Grids, by considering the efficiency of global mapping, 

the training samples were collected automatically from the consistent 
regions between the existing datasets. In terms of the test samples, GISA 
2.0 exhibited the highest and more stable OA in A-Grids compared with 
other datasets (Fig. 10), which illustrated the effectiveness of our pro
posed automatic mapping approach for the A-Grids. Notably, the accu
racy of ISA datasets in the early periods was relatively lower owing to 
the availability and quality of Landsat 5 images (P. Gong et al., 2020; 
Loveland and Dwyer, 2012; Pekel et al., 2016; Yang and Huang, 2021). 
However, it can be seen that GISA 2.0 had the highest values in OA and 
F1-score for 1985 (Fig. 10(c)-(d)), by strengthening the training samples 

Fig. 13. Comparison of GISA 2.0 with existing global datasets at (a) global and (b)-(f) continental scale.  
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from the inconsistent regions. Besides, the robustness of our method can 
be also reflected from the results after 2000, and the accuracy gain 
derived from GISA 2.0 was stable. 

3.2.2. Accuracy assessment using ZY-3 test samples 
In the case of the ZY-3 test samples, the overall accuracy of GISA 2.0 

was 90.24%, still outperforming the existing ones (Table 2). In addition, 

GISA 2.0 achieved the highest ISA F1-score (0.855) against GISA 1.0 
(0.838), GAUD (0.809), and GAIA (0.821). The ZY-3 samples mainly 
covered urban and suburban regions (Liu et al., 2019), and the better 
accuracy of GISA 2.0 suggested that our method and dataset effectively 
reduced the ISA mapping uncertainty in these areas. 

4. Discussions 

4.1. Effect of adding manually-interpreted samples 

In order to improve the mapping accuracy of M-Grids (inconsistent 
regions), we added a large number of manually interpreted training 
samples and proposed a time-series sample transfer strategy to fully 
exploit these samples. In the case of the A-Grids, we automatically 
extracted training samples from the consistent regions among the 
existing global ISA datasets in view of their relatively higher reliability. 
In most cases, manual interpretation can generate more accurate sam
ples but is time-consuming and labor-intensive. Therefore, the 
manually-interpreted samples were added for the grids with larger 
inconsistency, and automatically generated samples were used for the 
grids with less inconsistency. Theoretically, higher accuracy can be 
obtained when the manually-interpreted samples were used for all grids, 
which, however, requires enormous workload, and hence becomes 
impossible for global mapping. Therefore, while producing GISA 2.0, 
manually interpreted samples were added to the most inconsistent grids 

Fig. 14. The F1-Score as a function of number of samples.  

Fig. 15. Relationship between accuracy improvements and ISA density.  

Table 4 
Accuracy comparison between GISA 2.0 and other existing global ISA datasets.  

GLC_FCS2020 ISA Non-ISA UA (%) FROM_GLC2015 ISA Non-ISA UA (%) 

ISA 2276 254 89.96 ISA 2007 190 91.35 
Non-ISA 324 12,745 97.52 Non-ISA 593 12,810 95.58 
PA (%) 87.53 98.04  PA (%) 77.19 98.54  
OA (%) 96.25 Kappa 0.865 OA (%) 94.98 Kappa 0.807 
F1-score (ISA)  0.887   F1-score (ISA) 0.838  
F1-score (Non-ISA)  0.978   F1-score (Non-ISA) 0.970  
FROM_GLC2017 ISA Non-ISA UA (%) GLC_FCS2015 ISA Non-ISA UA (%) 
ISA 1949 245 88.83 ISA 2206 253 89.71 
Non-ISA 651 12,754 95.14 Non-ISA 394 12,747 97.00 
PA (%) 74.96 98.12  PA (%) 84.85 98.05  
OA (%) 94.26 Kappa 0.779 OA (%) 95.85 Kappa 0.847 
F1-score (ISA)  0.813   F1-score (ISA) 0.872  
F1-score (Non-ISA)  0.966   F1-score (Non-ISA) 0.975  
GISA2.0 2018 ISA Non-ISA UA (%) GISA2.0 2015 ISA Non-ISA UA (%) 
ISA 2440 112 95.61 ISA 2421 115 95.47 
Non-ISA 160 12,887 98.77 Non-ISA 179 12,885 98.63 
PA (%) 93.85 99.13  PA (%) 93.12 99.12  
OA (%) 98.26 Kappa 0.936 OA (%) 95.85 Kappa 0.931 
F1-score (ISA)  0.947   F1-score (ISA) 0.943  
F1-score (Non-ISA)  0.990   F1-score (Non-ISA) 0.989   
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(M-grids) to achieve accuracy increment more efficiently. In this section, 
to better demonstrate the effect of the proposed mapping strategy for M- 
Grids, we used the automatic mapping method adopted for A-Girds to 
classify the M-Grids. Two M-Grids were randomly chosen for carrying 
out this comparison experiment. The first case is located at the North 
China Plain, where it can be seen that the A-Method reduced the ISA 
omissions of GAIA and GAUD in the scattered rural settlements, and the 
M-Method further improved the accuracy of detecting ISA from moun
tains and villages (Fig. 11 (a)-(b)). The other example is selected from 
the semi-arid region of southern Africa, where the A-Method suppressed 
the underestimation of GISA 1.0 but wrongly identified bare river beds 
as ISA (Fig. 11(c)-(d)). However, the proposed M-method can further 
improve the results by introducing the manually interpreted samples. 

To further verify this conclusion, we compared M-method (manu
ally-interpreted samples) and A-method (automatically-chosen samples) 
over 103 test grids. The results indicated that A-method could improve 
the mapping accuracy of GISA 1.0, while M-method outperformed A- 
method with an increment of F1-score by 0.0343 (Table 3). In future 
study, we will improve the overall accuracy of GISA in an iterative 
manner, by incorporation of more manully samples and advanced 
classification methods (e.g., deep learning (Li et al., 2022)), to obtain 
more accurate global impervious surface. 

4.2. Global ISA expansion from GISA 2.0 

Based on the 124,190 samples in 207 global grids, the accuracy 
assessment of GISA 2.0 showed that we further improved the F1-score of 
the global ISA to 0.936, outperforming GISA 1.0 (0.893), GAIA (0.720), 
and GAUD (0.809). 

Based on GISA 2.0, the global ISA reached 815,452 km2 in 2018, 
which was nearly three times that in 1985 (298,777 km2). Although the 
existing datasets exhibited a general ISA increasing trend (Fig. 13(a)), 
they were different in the ISA spatial distribution. At the continental 
scale, GAIA showed relatively more disagreement than others, such as 
the underestimation in Europe and the slight overestimation in South 
America. GISA 1.0 and 2.0 detected relatively more ISA in Asia (Fig. 13 
(b)-(f)). This can be attributed to the large number of rural training 
samples used in the GISA dataset, which is more effective for the 
extraction of small villages (Fig. 12 (d)). Asia experienced the most ISA 
expansion over the study period, with an increment of 271,633 km2 

from 1985 to 2018, followed by Europe (77,392 km2). Oceania had the 
least growth (8,410 km2). It should be noted that the detailed global ISA 
expansion analysis is beyond the scope of this paper, and here we only 
made a preliminary comparison between GISA 2.0 and other existing 
global datasets. More sophisticated data analysis is planned in future 
research. 

4.3. Pros and cons of the proposed method as well as GISA 2.0 

From a methodological point of view, we proposed a new global ISA 
mapping framework that aims to improve the global ISA mapping in 
terms of the consistency of existing ISA datasets. The merits of our 
method include: 

i) In the case of mapping area, ISA was extracted from the global 
terrestrial surface instead of pre-defined urban masks, which, therefore, 
reduces the ISA omissions. 

ii) In this study, we divided global terrestrial surface into grids with a 
side length of 100 km, which is smaller than that employed in the 
existing datasets (e.g., 3.5◦ grids in GAIA). Thus, the local properties of 
ISA can be characterized better, which is beneficial for improving the 
mapping performance. 

We quantitatively discussed the effect of the number of the manually 
interpreted training samples. The results showed that generally the 
manually interpreted samples effectively increased mapping accuracy. 
The accuracy curve grows slowly as number of samples (polygons) in
crease, and reaches saturation with around 50 samples (Fig. 14). 

Therefore, in this paper, we added 50 samples in each M-grid, consid
ering both mapping performance and workload of visual interpretation. 
Moreover, We also investigated the relationship between the accuracy 
improvement and ISA density within the test grids. The results reveal 
that the accuracy gain is higher in the low-density regions, while the 
gain is relatively lower in the high-density regions (Fig. 15). This con
veys the information that the key for improving the accuracy of global 
ISA mainly lies in the low-density regions. 

Current global ISA datasets exhibit high omission errors in some 
areas, which may be attributed largely to the insufficient spatial reso
lution (30 m) of Landsat data. When comparing GISA 2.0 with other 
global ISA datasets (Table 4), it is found that GISA 2.0 have an omission 
error of 6.88% in 2015, which is lower than GLC_FCS2015 (Global Land 
Cover Fine Classification System) (Zhang et al., 2020) and 
FROM_GLC2015 (Finer Resolution Observation and Monitoring of 
Global Land Cover) (Gong et al., 2019), by 8.27% and 15.93%, respec
tively. The omission error of GISA 2.0 is 6.15% in 2018, which is much 
lower than FROM_GLC2017 (25.04%) and GLC_FCS2020 (12.47%) 
(Zhang et al., 2021). Therefore, it can be stated that GISA 2.0 has less ISA 
omissions compared to other ISA datasets. Based on the global ISA 
mapping method proposed in this paper, we are capable of improving 
the overall accuracy of GISA and reducing the ISA omissions gradually. 
Meanwhile, in future, we plan to detect the global ISA with high- 
resolution remote sensing data (e.g., 10-m Sentinel or 3-m Planet) to 
further reduce the ISA omissions. 

5. Conclusion 

In this study, we proposed a global ISA mapping method by 
considering the consistency of existing products, based on which we 
further generated a new 30-m global ISA dataset (namely, GISA 2.0). To 
this end, we divided the global terrestrial surface into square grids of 
100 km side length to take the local ISA characteristics into account. In 
order to quantitatively describe the disagreement between existing 
global datasets, we divided the mapping area into A-Grids and M-Grids 
in view of their consistency degree. An automatic mapping method was 
proposed for classifying the A-Grids, by extracting training samples from 
the consistent regions of existing datasets. On the other hand, in the case 
of M-Grids, where the existing ISA datasets showed large inconsistency, 
we proposed to add manually interpreted samples, to strengthen the 
classification and reduce the uncertainties in these areas. The accuracy 
assessment and inter-comparison verified the superiority of our methods 
and results. 

It is worth noting that, in order to improve the efficiency, we focused 
on the regions or grids that were more inconsistent among existing 
global datasets. Although the selected grids only accounted for 10% of 
the global ISA grids, GISA 2.0 was able to significantly improve the 
mapping accuracy compared to the existing datasets. However, the 
remaining grids may still contain a number of errors, e.g. the regions 
that were misclassified or omitted by multiple datasets at the same time, 
which will be further investigated in our future work. Moreover, for the 
purpose of accurate global ISA mapping, we will continue to improve the 
quality of GISA according to the feedbacks from users around the world. 
GISA 2.0 can be freely downloaded from irsip.whu.edu.cn/resources/ 
resources_en_v2.php. 
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