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Abstract— Deep convolutional neural networks have been dom-1

inating in the field of hyperspectral image (HSI) classification.2

However, single convolutional kernel can limit the receptive3

field and fail to capture the sequential properties of data.4

The self-attention-based Transformer can build global sequence5

information, among which the Swin Transformer (SwinT) inte-6

grates sequence modeling capability and prior information of the7

visual signals (e.g., locality and translation invariance). Based on8

SwinT, we propose a 3-D SwinT (3DSwinT) to accommodate9

the 3-D properties of HSI and capture the rich spatial–spectral10

information of HSI. Currently, supervised learning is still the11

most commonly used method for remote sensing image interpre-12

tation. However, pixel-by-pixel HSI classification demands a large13

number of high-quality labeled samples that are time-consuming14

and costly to collect. As unsupervised learning, self-supervised15

learning (SSL), especially contrastive learning, can learn semantic16

representations from unlabeled data and, hence, is becoming a17

potential alternative to supervised learning. On the other hand,18

current contrastive learning methods are all single level or single19

scale, which do not consider complex and variable multiscale fea-20

tures of objects. Therefore, this article proposes a novel 3DSwinT-21

based hierarchical contrastive learning (3DSwinT-HCL) method,22

which can fully exploit multiscale semantic representations of23

images. Besides, we propose a multiscale local contrastive learn-24

ing (MS-LCL) module to mine the pixel-level representations in25

order to adapt to downstream dense prediction tasks. A series26

of experiments verify the great potential and superiority of27

3DSwinT-HCL.28

Index Terms— Contrastive learning, hyperspectral image (HSI)29

classification, self-supervised learning (SSL), Swin Transformer30

(SwinT), Transformer.31

I. INTRODUCTION32

HYPERSPECTRAL imaging, which combines imaging33

and spectroscopic techniques to detect spatial and spec-34
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tral information of ground targets, is one of the most important 35

remote sensing (RS) imaging techniques. A hyperspectral 36

image (HSI) has narrow, continuous spectral bands, and a 37

broad electromagnetic spectrum, allowing object identification 38

and detection at fine-grained scales. HSI classification aims to 39

assign predefined labels to each pixel and has been success- 40

fully applied to ecological science, urban planning, precision 41

agriculture, and mineral exploration [1], [4]. 42

Early hyperspectral classifications mostly focused on spec- 43

tral feature extraction algorithms, such as support vector 44

machines (SVMs) [5], random forests (RFs) [6], and logistic 45

regression [7]. Considering the issue of dimensionality curse 46

due to the inherent high-dimensional spectral bands of HSI, 47

researchers investigated dimensionality reduction techniques. 48

The principal component analysis (PCA) [8] attempted to find 49

the optimal transformation to project the high-dimensional 50

data into a low-dimensional subspace, which belongs to feature 51

extraction. On the other hand, feature selection (or band 52

selection) aimed to select the representative band subset from 53

the original data [9], [10], which can effectively alleviate 54

the computational burden and improve the efficiency of HSI 55

classification. Unsupervised feature selection was more widely 56

used considering the difficulty of sample collection [11]. 57

However, generally, the spectral-classification methods did not 58

achieve satisfactory results owing to the lack of spatial and 59

contextual information. 60

Spatial features were capable of improving the represen- 61

tation capability of the hyperspectral data and enhancing the 62

robustness of the model [2]. For example, in [12], the compos- 63

ite kernels could take into account both spectral and spatial sig- 64

natures and, at the same time, balance their information, which 65

improved the classification performance. The edge-preserving 66

filtering method proposed by [13] was able to smooth the 67

probability maps of SVM classifications in a postprocessing 68

manner. The support tensor machine (STM) [14] aimed to 69

characterize the information of classes in the tensor space of 70

HSI, which can preserve the original spectral–spatial struc- 71

tures and alleviate the spatial information loss, compared to 72

SVM. In addition, the superpixel segmentation technique [15] 73

attempted to divide HSIs into local homogeneous regions 74

of different sizes, enhance the consistency of spatial struc- 75

ture information, and eliminate the effect of salt-and-pepper 76

noise. Existing studies showed that the superpixel segmenta- 77

tion technique can effectively extract the spatial information 78
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of HSI. Zhang et al. [10] adopted superpixel segmentation79

to construct different homogeneous regions and represented80

the correlations between neighboring pixels of homogeneous81

regions in the structure graph to preserve the spatial structure82

information. Inspired by Jiang et al. [15], Zhang et al. [16]83

proposed a novel spectral–spatial and SuperPCA method. The84

superpixel-based local reconstruction technique can make full85

use of spatial information and extract global–local contextual86

features simultaneously. In addition, it was found that the87

combination of the superpixel technique and sparse repre-88

sentation [17] could effectively utilize spectral and spatial89

information for HSI classification [18].90

The above methods rely heavily on the domain knowledge91

and experience of human experts and suffer from the disadvan-92

tages of low generalization ability and limited characterization93

capability. Deep spectral–spatial feature extraction methods94

based on deep learning have become increasingly popular in95

RS over the last few years. Many researchers have attempted96

to transfer the powerful feature extraction capability of neural97

networks to HSI classification [19], [20], [21], [22], [23] and98

obtained promising results. As opposed to traditional methods,99

deep learning avoids the design of artificial features and can100

adaptively extract abstract high-level features from original101

data.102

Among existing deep learning models, convolutional neural103

networks (CNNs) have received wide attention because of104

their strengths in weight sharing and local connectivity, which105

greatly reduces model complexity and reliance on spatial rela-106

tionships. Given that HSI has distinct properties from natural107

images, researchers are devoted to constructing specialized108

CNN-based feature extractors to mine rich spatial–spectral109

information from HSI. For example, Slavkovikj et al. [24]110

proposed a CNN-based feature learning framework to extract111

structured information from HSI. Li et al. [25] developed112

a novel pixel-pair approach to enhance the recognition113

capability of CNN to improve HSI classification accuracy.114

Haut et al. [26] incorporated visual attention-driven tech-115

niques into the ResNet to better represent the spectral–spatial116

information. Zheng et al. [27] used a full convolutional net-117

work (FCN)-based encoder–decoder structure and a fast patch-118

free global learning method to improve the convergence speed119

and accuracy of HSI classification. Although CNN-based120

backbone architectures can achieve state-of-the-art (SOTA)121

HSI classification performance, a number of critical issues still122

exist. For instance, the convolutional kernel has a single shape123

and a limited size. Since most of the land cover categories124

have irregular shapes, it is difficult for a single fixed square125

kernel to capture the complete feature information of objects.126

Meanwhile, the small kernel size also limits the CNN receptive127

field.128

Recently, Transformer [28] architecture based on the self-129

attention mechanism has demonstrated strong potential to130

replace the standard CNN and has been regarded as a classical131

model in natural language processing (NLP) [29], [30]. The132

Transformer model has been also carried out in the com-133

puter vision community, and the representative work includes134

ViT [31], DeiT [32], and so on. The standard vision Trans-135

former (ViT) treats an image as a sequence of nonoverlapping,136

fixed-size patches that are fed into the Transformer blocks 137

after a linear embedding layer to model the long-range 138

dependency. The Transformer has been attempted in a few 139

studies on HSI classification. He et al. [33] proposed an 140

HSI-BERT method for HSI classification using bidirectional 141

encoder representation from Transformer and achieved bet- 142

ter flexibility and generalization capability. Zhong et al. [34] 143

integrated spectral attention and spatial attention modules, and 144

proposed a novel spectral–spatial Transformer architecture. 145

Hong et al. [35] added cross-layer skip connectivity to the 146

Transformer for learning local spectral sequence informa- 147

tion from adjacent bands. Yang et al. [36] proposed an HiT 148

classification network by embedding the convolution-relevant 149

modules into Transformer, allowing the extraction of slight 150

spectral differences and the conveyance of information. 151

It should be noted that all of the above work is based 152

on the direct translation of Transformer from NLP. However, 153

in fact, there exist significant differences between NLP and 154

RS. One of the differences is the size of basic elements. For 155

instance, a word in NLP is a basic element with a fixed size, 156

whereas, in RS, the basic element is a multiscale concept, 157

which can be represented by pixels, objects, patches, or scenes. 158

In the current Transformer-based models, processing units are 159

all single size, which is certainly not conducive to many 160

tasks in RS (e.g., object detection and semantic segmentation). 161

The other difference is the number of basic elements. To be 162

precise, an image contains many more pixels than words in 163

a text paragraph. Therefore, it seems impossible to conduct 164

the pixel-level dense prediction tasks for the RS images by 165

directly borrowing the Transformer models from the NLP 166

domain since the computational complexity of self-attention 167

is quadratic to the image size. Given this, Liu et al. [37] 168

proposed a generalized backbone network, i.e., the Swin 169

Transformer (SwinT). Its computational complexity is linear to 170

image size, and it also enables the construction of hierarchical 171

feature maps so that more advanced techniques, such as feature 172

pyramid network (FPN) [38], can be utilized. Considering the 173

3-D characteristics of HSI, this article aims to improve the 174

original SwinT to the 3-D structure by proposing 3-D SwinT 175

(3DSwinT), which can effectively reduce information loss and 176

model the spatial–spectral dependencies. 177

On the other hand, the majority of current Transformer- 178

based studies in RS are conducted in a supervised learning 179

manner [33], [34], [35], which necessitates a large number 180

of high-quality annotated samples and, therefore, is undoubt- 181

edly expensive and time-consuming [39]. Moreover, since 182

RS images have very strong spatiotemporal heterogeneity 183

and rich spectral information, it is difficult to annotate sam- 184

ples with wide coverage, multitemporal, multispectral, and 185

multiresolution. 186

To address this issue, self-supervised learning (SSL) has 187

been proposed and applied, which belongs to unsupervised 188

learning and is intended to learn semantical representations 189

from a large number of unlabeled images. In theory, images 190

themselves should contain richer and more diverse information 191

than the limited labels, which makes SSL easier to implement 192

and more promising. Specifically, SSL methods first pretrain 193

the feature extraction network to learn potential representations 194
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from images and then fine-tune the pretrained network using195

a few labels in downstream tasks. SSL is an effective way196

to solve the “label starvation” problem for RS image deep197

learning. Since MoCo [40] achieved SOTA performance in198

the vision tasks, the contrastive learning [41] method has199

been gradually becoming the mainstream of SSL. Contrastive200

learning learns features by constructing positive and negative201

sample pairs, and its main idea is to minimize the distance202

between positive pairs and maximize the distance between203

negative ones. Contrastive learning has been successfully204

applied in the field of RS, and several notable examples205

include change detection [42], semantic segmentation [43],206

and scene classification [44]. It is also very promising to apply207

it to the HSI land cover classification. Xu et al. [45] proposed208

an end-to-end spectral–spatial unsupervised semantic feature209

extractor to learn the high-level semantic information from210

HSI and then adjusted the learned features with contrastive211

loss as the objective function.212

In the field of CV, MoCo v3 [46] investigated several basic213

components for training ViT based on contrastive learning;214

Caron et al. [47] proposed a simple and efficient contrastive215

learning method called DINO and showed its synergy with216

ViT; and MoBY [48] combined MoCo v2 [49] and the217

BYOL [50] contrastive learning method, and made SwinT [37]218

as the backbone to evaluate its performance in downstream219

tasks. Comparatively speaking, in the field of RS, the research220

that involves or integrates Transformer and contrastive learning221

is scarce, and there are even fewer relevant studies for HSI222

classification.223

In this study, we propose a hierarchical contrastive learning224

(HCL) framework to fully exploit the multiscale semantic225

information in the multiresolution feature maps. It should226

be noted that the multiscale features can also be effectively227

represented through the hierarchical feature construction abil-228

ity of 3DSwinT. Typically, contrastive learning methods view229

a whole image as the learning target to extract image-level230

global representation, which, however, is ill-considered for231

downstream dense prediction tasks that necessitate pixel-level232

information. HSI classification is a pixel-by-pixel segmenta-233

tion task, and therefore, extracting only global features will234

inevitably lead to the loss of many local details. To overcome235

this limitation, in our research, besides the global feature236

representation module, we also propose a multiscale local237

contrastive learning (MS-LCL) module to learn pixel-level238

representations by selecting geographically matched multi-239

scale local regions from the multilevel feature maps output240

by 3DSwinT.241

In summary, this article proposes a 3DSwinT-based HCL242

(3DSwinT-HCL) method for HSI land cover classification.243

To the best of our knowledge, this is the first time that244

contrastive learning and SwinT-based backbone have been245

combined for HSI classification. The main contributions of246

this article can be summarized as follows.247

1) Proposed a novel 3-D architecture, called 3DSwinT for248

HSI classification.249

2) Proposed a novel self-supervised contrastive learning250

method, namely, HCL. It consists of two components,251

i.e., the multiscale global contrastive learning (MS-GCL) 252

module and an MS-LCL module. 253

3) The extensive experiments demonstrate the superiority 254

of the proposed methods. 255

The remaining parts of this article are organized as follows. 256

Section II presents the related work. The network architec- 257

ture is described in detail in Section III. Data description, 258

experimental setup, experimental results, and discussions are 259

presented in Section IV. Section V concludes this article. 260

II. RELATED WORK 261

A. Contrastive Representation Learning 262

SSL originated from NLP and is usually divided into two 263

main categories: generative methods and contrastive meth- 264

ods [41], [51]. Generative methods are a pixel-level mod- 265

eling approach, but they fail to establish spatial structure 266

relationships since they focus on pixel details [52]. Contrastive 267

methods utilize positive and negative samples to learn both the 268

invariance of various augmented views of the same image and 269

the ability to distinguish different images. Contrastive methods 270

have now become the mainstream of SSL because of their 271

superior performance and generalization ability. They usually 272

employ the InfoNCE [51] loss function to learn representa- 273

tions, which requires a large number of negative examples, 274

and the simplest and most straightforward way is to use large 275

batches [53] or design memory banks to store all features [54]. 276

The former is related to GPU capacity, and the latter demands 277

a lot of memory. 278

To resolve the above problems, recent studies have 279

attempted to improve the method while preserving the Siamese 280

structure. In the BYOL model [50], negative samples were 281

removed, and a momentum encoder, a prediction head, and 282

gradient stopping strategies were adopted to avoid network 283

collapse. SwAV [55] avoided collapse solutions by clustering, 284

and SimSiam [56] verified that gradient stopping was the key 285

to preventing network degradation. MoCo [40], [49] replaced 286

the memory library with a queue dictionary, where features 287

can be constantly updated to avoid memory consumption and 288

the consistency of negative samples. In this study, we propose 289

a novel contrastive learning method that incorporates queue 290

design, momentum encoder, and prediction head, and more 291

importantly, the proposed method has multiscale feature learn- 292

ing ability. 293

B. Self-Attention Mechanism and Transformer 294

The self-attention mechanism can model long-range depen- 295

dency in sequence data and has been successfully applied 296

in HSI classification. Fang et al. [57] introduced a spectral 297

self-attention module into 3-D dilated convolution to enhance 298

the distinguishability of spectral features. Sun et al. [58] pro- 299

posed a spectral–spatial attention network to extract features 300

from HSI cubes and mitigate the influence of irrelevant pixels. 301

Zhu et al. [59] adopted spectral- and spatial-attention mecha- 302

nisms on the basis of residual networks to adaptively select 303

spectral bands and spatial information. However, although the 304

above attention modules can achieve better performance, they 305

are all constructed on CNN. 306
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Fig. 1. Overall network architecture of the proposed 3DSwinT-HCL. 3DSwinT-HCL has a Siamese structure, consisting of data augmentation, 3DSwinT
feature extraction, and HCL. Data augmentation includes geometric and color transformations with stochastic initialization parameters. 3DSwinT contains
four stages, where the feature maps of different sizes are output. The hierarchical contrastive framework can learn multiscale representations and mine both
image-level information and pixel-level information. (The figure does not show negative samples. For global contrastive learning, the negative samples are
augmented views of other images from a batch. For local contrastive learning, the negative samples are local regions selected from other images.)

Transformer arose from machine translation and has become307

the dominant architecture in NLP. The Transformer is made up308

of an encoder and a decoder, both of which consist of multiple309

stacked self-attention blocks. ViT [31] is the pioneering work310

of Transformer in the field of CV, and its input is a series of311

nonoverlapping, medium-sized patches. Many related works312

followed ViT, such as DeiT [32], SwinT [37], PVT [60], and313

Twins [61]. These studies have improved ViT in terms of314

training strategies [32], hierarchical features [37], [60], com-315

putational complexity [37], and attention mechanisms [61].316

In RS, ViT achieved a tradeoff between accuracy and effi-317

ciency in change detection, segmentation, and classification318

tasks [62], [63], [64]. However, ViT is still limited in dense319

prediction tasks or processing high-resolution images owing320

to its inherent structural nature.321

C. Swin Transformer322

Based on ViT [31], SwinT [37] introduced pyramid struc-323

ture, locality, and translation invariance, and incorporated the324

sequence modeling capability and prior information of visual325

signals. Its computational complexity is linear to image size.326

SwinT v2 [65] further improved model capacity by proposing327

a postnormalization, log-spaced continuous position bias tech-328

nique when training large models. PVT [60] had a pyramid329

structure similar to SwinTs, but its computational complexity330

remained quadratic to image size. PVT v2 [66] developed a 331

linear spatial reduction attention mechanism to further reduce 332

the complexity. Recently, some works have investigated the 333

effect of fusing SwinT and convolutional networks [67]. It is 334

worth noting that the SwinT-relevant studies are still scarce 335

in RS tasks, especially the HSI classification. Gao et al. [68] 336

combined the advantages of SwinT and CNN to construct a 337

STransFuse model in order to extract coarse- and fine-grained 338

features at various scales. Xu et al. [69] used SwinT as 339

the backbone to model global relationships of images and 340

accelerate network inference. This article extends SwinT to 341

the 3-D structure in order to adapt to HSI classification. 342

III. METHODS 343

A. Overall Network Architecture 344

SwinT considers hierarchy, locality, and translation invari- 345

ance on the basis of ViT, on top of which our 3DSwinT further 346

takes into account the 3-D characteristic of HSI. On the other 347

hand, contrastive learning utilizes unlabeled samples with data 348

augmentation strategies to pretrain the network and learn a 349

large amount of potential semantic representations. Subse- 350

quently, the pretrained network can be fine-tuned with a few 351

labels in downstream tasks. The downstream task of this article 352

is pixel-level HSI semantic segmentation. Considering the 3-D 353

nature of HSI and the multiple scales and sizes of ground 354
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Fig. 2. Conventional contrastive learning framework. Referring to [53], the
framework consists of data augmentation, representation extraction, nonlinear
transformation, and contrastive loss.

objects, we propose a novel HCL method based on 3DSwinT355

(3DSwinT-HCL). 3DSwinT-HCL is capable of simultaneously356

learning image- and pixel-level multiscale representations dur-357

ing the SSL pretraining phase, which is beneficial for better358

transfer to the downstream dense prediction task.359

The overall network architecture of 3DSwinT-HCL is shown360

in Fig. 1, which includes the following steps.361

1) For an input x , two augmentation views (vi and v j ) are362

first generated by stochastic data augmentation strate-363

gies.364

2) The generated views are then imported to the Siamese365

3DSwinT networks for feature extraction. The two366

3DSwinT branches are called online and target encoders,367

respectively. Each 3DSwinT consists of four stages,368

yielding feature maps of various sizes.369

3) Finally, multiscale feature maps of the two branches370

are fed to the proposed HCL framework for multiscale371

global and local contrastive learning. 3DSwinT is capa-372

ble of extracting the rich spatial and spectral information373

of HSI, and furthermore, the multiscale and global–374

local learning of HCL can adequately take into account375

the characteristics of the ground objects for the dense376

prediction tasks.377

B. Contrastive Learning378

The idea of contrastive learning is to maximize the similarity379

between positive pairs and minimize the similarity between380

negative ones. It is generally designed in the form of a Siamese381

network [70], whose general framework is presented in Fig. 2,382

containing four main components.383

1) Data Augmentation: This module plays an important role384

in self-supervised contrastive learning and aims to apply a385

series of random transformations to a batch of input data in386

order to construct labels for contrast. Labels can be divided387

into anchors, positive samples, and negative samples. For an388

image, data augmentation can build noise-free representations389

and generate positive samples with similar features, whereas,390

in contrast, the augmented views of different images are391

treated as negative samples. In this study, we adopt geo-392

metric and color transformations to produce diverse samples.393

As shown in Fig. 3, specifically, the geometric transformations394

include random cropping, scaling, rotation, and flipping, and395

the color transformations consist of color distortions (bright-396

ness, contrast, saturation, and hue), blurring, and graying. Each397

Fig. 3. Data augmentation. (a) Original image. (b) Rotation. (c) Crop and
resize. (d) Flip. (e) Color distortion. (f) Random blur. (g) Gray. A stochastic
initialization is adopted for these augmentation operations.

input x results in two related views by the stochastic data 398

transformations, t1 and t2, i.e., vi = t1(x) and v j = t2(x), 399

where vi can be referred to as the anchor, v j is its matching 400

positive sample, and augmented views of different images are 401

the negative ones. 402

Negative samples are indispensable for contrastive learning, 403

without which the network may collapse. There are two 404

methods for constructing and updating negative samples. 405

Method 1: Negative samples are the augmented views of 406

other images apart from the anchor from the same batch 407

and are updated end-to-end by back propagation [53]. In this 408

way, for a batch containing N images, there are 2N samples 409

after data augmentation. Given an anchor, there is only one 410

matching positive sample, and the remaining 2(N −1) samples 411

are negative ones. 412

Method 2: The negative samples of each batch are stored 413

in a large dictionary, which is maintained as a queue and 414

updated by the momentum encoder [40]. Continuous replace- 415

ment between new and old samples in the queue ensures 416

the consistency of negative samples. The queue size can be 417

viewed as a hyperparameter since it is decoupled from the 418

batch size. Therefore, this method can produce more negative 419

samples. In this article, we utilize Method 2 to generate 420

negative samples. 421

2) Representation Extraction: The neural network encoder 422

fθ can be used for information extraction and feature transfor- 423

mation in order to build representations for downstream tasks. 424

fθ allows multiple options, such as convolutional neural or 425

Transformer-based networks. This article proposed a 3DSwinT 426

backbone to generate representations yi = 3DSwinT(vi) and 427

y j = 3DSwinT(v j), where an adaptive average pooling oper- 428

ation is required for yi and y j . 429

3) Nonlinear Transformation: A nonlinear projection head 430

gθ further transforms the extracted representation to the projec- 431

tion layer z, where the loss value is calculated. gθ consists of 432

a multilayer perceptron (MLP) with one hidden layer, yielding 433

zi = W (2)σ (W (1)yi) and z j = W (2)σ (W (1) y j), where σ is the 434

rectified linear unit (ReLU). The module was first introduced 435

by SimCLR [53], can effectively avoid information loss, and, 436

hence, improve the effectiveness of representations. 437

Authorized licensed use limited to: Wuhan University. Downloaded on September 14,2022 at 12:44:02 UTC from IEEE Xplore.  Restrictions apply. 



5411415 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 4. Overall architecture of 3DSwinT. (a) Network architecture. (b) Two consecutive 3DSwinT blocks. 3DSwinT is made up of four stages, with each
outputting the feature maps of different scales. 3DSwinT blocks contain LN, 3DW-MSA, MLP, and residual connection.

4) Contrastive Loss: As the objective function of self-438

supervised contrastive learning, the contrastive loss primarily439

aims to train the encoder network. For a dataset of {xk}, and440

a given anchor xi , the contrastive loss requires minimizing the441

distance between xi and its positive sample x j , and maximiz-442

ing the distance between xi and the negative samples {xk}k �= j .443

Based on the commonly used InfoNCE [51], we define the loss444

function for a positive pair of (i , j) as445

�(vi ,v j ) = − log
exp(sim(zi , z j )/τ )

exp(sim(zi , z j )/τ )+∑
z∈�− exp(sim(zi , z)/τ )

446

(1)447

where τ is the temperature parameter, sim denotes the sim-448

ilarity between samples, which is often measured by cosine449

similarity, and �− represents all the negative samples. For a450

batch containing N samples, we can obtain the final loss value451

across all positive pairs, i.e., (i , j) and ( j , i)452

L = 1

2N

N∑

k=1

(�(vi , v j ) + �(v j , vi )). (2)453

From (1), contrastive learning needs to simultaneously con-454

struct both positive and negative pairs. If there are only positive455

pairs (without negative pairs), the model tends to encode all456

samples into the same feature, leading to degenerate solutions.457

Conversely, if there are no positive samples, the model lacks458

clustering ability. Existing studies [40], [53] show that more459

negative pairs can lead to stronger learning capabilities. This460

is because more negative pairs can describe the underlying461

distribution more effectively, thus optimizing the training462

direction and accelerating convergence. In addition, negative463

samples are preferably close to the positive ones but with464

different labels. Such samples are called hard negatives.465

C. 3DSwinT466

SwinT can construct multiscale feature maps by continu-467

ously fusing neighboring patches and the window partition468

mechanism, and its computational complexity is linear to469

image size, which is beneficial for dense prediction tasks470

and high-resolution images. In this study, we extend SwinT471

to a 3-D structure, i.e., 3DSwinT, to accommodate the 3-D472

properties of HSI and capture its rich spatial and spectral473

information. Fig. 4 depicts the architecture of 3DSwinT. 474

Compared to SwinT, the improvements made are summarized 475

in the following aspects. 476

1) We define each HSI as B × H × W × 1, where B is 477

the number of HSI bands, and H and W denote the 478

height and the width of the image, respectively. 479

2) In the patch partition module, SwinT splits the input 480

into (H /4) × (W /4) patches with a size of 4 × 4. 481

In contrast, our proposed 3DSwinT takes a 3-D cube 482

(4 × 4 × 4) as the basic processing unit, leading to a 483

total of (B/4) × (H /4) × (W /4) patches, with a feature 484

dimension of 64, and then, a linear embedding layer 485

projects these patches to an arbitrary dimension of C . 486

The neighboring patches are merged in the subsequent 487

patch merging phase, and the spatial size of the patches 488

becomes 4, 8, 16, . . . in sequence while keeping the 489

spectral domain constant. 490

3) The difference between 3DSwinT blocks and SwinT 491

blocks lies in the window-based multihead self-attention 492

(W-MSA) mechanism. We add the spectral domain to 493

W-MSA, yielding 3-D W-MSA (3DW-MSA), by con- 494

sidering the window partitioning and shifting mechanism 495

(as shown in Fig. 5). SwinT adopts 2-D windows of size 496

M × M to divide input patches evenly, while 3DSwinT 497

utilizes 3-D windows of size P × M × M . In addition, 498

we refine the original window shifting mechanism by 499

moving (P/2, M/2, M/2) patches along the spectral, 500

height, and width dimensions in the next block [see 501

Fig. 5(b)] in order to strengthen information interaction 502

between windows. 503

3DSwinT consists of four stages. Each stage includes a 504

patch merging module and a series of 3DSwinT blocks (except 505

for Stage 1). As mentioned above, the patch merging module 506

only downsamples the spatial dimension (not the spectral 507

dimension) to concatenate the neighboring 2 × 2 patches into 508

a large patch. This means that the size of patches becomes 509

four times that of the original, and the number becomes one- 510

quarter of the original. Meanwhile, a linear layer is used 511

to project the concatenated dimension to half of its original 512

size. Finally, the 3DSwinT blocks are utilized to extract the 513

self-attention information. This process does not change the 514
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Fig. 5. Window partitioning and shifting of (a) SwinT and (b) 3DSwinT.
Compared to SwinT, 3DSwinT uses the 3-D windows to divide input patches
evenly and moves patches along the spectral, height, and width axes in the
next block to strengthen information interaction between windows. (a) Win-
dow partitioning and shifting mechanism of SwinT. (Left) Regular window
partition. (Right) Window shifting mechanism. (b) Window partitioning and
shifting mechanism of 3DSwinT. (Left) Regular window partition. (Right)
Window shifting mechanism.

input resolution. In this way, for Stage 1, the size of the515

feature map is (B/4) × (H/4) × (W/4) × C , Stage 2 is516

(B/4) × (H/8) × (W/8) × 2C , and so on for other stages.517

In comparison to SwinT blocks, we employ 3DW-MSA to518

extract both spectral and spatial sequence information. All519

other components of 3DSwinT blocks are kept the same as520

SwinT, such as MLP, layer normalization (LN), and residual521

connection. Fig. 4(b) depicts two adjacent 3DSwinT blocks522

within each stage, which can be represented by following the523

equation:524

ŷl = 3D W-MSA
(
LN

(
yl−1

)) + yl−1
525

yl = MLP
(
LN

(
ŷl

)) + ŷl
526

ŷl+1 = 3D SW-MSA
(
LN

(
yl

)) + yl
527

yl+1 = MLP
(
LN

(
ŷl+1

)) + ŷl+1 (3)528

where 3DW-MSA and 3-D SW-MSA represent the 3-D529

window-based and shifted W-MSA mechanisms, respectively,530

and ŷl and yl are the outputs of 3-D (S)W-MSA and MLP in531

block l, respectively.532

D. Hierarchical Contrastive Learning533

Conventional contrastive learning methods usually feed534

data-augmented images into the Siamese network to construct535

representations and then perform contrastive learning in the536

representation space. Notice that current contrastive learn-537

ing studies can only represent single-scale content but also,538

in fact, objects have complex and variable scales and sizes.539

Consequently, single-scale contrastive learning methods are540

not sufficient for the semantic segmentation task. Given this,541

we propose an HCL method that utilizes the multiresolution542

feature maps output by 3DSwinT to mine multiscale semantic543

Fig. 6. Our HCL framework. The multiscale feature maps output by 3DSwinT
are fed into the multiscale contrastive framework. Each level carries out
contrastive representation learning at different scales in parallel, and the
learning results of all levels are then fused to obtain the overall similarity
of the network.

information. As shown in Fig. 1, the multilevel feature maps 544

derived from both 3DSwinT branches are fed into the HCL 545

framework. Specifically, the proposed method takes multiscale 546

information extraction as the overall framework and includes 547

both global and local contrastive learning modules to learn 548

image- and pixel-level hierarchical representations at the same 549

time. The following are the details. 550

Compared
1) Hierarchical Contrastive Learning Framework: with 551

existing contrastive learning frameworks, our proposed HCL 552

can simultaneously learn multiscale representations during 553

self-supervised pretraining. Specifically, each level carries out 554

contrastive representation learning at different scales in paral- 555

lel, and the learning results of all levels are fused to obtain the 556

overall similarity of the network, as shown in Fig. 6. With the 557

hierarchical learning framework, both global information and 558

local information are extracted to achieve image- and pixel- 559

level multiscale representations. 560

2) Multiscale Global Contrastive Learning Module: This 561

module conducts image-level hierarchical representation learn- 562

ing. Specifically, the output of 3DSwinT [denoted as e(·)] at 563

Stage s (s = 1, 2, . . . denotes different scales) is entirely 564

fed into the module. Besides the projection head g(·), the 565

module additionally introduces a prediction head h(·), mainly 566

to prevent degenerate solutions, and it also consists of an MLP 567

and a single hidden layer (ReLU). The module employs an 568

asymmetric structure, and only the online encoder contains 569

h(·). Therefore, for any input image x , we can obtain 570

zs
i = h

(
g
(
Avg

(
es(t1(x))

)))
571

zs
j = g

(
Avg

(
es(t2(x))

))
(4) 572

where es(·) stands for Stage s of the encoder e(·). Avg is the 573

adaptive average pooling. zs
i and zs

j ∈ RD , for the calculation 574

of global similarity at different scales. 575

The idea of contrastive learning is to learn similar/dissimilar 576

representations from positive and negative pairs and, thus, 577

can be characterized as a dictionary lookup task [40]. Fol- 578

lowing [40], we store negative features of each batch during 579

the training in a dictionary, which is maintained as a queue 580

and updated by the momentum encoder in order to ensure the 581

consistency of features. The queue size can be much larger 582
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Fig. 7. Selection and matching of multiscale local regions. The index matrix is used to select the matching positive sample pairs, which has the same size
as the spatial size of the image and is spatially transformed along with the images. We use maximum pooling to make the matrix the same size as the feature
map at each stage. Finally, we select a number of local regions in terms of the same pixel value of the two index matrices for each scale.

than the batch size since it is independent of the batch, so as583

to generate sufficient and diverse negative samples.584

Query and key are two key elements in the dictionary lookup585

task. Each query q matches a positive key k+ in the dictionary586

to constitute a positive pair, i.e., two augmented versions of587

the same image. On the other hand, the remaining features588

form the negative keys {k−}. The contrastive function is589

dedicated to maximizing the similarity between q and k+ while590

distinguishing q and {k_}. According to InfoNCE, we define591

the hierarchical global loss for an input batch containing N592

samples as593

Ls
G = 1

2N

N∑

1

(
�s

g

(
vi , v j

) + �s
g

(
v j , vi

))
(5)594

with595

�s
g(vi , v j ) = − log

exp
(
zs

i · zs
j

/
τ
)

exp
(
zs

i · zs
j

/
τ
) + ∑K

k=1 exp
(
zs

i · zs
k

/
τ
)596

(6)597

where we employ dot products to measure the similarity598

between samples.
∑K

k=1 zs
k denotes all global negative samples599

for each scale in the dictionary, and we set the negative sample600

size to K since it is decoupled from the batch size. In this601

study, s is set to 1, 2, 3, 4, and hence, we can obtain four602

global losses representing different scales: L1
G , L2

G , L3
G , and603

L4
G .604

3) Multiscale Local Contrastive Learning Module: As a605

pixel-level segmentation task, HSI classification demands local606

detail information, which cannot be represented effectively in607

the global representation module. Therefore, we propose an608

MS-LCL module to focus on local regions in order to learn the609

pixel-level representations with multiscale properties. Unlike610

global contrastive learning, local contrastive learning begins611

with the selection and matching of local regions [denoted as612

m(·)], which is dealt with by choosing geographically matched613

local regions based on the multilevel feature maps output by614

the Siamese 3DSwinT. The specific steps are introduced as615

follows.616

Step 1: To ensure that the selected local regions are geo- 617

graphically aligned, we employ a 2-D index matrix with the 618

same spatial size as the image to record the pixel positions of 619

the image. Since pixel positions are disrupted and cannot be 620

aligned after random data augmentation, index matrices need 621

to be transformed along with images, specifically geometric 622

transformation, i.e., random cropping, scaling, rotation, and 623

flipping. 624

Step 2: As previously stated, 3DSwinT outputs 625

feature maps of different sizes at each stage. Given 626

an image with a size B × H × W , the feature map 627

constructed by Stage s of 3DSwinT can be expressed as 628

(B/4) × (H/(4 × 2s−1)) × (W/(4 × 2s−1)) × (2s−1 × C). 629

Therefore, we reshape the index matrix to the same size as 630

the feature map at each scale in order to guarantee their 631

spatial matching. We achieve this requirement through the 632

pooling operator [p(·)]. 633

Step 3: In this way, multilevel index matrices that record 634

precise pixel locations can be obtained. Subsequently, we can 635

select a number of matching pixels in terms of the same pixel 636

value of the two index matrices for each scale, where the pixels 637

correspond to local regions of the original images. 638

The implementation of the above steps is demonstrated in 639

Fig. 7. Therefore, for the module, we can obtain 640

us
i = h

(
g
(
m

(
Avg

(
es(x)

))))
641

us
j = g

(
m

(
Avg

(
es(x)

)))
(7) 642

where us
i and us

j ∈ RD for the calculation of local similarity 643

at different scales. 644

Analogously to the global contrastive loss, the hierarchical 645

local loss can be written as 646

Ls
L = 1

2Ns
L

N s
L∑

1

(�s
l (vi , v j ) + �s

l (v j , vi )) (8) 647

Authorized licensed use limited to: Wuhan University. Downloaded on September 14,2022 at 12:44:02 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: 3DSwinT-HCL METHOD FOR HSI CLASSIFICATION 5411415

with648

�s
l (vi , v j ) = − log

exp
(
us

i · us
j/τ

)

exp
(
us

i · us
j/τ

) + ∑K s
L

k=1 exp
(
us

i · us
k/τ

)649

(9)650

where Ns
L indicates the total number of matching local regions651

at each scale chosen from a batch containing N samples, i.e.,652

Ns
L = N × ns

m , with ns
m being how many local regions are653

selected from a sample.
∑K s

L
k=1 us

k are all local negative samples654

for each scale in the dictionary, i.e., K s
L = K × ns

m . In this655

way, (8) yields four local losses representing different scales,656

namely, L1
L , L2

L , L3
L , and L4

L .657

4) Total Network Loss: The total network loss can be658

obtained based on the above four-level global and local losses659

L = 1

4

4∑

s=1

(
λ × Ls

G + (1 − λ) × Ls
L

)
. (10)660

IV. RESULTS AND DISCUSSION661

A. Data662

1) Zhuhai-1 Hyperspectral Data (OHS): The Zhuhai-1663

hyperspectral constellation consists of ten Orbita hyperspectral664

micro–nano satellites, which are operated and managed by665

Orbita Corporation, China. For the first time, OHS achieves666

a hyperspectral satellite network for a rapid response to667

earth observation. The imaging resolution of each satellite is668

10 m, and there are 256 spectral bands ranging from 400 to669

1000 nm. Orbita Aerospace provides 32 spectral bands that are670

selected from the 256 channels according to the users’ needs.671

In this research, we chose the default 32 bands, whose central672

wavelengths range from 466 to 940 nm. Specifically, in the673

experiments, 400 images with a size of 224 × 224 are used674

for algorithm testing, and four land cover classes, vegetation,675

building, bare land, and water are included by considering676

the land cover characteristics of the study area and the spatial677

resolution of OHS. The images are divided into self-supervised678

pretraining and test sets with a ratio of 9:1, and 10% of679

pretraining tests are for fine-tuning the downstream task.680

2) Six Widely Used Hyperspectral Datasets: We choose681

six existing hyperspectral datasets to evaluate the transfer682

capability of the 3DSwinT-HCL method, including Indian683

P,1 Salinas,1 Botswana,1 Pavia U,1 Pavia C,1 and DFC20182
684

(see Table I). The partitioning of the training and testing685

sets follows the providers’ recommendations. The number of686

training and testing samples for the six hyperspectral datasets687

is shown in Table II.688

First, we use OHS data for self-supervised pretraining, and689

then, the pretrained model is fine-tuned with a few labels.690

Finally, we transfer the pretrained model to the six HSIs for691

classification.692

B. Experimental Setup693

1) Evaluation Metrics: OA and Kappa are used to quanti-694

tatively evaluate the performance of different algorithms.695

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

2http:i/hyperspectral.ee.uh.edu/?page_id=1075

TABLE I

HYPERSPECTRAL DATASETS USED IN THIS ARTICLE

TABLE II

SAMPLE SIZE OF SIX COMMONLY USED HYPERSPECTRAL DATASETS

2) Comparison With SOTA Methods: The proposed 696

3DSwinT-HCL is compared with other contrastive learning 697

methods, including MoCov3 [46], DINO [47], MOBY [48], 698

and SiT [71]. Furthermore, the self-supervised pretrained 699

3DSwinT-HCL is transferred to the six commonly used hyper- 700

spectral datasets to assess its transferability. 701

3) Implementation Details: In the SSL phase, we train all 702

the self-supervised models for 500 epochs using the AdamW 703

optimizer, with a batch size of 16. The initial learning rate 704

is 0.001, with a cosine decay schedule. The momentum and 705

weight decays are 0.9 and 0.05, respectively. For the MS-LCL 706

module of our 3DSwinT-HCL, the number and size of local 707

areas are set to 8 × 4 × 4, 4 × 8 × 8, 2 × 16 × 16, and 708

1 × 32 × 32 at the four stages, respectively. In the fine-tuning 709

phase, we only use 10% labels of self-supervised samples to 710

fine-tune the network, with a learning rate of 0.0005, a batch 711

size of 26, and CrossEntropy as the loss function. 712

C. Experimental Results 713

In this section, we first compare the 3DSwinT-HCL method 714

with other methods combining contrastive learning and Trans- 715

former based on the OHS dataset, and then, we analyze the 716

difference between self-supervised and supervised learning. 717

Finally, considering the large differences in spectrum and 718

resolution for different hyperspectral sensors, it is interesting 719

to test whether 3DSwinT-HCL can be effectively transferred 720

to other hyperspectral datasets. 721

1) Comparison With Other Contrastive Learning Methods: 722

Results are shown in Table III. 723

From Table III, we can see that our method obtains the 724

highest accuracy, with an OA of 80.15% and a Kappa of 725

0.70, which is the only model with an OA greater than 726

80%. In contrast to MOBY, which also adopts SwinT as the 727
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Fig. 8. Visualization of classification results on the OHS dataset. Our method achieves the highest classification accuracy, presents fewer false alarms, and
is better at describing the completeness and details of objects.

TABLE III

COMPARISON BETWEEN SELF-SUPERVISED METHODS (WITH 10%
LABELS FOR FINE-TUNING)

backbone, 3DSwinT-HCL obtains better accuracy by 1.3%.728

On the one hand, the existing contrastive learning approaches729

only focus on the single-scale feature representation but do730

not take into account the multiscale characteristics of the731

land cover classes. On the other hand, their backbones seem732

inadequate to extract rich spectral and spatial information733

from HSI. Therefore, they fail to achieve optimal results in734

the semantic segmentation task. In contrast, our proposed735

3DSwinT-HCL can adaptively learn the multiscale semantic736

information and fully model the spatial–spectral dependencies737

during self-supervised pretraining. In addition, 3DSwinT and738

HCL demonstrate good complementarity. In this way, satisfac-739

tory performance can be obtained with only a few labels in the740

downstream task. In addition, the MS-LCL module embedded741

in the hierarchical framework can additionally focus on the742

local details of objects and learn pixel-level representations,743

which are more beneficial for dense prediction tasks.744

Moreover, we visualize a portion of the classification results745

in Fig. 8. It can be seen that the other methods produce a746

Fig. 9. Comparison of classification accuracy with different sample ratios.
The accuracy of both self-supervised and supervised learning gradually
improves as the ratio of labels increases. It can be seen that our method
outperforms the supervised learning by an average of 2.3%.

large number of false alarms, but our method can reduce this 747

kind of error and has fewer misclassifications. Comparatively 748

speaking, ours is better at depicting the completeness and 749

details of objects. Inevitably, however, it can be observed 750

that our method has drawbacks, especially in the boundary 751

areas. However, this can be acceptable given the very limited 752

amount of samples used in the SSL. In summary, in the above 753

experiment, our proposed 3DSwinT-HCL method shows great 754

potential for HSI classification. 755

2) Self-Supervised Fine-Tuning and Supervised Learning: 756

The idea of SSL is to pretrain the network on a large amount 757
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of unlabeled data and then fine-tune it using a few labels in758

the downstream target, whereas supervised learning directly759

utilizes a large number of labels for feature learning. In this760

subsection, using 3DSwinT as the backbone, different ratios761

of labels are utilized to fine-tune the self-supervised model,762

and meanwhile, pure supervised learning is also performed763

in order to verify the effectiveness of our method. From764

Fig. 9, it is shown that, as the ratio of labels increases, the765

accuracy of both self-supervised and supervised learning grad-766

ually improves, and the 3DSwinT-HCL method consistently767

outperforms supervised learning. In terms of OA, our method768

surpasses supervised learning by an average of 2.3% with769

the same sample ratio and 2.8% with a 30% ratio. These770

results demonstrate that 3DSwinT-HCL pretraining is able to771

adaptively explore more latent features and is superior for HSI772

classification compared to supervised learning. To summarize,773

our results demonstrate the great potential and efficiency of774

SSL for HSI semantic segmentation.775

D. Transfer to Other HSI Datasets776

Transferability is tested in this section to evaluate whether777

the proposed contrastive learning method can perform well778

on other HSI datasets. The 3DSwinT model is pretrained by779

the HCL self-supervised method based on the OHS dataset780

and then transferred to the six commonly used hyperspectral781

datasets. It is a great challenge, as the images from different782

sensors have large differences in landscape characteristics, spa-783

tial resolution, and spectral channels. Specifically, OHS data784

has 32 spectral bands ranging from 0.46 to 0.94 μm, with an785

average spectral resolution of 2.5 nm and a spatial resolution786

of 10 m. In contrast, the minimum and maximum numbers787

of spectral channels for the six HSI datasets are 48 and788

204, respectively, and the wavelength range is from 0.38 to789

2.5 μm with a spatial resolution of 1–30 m. Considering the790

great differences between OHS and these datasets, the transfer791

capability of 3DSwinT-HCL is tested in the following three792

scenarios.793

1) All_Random: We train the network from scratch using all794

the spectral bands for each HSI dataset. The network is795

randomly initialized without self-supervised information796

from 3DSwinT-HCL.797

2) Sub_Random: For each HSI dataset, 32 bands are chosen798

according to the central wavelength of the OHS images,799

and the network is then also trained from scratch.800

3) Sub_HCL: Unlike 2), the network is not randomly801

initialized but rather fine-tuned by the 3DSwinT-HCL’s802

pretraining model.803

For DFC2018 and Pavia C, 50 epochs are trained due to804

their relatively large training sample sizes, and the epoch for805

other datasets is set to 100. For all datasets, we set the batch806

size to 100, with a learning rate of 0.0005, and AdamW is807

used as the optimizer.808

According to the results (see Fig. 10), Sub_HCL is always809

superior to Sub_Random in all the datasets and outperforms810

All_Random in the majority of them (except for Pavia C).811

It can be seen that, despite the significant spatial and spectral812

differences between OHS and other HSI datasets, the model813

Fig. 10. Classification results of the SSL transferred to other commonly used
hyperspectral datasets. Sub_HCL is always superior to Sub_Random for all
the datasets and outperforms All_Random in most of the cases (except for
Pavia C).

TABLE IV

ABLATION EXPERIMENTS OF 3DSWINT-HCL

with 3DSwinT-HCL pretraining is always capable of achieving 814

satisfactory results when transferring to other datasets. The 815

classification accuracy of all datasets can be improved to some 816

extent, regardless of whether the resolution of the datasets 817

is higher or lower than 10 m of OHS. Therefore, it can be 818

stated that our proposed 3DSwinT-HCL method has promising 819

transfer ability, and the information derived from the SSL is 820

beneficial for other datasets with different features. 821

E. Ablation Experiments 822

This article proposes the 3DSwinT-HCL method, and the 823

technical contributions include the 3DSwinT backbone to 824

extract both spatial and spectral features of HSI; the HCL 825

framework for multiscale representation learning, including 826

the MS-GCL module to exploit image-level information; and 827

the MS-LCL module to capture local details. In this section, 828

we conduct ablation experiments to investigate the impor- 829

tance of these components. Experiments (see Table IV) show 830

that, when not using our proposed components (including 831

3DSwinT, MS-GCL, and MS-LCL), i.e., only the single-scale 832

global contrastive learning is carried out with 2DSwinT as the 833

backbone, the OA is 78.83%. When the backbone (2DSwinT) 834

is replaced by 3DSwinT, the OA increases to 79.27%, with 835

an improvement of 0.44%. Furthermore, when the global 836

contrastive learning is embedded into the proposed HCL 837

framework, i.e., MS-GCL, OA is raised to 79.93%, with an 838
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TABLE V

COMPARISON WITH SOTA CNN NETWORKS

increment of 0.66%. On the other hand, when the global839

learning module is removed and only MS-LCL is considered,840

the OA is 78.65%, indicating that global contrastive learning is841

indispensable in the proposed framework. In detail, the results842

show that global contrastive learning is the key module of the843

contrastive prediction task, while local contrastive learning can844

be viewed as its complementary module. Finally, OA can be845

increased to 80.15% while using all the proposed components.846

On the one hand, the 2-D network may cause spectral847

information loss, while 3DSwinT mitigates this issue to some848

extent. On the other hand, compared to the single-scale con-849

trastive structure of conventional methods, our HCL takes into850

account the fact that ground targets vary in scale and size,851

and hence, allows for multiscale representation learning. This852

consideration enables the network parameters to be updated in853

a more rational direction. Moreover, from another perspective,854

the pixel-level information learning ability of MS-LCL is855

beneficial for the dense prediction task.856

F. Discussions857

The above experimental results demonstrate the effective-858

ness of the proposed HCL self-supervised method and the859

complementarity with the 3DSwinT backbone. In this section,860

we conduct additional experiments and comparisons to further861

validate the methods presented in this article, including: 1)862

comparison with SOTA CNNs to verify the benefits of the863

proposed 3DSwinT for HSI land cover classification; 2) com-864

parison with SOTA supervised methods to show the efficiency865

and potential of the HCL self-supervised method; and 3)866

the impact of data augmentations on contrastive learning867

performance.868

1) Comparison With SOTA CNNs: We compare two SOTA869

CNNs that are specifically designed for HSI classification, i.e.,870

FPFA [27] and SSDGL [72]. In order to conduct a fair com-871

parison, these two SOTA CNN models are also implemented872

under the proposed HCL framework. Experiments demonstrate873

(see Table V) that our proposed 3DSwinT outperforms SSDGL874

and is comparable to FPGA in HSI classification under the875

same training setting.876

Furthermore, when we employ the SwinT pretraining877

weights [37] on the large-scale ImageNet-1k datasets to ini-878

tialize our 3DSwinT network, the OA and Kappa of the879

downstream task can be further improved by 0.03 and 0.05,880

respectively. To summarize, it can be said that 3DSwinT is881

more suitable for HSI classification compared to the two SOTA882

CNN networks. A possible explanation is that 3DSwinT can883

be boosted with the aid of large-size samples, indicating its884

great potential for HSI classification.885

TABLE VI

COMPARISON WITH SOTA SUPERVISION METHODS

TABLE VII

IMPACT OF DATA AUGMENTATIONS ON CONTRASTIVE LEARNING

TABLE VIII

EFFECTS OF GEOMETRIC TRANSFORMATIONS ON

CONTRASTIVE LEARNING

2) Comparison With SOTA Supervised Methods: All the 886

work in this article is done by pretraining the network by 887

the HCL self-supervised method and then fine-tuning it with 888

a few labels. In this section, we compare the above results with 889

four SOTA supervised methods dedicated to HSI classification, 890

specifically 3-D-FCN [73], SSRN [74], FPGA, and SSDGL. 891

Results show (see Table VI) that HCL self-supervision sur- 892

passes the SOTA supervised learning methods and achieves 893

the best classification performance, which can be attributed 894

to the strength of feature learning of the self-supervised pre- 895

training. Consequently, this experiment further demonstrates 896

the superiority and potential of our proposed HCL contrastive 897

learning method. 898

3) Impact of Data augmentations on Contrastive Learn- 899

ing Performance: Contrastive learning relies heavily on data 900

augmentations since they can provide the essential labels for 901

contrast. We investigate the importance of the two kinds 902

of basic data augmentations used in this study: geometric 903

transformation (including random cropping and scaling, flip- 904

ping, and rotation) and color space augmentation (including 905

color distortion, random blurring, and graying). As shown in 906

Table VII, geometric and color augmentations play important 907

roles, and both are of almost equal importance. The former 908

enables the network to learn spatially invariant features, while 909

the latter can be used to simulate temporal change features of 910

ground objects, which are two significant characteristics of RS 911

images. Therefore, data augmentation for contrastive learning 912

needs to balance both spatial and color transformations. 913
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Furthermore, we quantitatively discuss and analyze the914

effects of the three geometric transformation operations, i.e.,915

rotation, crop (random crop and resize), and flip, on the916

classification results (see Table VIII). Experiments show that,917

in general, all the geometric transformations can boost the918

performance of contrastive learning with the increment of919

OA ranging from 0.4% to 1.1%. The random crop and920

resize achieve the best result, followed by the flip. Results921

demonstrate that the geometric transformations based on the922

whole image are effective for contrastive learning. Geometric923

augmentations can make the contrastive prediction task more924

informative and, hence, guide the network to learn high-quality925

representations.926

V. CONCLUSION927

In this article, we proposed a 3DSwinT-HCL method for928

HSI classification. The proposed 3DSwinT backbone con-929

siders the 3-D properties of HSI and can extract rich spa-930

tial and spectral features. The HCL framework can adapt931

to the complex and variable multiscale features of ground932

objects and adaptively mine multilevel semantic information933

from unlabeled data. In addition, the MS-LCL module can934

learn pixel-level information for the dense prediction task.935

Our research also showed that self-supervised fine-tuning can936

achieve significantly better accuracy than supervised learning937

with a small number of labels. Moreover, the 3DSwinT-HCL938

pretrained model can be well transferred to other hyperspectral939

datasets, and classification performance for all datasets was940

improved to some extent.941

This study also has limitations. It should be admitted that,942

in our experiments, the data used for SSL was not very large,943

owing to the difficulty in collecting large-scale HSIs with944

sufficient and dense semantic labels. However, our results945

showed that the self-supervised model could be more robust946

and sophisticated when more pretraining data were available.947

In the future, we plan to perform the SSL with more and948

broader data and transfer the pretrained network to semantic949

segmentation tasks with different image landscapes. We shall950

also consider applying the pretrained 3DSwinT-HCL model to951

more downstream tasks, such as change detection, instance,952

and segmentation.953
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