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Abstract— Deep convolutional neural networks have been dom-
inating in the field of hyperspectral image (HSI) classification.
However, single convolutional kernel can limit the receptive
field and fail to capture the sequential properties of data.
The self-attention-based Transformer can build global sequence
information, among which the Swin Transformer (SwinT) inte-
grates sequence modeling capability and prior information of the
visual signals (e.g., locality and translation invariance). Based on
SwinT, we propose a 3-D SwinT (3DSwinT) to accommodate
the 3-D properties of HSI and capture the rich spatial-spectral
information of HSI. Currently, supervised learning is still the
most commonly used method for remote sensing image interpre-
tation. However, pixel-by-pixel HSI classification demands a large
number of high-quality labeled samples that are time-consuming
and costly to collect. As unsupervised learning, self-supervised
learning (SSL), especially contrastive learning, can learn semantic
representations from unlabeled data and, hence, is becoming a
potential alternative to supervised learning. On the other hand,
current contrastive learning methods are all single level or single
scale, which do not consider complex and variable multiscale fea-
tures of objects. Therefore, this article proposes a novel 3DSwinT-
based hierarchical contrastive learning (3DSwinT-HCL) method,
which can fully exploit multiscale semantic representations of
images. Besides, we propose a multiscale local contrastive learn-
ing (MS-LCL) module to mine the pixel-level representations in
order to adapt to downstream dense prediction tasks. A series
of experiments verify the great potential and superiority of
3DSwinT-HCL.

Index Terms— Contrastive learning, hyperspectral image (HSI)
classification, self-supervised learning (SSL), Swin Transformer
(SwinT), Transformer.

I. INTRODUCTION
YPERSPECTRAL imaging, which combines imaging
and spectroscopic techniques to detect spatial and spec-
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tral information of ground targets, is one of the most important
remote sensing (RS) imaging techniques. A hyperspectral
image (HSI) has narrow, continuous spectral bands, and a
broad electromagnetic spectrum, allowing object identification
and detection at fine-grained scales. HSI classification aims to
assign predefined labels to each pixel and has been success-
fully applied to ecological science, urban planning, precision
agriculture, and mineral exploration [1], [4].

Early hyperspectral classifications mostly focused on spec-
tral feature extraction algorithms, such as support vector
machines (SVMs) [5], random forests (RFs) [6], and logistic
regression [7]. Considering the issue of dimensionality curse
due to the inherent high-dimensional spectral bands of HSI,
researchers investigated dimensionality reduction techniques.
The principal component analysis (PCA) [8] attempted to find
the optimal transformation to project the high-dimensional
data into a low-dimensional subspace, which belongs to feature
extraction. On the other hand, feature selection (or band
selection) aimed to select the representative band subset from
the original data [9], [10], which can effectively alleviate
the computational burden and improve the efficiency of HSI
classification. Unsupervised feature selection was more widely
used considering the difficulty of sample collection [11].
However, generally, the spectral-classification methods did not
achieve satisfactory results owing to the lack of spatial and
contextual information.

Spatial features were capable of improving the represen-
tation capability of the hyperspectral data and enhancing the
robustness of the model [2]. For example, in [12], the compos-
ite kernels could take into account both spectral and spatial sig-
natures and, at the same time, balance their information, which
improved the classification performance. The edge-preserving
filtering method proposed by [13] was able to smooth the
probability maps of SVM classifications in a postprocessing
manner. The support tensor machine (STM) [14] aimed to
characterize the information of classes in the tensor space of
HSI, which can preserve the original spectral-spatial struc-
tures and alleviate the spatial information loss, compared to
SVM. In addition, the superpixel segmentation technique [15]
attempted to divide HSIs into local homogeneous regions
of different sizes, enhance the consistency of spatial struc-
ture information, and eliminate the effect of salt-and-pepper
noise. Existing studies showed that the superpixel segmenta-
tion technique can effectively extract the spatial information
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of HSI. Zhang et al. [10] adopted superpixel segmentation
to construct different homogeneous regions and represented
the correlations between neighboring pixels of homogeneous
regions in the structure graph to preserve the spatial structure
information. Inspired by Jiang et al. [15], Zhang et al. [16]
proposed a novel spectral-spatial and SuperPCA method. The
superpixel-based local reconstruction technique can make full
use of spatial information and extract global-local contextual
features simultaneously. In addition, it was found that the
combination of the superpixel technique and sparse repre-
sentation [17] could effectively utilize spectral and spatial
information for HSI classification [18].

The above methods rely heavily on the domain knowledge
and experience of human experts and suffer from the disadvan-
tages of low generalization ability and limited characterization
capability. Deep spectral-spatial feature extraction methods
based on deep learning have become increasingly popular in
RS over the last few years. Many researchers have attempted
to transfer the powerful feature extraction capability of neural
networks to HSI classification [19], [20], [21], [22], [23] and
obtained promising results. As opposed to traditional methods,
deep learning avoids the design of artificial features and can
adaptively extract abstract high-level features from original
data.

Among existing deep learning models, convolutional neural
networks (CNNs) have received wide attention because of
their strengths in weight sharing and local connectivity, which
greatly reduces model complexity and reliance on spatial rela-
tionships. Given that HSI has distinct properties from natural
images, researchers are devoted to constructing specialized
CNN-based feature extractors to mine rich spatial-spectral
information from HSI. For example, Slavkovikj et al. [24]
proposed a CNN-based feature learning framework to extract
structured information from HSI. Li et al. [25] developed
a novel pixel-pair approach to enhance the recognition
capability of CNN to improve HSI classification accuracy.
Haut ef al. [26] incorporated visual attention-driven tech-
niques into the ResNet to better represent the spectral-spatial
information. Zheng et al. [27] used a full convolutional net-
work (FCN)-based encoder—decoder structure and a fast patch-
free global learning method to improve the convergence speed
and accuracy of HSI classification. Although CNN-based
backbone architectures can achieve state-of-the-art (SOTA)
HSI classification performance, a number of critical issues still
exist. For instance, the convolutional kernel has a single shape
and a limited size. Since most of the land cover categories
have irregular shapes, it is difficult for a single fixed square
kernel to capture the complete feature information of objects.
Meanwhile, the small kernel size also limits the CNN receptive
field.

Recently, Transformer [28] architecture based on the self-
attention mechanism has demonstrated strong potential to
replace the standard CNN and has been regarded as a classical
model in natural language processing (NLP) [29], [30]. The
Transformer model has been also carried out in the com-
puter vision community, and the representative work includes
ViT [31], DeiT [32], and so on. The standard vision Trans-
former (ViT) treats an image as a sequence of nonoverlapping,
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fixed-size patches that are fed into the Transformer blocks
after a linear embedding layer to model the long-range
dependency. The Transformer has been attempted in a few
studies on HSI classification. He et al. [33] proposed an
HSI-BERT method for HSI classification using bidirectional
encoder representation from Transformer and achieved bet-
ter flexibility and generalization capability. Zhong et al. [34]
integrated spectral attention and spatial attention modules, and
proposed a novel spectral-spatial Transformer architecture.
Hong et al. [35] added cross-layer skip connectivity to the
Transformer for learning local spectral sequence informa-
tion from adjacent bands. Yang et al. [36] proposed an HiT
classification network by embedding the convolution-relevant
modules into Transformer, allowing the extraction of slight
spectral differences and the conveyance of information.

It should be noted that all of the above work is based
on the direct translation of Transformer from NLP. However,
in fact, there exist significant differences between NLP and
RS. One of the differences is the size of basic elements. For
instance, a word in NLP is a basic element with a fixed size,
whereas, in RS, the basic element is a multiscale concept,
which can be represented by pixels, objects, patches, or scenes.
In the current Transformer-based models, processing units are
all single size, which is certainly not conducive to many
tasks in RS (e.g., object detection and semantic segmentation).
The other difference is the number of basic elements. To be
precise, an image contains many more pixels than words in
a text paragraph. Therefore, it seems impossible to conduct
the pixel-level dense prediction tasks for the RS images by
directly borrowing the Transformer models from the NLP
domain since the computational complexity of self-attention
is quadratic to the image size. Given this, Liu et al. [37]
proposed a generalized backbone network, i.e., the Swin
Transformer (SwinT). Its computational complexity is linear to
image size, and it also enables the construction of hierarchical
feature maps so that more advanced techniques, such as feature
pyramid network (FPN) [38], can be utilized. Considering the
3-D characteristics of HSI, this article aims to improve the
original SwinT to the 3-D structure by proposing 3-D SwinT
(3DSwinT), which can effectively reduce information loss and
model the spatial-spectral dependencies.

On the other hand, the majority of current Transformer-
based studies in RS are conducted in a supervised learning
manner [33], [34], [35], which necessitates a large number
of high-quality annotated samples and, therefore, is undoubt-
edly expensive and time-consuming [39]. Moreover, since
RS images have very strong spatiotemporal heterogeneity
and rich spectral information, it is difficult to annotate sam-
ples with wide coverage, multitemporal, multispectral, and
multiresolution.

To address this issue, self-supervised learning (SSL) has
been proposed and applied, which belongs to unsupervised
learning and is intended to learn semantical representations
from a large number of unlabeled images. In theory, images
themselves should contain richer and more diverse information
than the limited labels, which makes SSL easier to implement
and more promising. Specifically, SSL methods first pretrain
the feature extraction network to learn potential representations
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from images and then fine-tune the pretrained network using
a few labels in downstream tasks. SSL is an effective way
to solve the “label starvation” problem for RS image deep
learning. Since MoCo [40] achieved SOTA performance in
the vision tasks, the contrastive learning [41] method has
been gradually becoming the mainstream of SSL. Contrastive
learning learns features by constructing positive and negative
sample pairs, and its main idea is to minimize the distance
between positive pairs and maximize the distance between
negative ones. Contrastive learning has been successfully
applied in the field of RS, and several notable examples
include change detection [42], semantic segmentation [43],
and scene classification [44]. It is also very promising to apply
it to the HSI land cover classification. Xu et al. [45] proposed
an end-to-end spectral—spatial unsupervised semantic feature
extractor to learn the high-level semantic information from
HSI and then adjusted the learned features with contrastive
loss as the objective function.

In the field of CV, MoCo v3 [46] investigated several basic
components for training ViT based on contrastive learning;
Caron et al. [47] proposed a simple and efficient contrastive
learning method called DINO and showed its synergy with
ViT, and MoBY [48] combined MoCo v2 [49] and the
BYOL [50] contrastive learning method, and made SwinT [37]
as the backbone to evaluate its performance in downstream
tasks. Comparatively speaking, in the field of RS, the research
that involves or integrates Transformer and contrastive learning
is scarce, and there are even fewer relevant studies for HSI
classification.

In this study, we propose a hierarchical contrastive learning
(HCL) framework to fully exploit the multiscale semantic
information in the multiresolution feature maps. It should
be noted that the multiscale features can also be effectively
represented through the hierarchical feature construction abil-
ity of 3DSwinT. Typically, contrastive learning methods view
a whole image as the learning target to extract image-level
global representation, which, however, is ill-considered for
downstream dense prediction tasks that necessitate pixel-level
information. HSI classification is a pixel-by-pixel segmenta-
tion task, and therefore, extracting only global features will
inevitably lead to the loss of many local details. To overcome
this limitation, in our research, besides the global feature
representation module, we also propose a multiscale local
contrastive learning (MS-LCL) module to learn pixel-level
representations by selecting geographically matched multi-
scale local regions from the multilevel feature maps output
by 3DSwinT.

In summary, this article proposes a 3DSwinT-based HCL
(BDSwinT-HCL) method for HSI land cover classification.
To the best of our knowledge, this is the first time that
contrastive learning and SwinT-based backbone have been
combined for HSI classification. The main contributions of
this article can be summarized as follows.

1) Proposed a novel 3-D architecture, called 3DSwinT for
HSI classification.

2) Proposed a novel self-supervised contrastive learning
method, namely, HCL. It consists of two components,
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i.e., the multiscale global contrastive learning (MS-GCL)
module and an MS-LCL module.

3) The extensive experiments demonstrate the superiority
of the proposed methods.

The remaining parts of this article are organized as follows.
Section II presents the related work. The network architec-
ture is described in detail in Section III. Data description,
experimental setup, experimental results, and discussions are
presented in Section IV. Section V concludes this article.

II. RELATED WORK
A. Contrastive Representation Learning

SSL originated from NLP and is usually divided into two
main categories: generative methods and contrastive meth-
ods [41], [51]. Generative methods are a pixel-level mod-
eling approach, but they fail to establish spatial structure
relationships since they focus on pixel details [52]. Contrastive
methods utilize positive and negative samples to learn both the
invariance of various augmented views of the same image and
the ability to distinguish different images. Contrastive methods
have now become the mainstream of SSL because of their
superior performance and generalization ability. They usually
employ the InfoNCE [51] loss function to learn representa-
tions, which requires a large number of negative examples,
and the simplest and most straightforward way is to use large
batches [53] or design memory banks to store all features [54].
The former is related to GPU capacity, and the latter demands
a lot of memory.

To resolve the above problems, recent studies have
attempted to improve the method while preserving the Siamese
structure. In the BYOL model [50], negative samples were
removed, and a momentum encoder, a prediction head, and
gradient stopping strategies were adopted to avoid network
collapse. SWAV [55] avoided collapse solutions by clustering,
and SimSiam [56] verified that gradient stopping was the key
to preventing network degradation. MoCo [40], [49] replaced
the memory library with a queue dictionary, where features
can be constantly updated to avoid memory consumption and
the consistency of negative samples. In this study, we propose
a novel contrastive learning method that incorporates queue
design, momentum encoder, and prediction head, and more
importantly, the proposed method has multiscale feature learn-
ing ability.

B. Self-Attention Mechanism and Transformer

The self-attention mechanism can model long-range depen-
dency in sequence data and has been successfully applied
in HSI classification. Fang et al. [57] introduced a spectral
self-attention module into 3-D dilated convolution to enhance
the distinguishability of spectral features. Sun et al. [58] pro-
posed a spectral-spatial attention network to extract features
from HSI cubes and mitigate the influence of irrelevant pixels.
Zhu et al. [59] adopted spectral- and spatial-attention mecha-
nisms on the basis of residual networks to adaptively select
spectral bands and spatial information. However, although the
above attention modules can achieve better performance, they
are all constructed on CNN.
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Overall network architecture of the proposed 3DSwinT-HCL. 3DSwinT-HCL has a Siamese structure, consisting of data augmentation, 3DSwinT

feature extraction, and HCL. Data augmentation includes geometric and color transformations with stochastic initialization parameters. 3DSwinT contains
four stages, where the feature maps of different sizes are output. The hierarchical contrastive framework can learn multiscale representations and mine both
image-level information and pixel-level information. (The figure does not show negative samples. For global contrastive learning, the negative samples are
augmented views of other images from a batch. For local contrastive learning, the negative samples are local regions selected from other images.)

Transformer arose from machine translation and has become
the dominant architecture in NLP. The Transformer is made up
of an encoder and a decoder, both of which consist of multiple
stacked self-attention blocks. ViT [31] is the pioneering work
of Transformer in the field of CV, and its input is a series of
nonoverlapping, medium-sized patches. Many related works
followed ViT, such as DeiT [32], SwinT [37], PVT [60], and
Twins [61]. These studies have improved ViT in terms of
training strategies [32], hierarchical features [37], [60], com-
putational complexity [37], and attention mechanisms [61].
In RS, ViT achieved a tradeoff between accuracy and effi-
ciency in change detection, segmentation, and classification
tasks [62], [63], [64]. However, ViT is still limited in dense
prediction tasks or processing high-resolution images owing
to its inherent structural nature.

C. Swin Transformer

Based on ViT [31], SwinT [37] introduced pyramid struc-
ture, locality, and translation invariance, and incorporated the
sequence modeling capability and prior information of visual
signals. Its computational complexity is linear to image size.
SwinT v2 [65] further improved model capacity by proposing
a postnormalization, log-spaced continuous position bias tech-
nique when training large models. PVT [60] had a pyramid
structure similar to SwinTs, but its computational complexity

remained quadratic to image size. PVT v2 [66] developed a
linear spatial reduction attention mechanism to further reduce
the complexity. Recently, some works have investigated the
effect of fusing SwinT and convolutional networks [67]. It is
worth noting that the SwinT-relevant studies are still scarce
in RS tasks, especially the HSI classification. Gao et al. [68]
combined the advantages of SwinT and CNN to construct a
STransFuse model in order to extract coarse- and fine-grained
features at various scales. Xu et al. [69] used SwinT as
the backbone to model global relationships of images and
accelerate network inference. This article extends SwinT to
the 3-D structure in order to adapt to HSI classification.

III. METHODS
A. Overall Network Architecture

SwinT considers hierarchy, locality, and translation invari-
ance on the basis of ViT, on top of which our 3DSwinT further
takes into account the 3-D characteristic of HSI. On the other
hand, contrastive learning utilizes unlabeled samples with data
augmentation strategies to pretrain the network and learn a
large amount of potential semantic representations. Subse-
quently, the pretrained network can be fine-tuned with a few
labels in downstream tasks. The downstream task of this article
is pixel-level HSI semantic segmentation. Considering the 3-D
nature of HSI and the multiple scales and sizes of ground
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Fig. 2. Conventional contrastive learning framework. Referring to [53], the
framework consists of data augmentation, representation extraction, nonlinear
transformation, and contrastive loss.

objects, we propose a novel HCL method based on 3DSwinT
(3DSwinT-HCL). 3DSwinT-HCL is capable of simultaneously
learning image- and pixel-level multiscale representations dur-
ing the SSL pretraining phase, which is beneficial for better
transfer to the downstream dense prediction task.

The overall network architecture of 3DSwinT-HCL is shown

in Fig. 1, which includes the following steps.

1) For an input x, two augmentation views (v; and v;) are
first generated by stochastic data augmentation strate-
gies.

2) The generated views are then imported to the Siamese
3DSwinT networks for feature extraction. The two
3DSwinT branches are called online and target encoders,
respectively. Each 3DSwinT consists of four stages,
yielding feature maps of various sizes.

3) Finally, multiscale feature maps of the two branches
are fed to the proposed HCL framework for multiscale
global and local contrastive learning. 3DSwinT is capa-
ble of extracting the rich spatial and spectral information
of HSI, and furthermore, the multiscale and global—
local learning of HCL can adequately take into account
the characteristics of the ground objects for the dense
prediction tasks.

B. Contrastive Learning

The idea of contrastive learning is to maximize the similarity
between positive pairs and minimize the similarity between
negative ones. It is generally designed in the form of a Siamese
network [70], whose general framework is presented in Fig. 2,
containing four main components.

1) Data Augmentation: This module plays an important role
in self-supervised contrastive learning and aims to apply a
series of random transformations to a batch of input data in
order to construct labels for contrast. Labels can be divided
into anchors, positive samples, and negative samples. For an
image, data augmentation can build noise-free representations
and generate positive samples with similar features, whereas,
in contrast, the augmented views of different images are
treated as negative samples. In this study, we adopt geo-
metric and color transformations to produce diverse samples.
As shown in Fig. 3, specifically, the geometric transformations
include random cropping, scaling, rotation, and flipping, and
the color transformations consist of color distortions (bright-
ness, contrast, saturation, and hue), blurring, and graying. Each
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Color transformations

Fig. 3. Data augmentation. (a) Original image. (b) Rotation. (c¢) Crop and
resize. (d) Flip. (e) Color distortion. (f) Random blur. (g) Gray. A stochastic
initialization is adopted for these augmentation operations.

input x results in two related views by the stochastic data
transformations, #; and #, i.e., v; = t;(x) and v; = £ (x),
where v; can be referred to as the anchor, v; is its matching
positive sample, and augmented views of different images are
the negative ones.

Negative samples are indispensable for contrastive learning,
without which the network may collapse. There are two
methods for constructing and updating negative samples.

Method 1: Negative samples are the augmented views of
other images apart from the anchor from the same batch
and are updated end-to-end by back propagation [53]. In this
way, for a batch containing N images, there are 2N samples
after data augmentation. Given an anchor, there is only one
matching positive sample, and the remaining 2(N — 1) samples
are negative ones.

Method 2: The negative samples of each batch are stored
in a large dictionary, which is maintained as a queue and
updated by the momentum encoder [40]. Continuous replace-
ment between new and old samples in the queue ensures
the consistency of negative samples. The queue size can be
viewed as a hyperparameter since it is decoupled from the
batch size. Therefore, this method can produce more negative
samples. In this article, we utilize Method 2 to generate
negative samples.

2) Representation Extraction: The neural network encoder
fo can be used for information extraction and feature transfor-
mation in order to build representations for downstream tasks.
fo allows multiple options, such as convolutional neural or
Transformer-based networks. This article proposed a 3DSwinT
backbone to generate representations y; = 3DSwinT(v;) and
y; = 3DSwinT(v;), where an adaptive average pooling oper-
ation is required for y; and y;.

3) Nonlinear Transformation: A nonlinear projection head
go further transforms the extracted representation to the projec-
tion layer z, where the loss value is calculated. gy consists of
a multilayer perceptron (MLP) with one hidden layer, yielding
zi = W@e(WWy,) and z; = W@a(WDy;), where o is the
rectified linear unit (ReLU). The module was first introduced
by SimCLR [53], can effectively avoid information loss, and,
hence, improve the effectiveness of representations.
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Fig. 4. Overall architecture of 3DSwinT. (a) Network architecture. (b) Two consecutive 3DSwinT blocks. 3DSwinT is made up of four stages, with each

outputting the feature maps of different scales. 3DSwinT blocks contain LN, 3DW-MSA, MLP, and residual connection.

4) Contrastive Loss: As the objective function of self-
supervised contrastive learning, the contrastive loss primarily
aims to train the encoder network. For a dataset of {x;}, and
a given anchor x;, the contrastive loss requires minimizing the
distance between x; and its positive sample x;, and maximiz-
ing the distance between x; and the negative samples {xy }z;.
Based on the commonly used InfoNCE [51], we define the loss
function for a positive pair of (i, j) as

exp(sim(z;, z;)/7)

g exp(sim(z;, zj)/r)—i—zze/\, exp(sim(z;, z)/7)
(1)

where 7 is the temperature parameter, sim denotes the sim-
ilarity between samples, which is often measured by cosine
similarity, and A~ represents all the negative samples. For a
batch containing N samples, we can obtain the final loss value
across all positive pairs, i.e., (i, j) and (j, i)

g(u,,u‘,) = — 10

N
L= 2> €0 + Loy, o) @
k=1
From (1), contrastive learning needs to simultaneously con-
struct both positive and negative pairs. If there are only positive
pairs (without negative pairs), the model tends to encode all
samples into the same feature, leading to degenerate solutions.
Conversely, if there are no positive samples, the model lacks
clustering ability. Existing studies [40], [53] show that more
negative pairs can lead to stronger learning capabilities. This
is because more negative pairs can describe the underlying
distribution more effectively, thus optimizing the training
direction and accelerating convergence. In addition, negative
samples are preferably close to the positive ones but with
different labels. Such samples are called hard negatives.

C. 3DSwinT

SwinT can construct multiscale feature maps by continu-
ously fusing neighboring patches and the window partition
mechanism, and its computational complexity is linear to
image size, which is beneficial for dense prediction tasks
and high-resolution images. In this study, we extend SwinT
to a 3-D structure, i.e., 3DSwinT, to accommodate the 3-D
properties of HSI and capture its rich spatial and spectral

information. Fig. 4 depicts the architecture of 3DSwinT.
Compared to SwinT, the improvements made are summarized
in the following aspects.

1) We define each HSI as B x H x W x 1, where B is
the number of HSI bands, and H and W denote the
height and the width of the image, respectively.

In the patch partition module, SwinT splits the input
into (H/4) x (W/4) patches with a size of 4 x 4.
In contrast, our proposed 3DSwinT takes a 3-D cube
(4 x 4 x 4) as the basic processing unit, leading to a
total of (B/4) x (H/4) x (W/4) patches, with a feature
dimension of 64, and then, a linear embedding layer
projects these patches to an arbitrary dimension of C.
The neighboring patches are merged in the subsequent
patch merging phase, and the spatial size of the patches
becomes 4, 8, 16, ... in sequence while keeping the
spectral domain constant.

The difference between 3DSwinT blocks and SwinT
blocks lies in the window-based multihead self-attention
(W-MSA) mechanism. We add the spectral domain to
W-MSA, yielding 3-D W-MSA (3DW-MSA), by con-
sidering the window partitioning and shifting mechanism
(as shown in Fig. 5). SwinT adopts 2-D windows of size
M x M to divide input patches evenly, while 3DSwinT
utilizes 3-D windows of size P x M x M. In addition,
we refine the original window shifting mechanism by
moving (P/2, M/2, M/2) patches along the spectral,
height, and width dimensions in the next block [see
Fig. 5(b)] in order to strengthen information interaction
between windows.

2)

3)

3DSwinT consists of four stages. Each stage includes a
patch merging module and a series of 3DSwinT blocks (except
for Stage 1). As mentioned above, the patch merging module
only downsamples the spatial dimension (not the spectral
dimension) to concatenate the neighboring 2 x 2 patches into
a large patch. This means that the size of patches becomes
four times that of the original, and the number becomes one-
quarter of the original. Meanwhile, a linear layer is used
to project the concatenated dimension to half of its original
size. Finally, the 3DSwinT blocks are utilized to extract the
self-attention information. This process does not change the

Authorized licensed use limited to: Wuhan University. Downloaded on September 14,2022 at 12:44:02 UTC from IEEE Xplore. Restrictions apply.



HUANG et al.: 3DSwinT-HCL METHOD FOR HSI CLASSIFICATION

]
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perform self-attention
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perform self-attention
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Fig. 5. Window partitioning and shifting of (a) SwinT and (b) 3DSwinT.
Compared to SwinT, 3DSwinT uses the 3-D windows to divide input patches
evenly and moves patches along the spectral, height, and width axes in the
next block to strengthen information interaction between windows. (a) Win-
dow partitioning and shifting mechanism of SwinT. (Left) Regular window
partition. (Right) Window shifting mechanism. (b) Window partitioning and
shifting mechanism of 3DSwinT. (Left) Regular window partition. (Right)
Window shifting mechanism.

input resolution. In this way, for Stage 1, the size of the
feature map is (B/4) x (H/4) x (W/4) x C, Stage 2 is
(B/4) x (H/8) x (W/8) x 2C, and so on for other stages.

In comparison to SwinT blocks, we employ 3DW-MSA to
extract both spectral and spatial sequence information. All
other components of 3DSwinT blocks are kept the same as
SwinT, such as MLP, layer normalization (LN), and residual
connection. Fig. 4(b) depicts two adjacent 3DSwinT blocks
within each stage, which can be represented by following the
equation:

$ = 3D W-MSA(LN(y'™")) 4y

y' = MLP(LN(§')) + §

! = 3D SW-MSA(LN(y')) +»'

Yyl = MLP(LN()AIIH)) g 3)

where 3DW-MSA and 3-D SW-MSA represent the 3-D
window-based and shifted W-MSA mechanisms, respectively,
and $' and y' are the outputs of 3-D (S)W-MSA and MLP in
block [, respectively.

D. Hierarchical Contrastive Learning

Conventional contrastive learning methods usually feed
data-augmented images into the Siamese network to construct
representations and then perform contrastive learning in the
representation space. Notice that current contrastive learn-
ing studies can only represent single-scale content but also,
in fact, objects have complex and variable scales and sizes.
Consequently, single-scale contrastive learning methods are
not sufficient for the semantic segmentation task. Given this,
we propose an HCL method that utilizes the multiresolution
feature maps output by 3DSwinT to mine multiscale semantic
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Fig. 6. Our HCL framework. The multiscale feature maps output by 3DSwinT
are fed into the multiscale contrastive framework. Each level carries out
contrastive representation learning at different scales in parallel, and the
learning results of all levels are then fused to obtain the overall similarity
of the network.

information. As shown in Fig. 1, the multilevel feature maps
derived from both 3DSwinT branches are fed into the HCL
framework. Specifically, the proposed method takes multiscale
information extraction as the overall framework and includes
both global and local contrastive learning modules to learn
image- and pixel-level hierarchical representations at the same
time. The following are the details.

Compared

1) Hierarchical Contrastive Learning Framework: with
existing contrastive learning frameworks, our proposed HCL
can simultaneously learn multiscale representations during
self-supervised pretraining. Specifically, each level carries out
contrastive representation learning at different scales in paral-
lel, and the learning results of all levels are fused to obtain the
overall similarity of the network, as shown in Fig. 6. With the
hierarchical learning framework, both global information and
local information are extracted to achieve image- and pixel-
level multiscale representations.

2) Multiscale Global Contrastive Learning Module: This
module conducts image-level hierarchical representation learn-
ing. Specifically, the output of 3DSwinT [denoted as e(-)] at
Stage s (s = 1,2,... denotes different scales) is entirely
fed into the module. Besides the projection head g(-), the
module additionally introduces a prediction head 4(-), mainly
to prevent degenerate solutions, and it also consists of an MLP
and a single hidden layer (ReLU). The module employs an
asymmetric structure, and only the online encoder contains
h(-). Therefore, for any input image x, we can obtain

z} = h(g(Avg(e*(11(x)))))
2 = g(Avg(e’ (2(x)))) “4)

where ¢*(-) stands for Stage s of the encoder e(-). Avg is the
adaptive average pooling. z; and z} € RP, for the calculation
of global similarity at different scales.

The idea of contrastive learning is to learn similar/dissimilar
representations from positive and negative pairs and, thus,
can be characterized as a dictionary lookup task [40]. Fol-
lowing [40], we store negative features of each batch during
the training in a dictionary, which is maintained as a queue
and updated by the momentum encoder in order to ensure the
consistency of features. The queue size can be much larger
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Selection and matching of multiscale local regions. The index matrix is used to select the matching positive sample pairs, which has the same size

as the spatial size of the image and is spatially transformed along with the images. We use maximum pooling to make the matrix the same size as the feature
map at each stage. Finally, we select a number of local regions in terms of the same pixel value of the two index matrices for each scale.

than the batch size since it is independent of the batch, so as
to generate sufficient and diverse negative samples.

Query and key are two key elements in the dictionary lookup
task. Each query g matches a positive key k. in the dictionary
to constitute a positive pair, i.e., two augmented versions of
the same image. On the other hand, the remaining features
form the negative keys {k_}. The contrastive function is
dedicated to maximizing the similarity between ¢ and k. while
distinguishing ¢ and {k_}. According to InfoNCE, we define
the hierarchical global loss for an input batch containing N
samples as

N

w2 (6

1

(o) +6000) )

with
exp( - 23/7)
z5/1) + Y exp(z] -

e @i, 0;) = —1
g(l) UJ) og Zi/‘[)

where we employ dot products to measure the similarity
between samples. Z,le z; denotes all global negative samples
for each scale in the dictionary, and we set the negative sample
size to K since it is decoupled from the batch size. In this
study, s is set to 1, 2, 3, 4, and hence, we can obtain four
global losses representing different scales: £, £%, £3., and
.

3) Multiscale Local Contrastive Learning Module: As a
pixel-level segmentation task, HSI classification demands local
detail information, which cannot be represented effectively in
the global representation module. Therefore, we propose an
MS-LCL module to focus on local regions in order to learn the
pixel-level representations with multiscale properties. Unlike
global contrastive learning, local contrastive learning begins
with the selection and matching of local regions [denoted as
m(-)], which is dealt with by choosing geographically matched
local regions based on the multilevel feature maps output by
the Siamese 3DSwinT. The specific steps are introduced as
follows.

exp(z} -

Step 1: To ensure that the selected local regions are geo-
graphically aligned, we employ a 2-D index matrix with the
same spatial size as the image to record the pixel positions of
the image. Since pixel positions are disrupted and cannot be
aligned after random data augmentation, index matrices need
to be transformed along with images, specifically geometric
transformation, i.e., random cropping, scaling, rotation, and

flipping.
Step  2: As previously stated, 3DSwinT outputs
feature maps of different sizes at each stage. Given

an image with a size B x H x W, the feature map
constructed by Stage s of 3DSwinT can be expressed as
(B/4) x (H/(4 x 271) x (W/(4 x 2°71) x (27! x O).
Therefore, we reshape the index matrix to the same size as
the feature map at each scale in order to guarantee their
spatial matching. We achieve this requirement through the
pooling operator [p(-)].

Step 3: In this way, multilevel index matrices that record
precise pixel locations can be obtained. Subsequently, we can
select a number of matching pixels in terms of the same pixel
value of the two index matrices for each scale, where the pixels
correspond to local regions of the original images.

The implementation of the above steps is demonstrated in
Fig. 7. Therefore, for the module, we can obtain

= h(g(m(Ave(e'(x))))
g(m(Ave(e')))

o

(N

where u] and u’ € R” for the calculation of local similarity
at different scales.

Analogously to the global contrastive loss, the hierarchical
local loss can be written as

L

L3
L= NS

®)

(Dzavj) +£Z(Dj9v )
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with
exp(u; - uj-/r)
s N Kli s s
exp(uf - u'/7) + DLy exp(uf - uy/7)
©)
where N; indicates the total number of matching local regions

at each scale chosen from a batch containing N samples, i.e.,
N;j = N x n}, with n} being how many local regions are

m? m

£ (vi,0;) = —log

selected from a sample. 2121 uy, are all local negative samples
for each scale in the dictionary, i.e., Kj = K x n,. In this
way, (8) yields four local losses representing different scales,
namely, LY L2 03, and L:‘}‘.
4) Total Network Loss: The total network loss can be
obtained based on the above four-level global and local losses
4

1
E:ZZ(ixE‘G—i—(l—/{)xDL).

s=1

(10)

IV. RESULTS AND DISCUSSION
A. Data

1) Zhuhai-1 Hyperspectral Data (OHS): The Zhuhai-1
hyperspectral constellation consists of ten Orbita hyperspectral
micro—nano satellites, which are operated and managed by
Orbita Corporation, China. For the first time, OHS achieves
a hyperspectral satellite network for a rapid response to
earth observation. The imaging resolution of each satellite is
10 m, and there are 256 spectral bands ranging from 400 to
1000 nm. Orbita Aerospace provides 32 spectral bands that are
selected from the 256 channels according to the users’ needs.
In this research, we chose the default 32 bands, whose central
wavelengths range from 466 to 940 nm. Specifically, in the
experiments, 400 images with a size of 224 x 224 are used
for algorithm testing, and four land cover classes, vegetation,
building, bare land, and water are included by considering
the land cover characteristics of the study area and the spatial
resolution of OHS. The images are divided into self-supervised
pretraining and test sets with a ratio of 9:1, and 10% of
pretraining tests are for fine-tuning the downstream task.

2) Six Widely Used Hyperspectral Datasets: We choose
six existing hyperspectral datasets to evaluate the transfer
capability of the 3DSwinT-HCL method, including Indian
P,' Salinas,! Botswana,! Pavia U,! Pavia C,! and DFC2018?
(see Table I). The partitioning of the training and testing
sets follows the providers’ recommendations. The number of
training and testing samples for the six hyperspectral datasets
is shown in Table II.

First, we use OHS data for self-supervised pretraining, and
then, the pretrained model is fine-tuned with a few labels.
Finally, we transfer the pretrained model to the six HSIs for
classification.

B. Experimental Setup

1) Evaluation Metrics: OA and Kappa are used to quanti-
tatively evaluate the performance of different algorithms.

"http://www.ehu.eus/ccwintco/index. php?title=Hyperspectral_Remote_
Sensing_Scenes
Zhttp:i/hyperspectral.ee.uh.edu/?page_id=1075
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TABLE I
HYPERSPECTRAL DATASETS USED IN THIS ARTICLE
Dataset Ressrﬁstailon size Spectral Slgzzg: 1 Classes
(m) (pixels) Bands (um)

OHS 10 224x224 32 0.4-1 4
Indian P 20 145x145 200 0.4-2.5 16
Salinas 3.7 512x217 204 0.4-2.5 16
Botswana 30 256x1476 145 04-2.5 14
Pavia U 1.3 610%340 103 0.43-0.85 9
Pavia C 1.3 1096x715 102 0.43-0.85 9
DFC2018 1.0 4786x1202 48 0.38-1.05 20

TABLE 11
SAMPLE SIZE OF SIX COMMONLY USED HYPERSPECTRAL DATASETS

Dataset Training Testing
Indian P 5538 4711
Salinas 17511 36618
Botswana 1394 1854
Pavia U 2774 40002
Pavia C 53933 94219
DFC2018 248338 256374

2) Comparison With SOTA Methods: The proposed
3DSwinT-HCL is compared with other contrastive learning
methods, including MoCov3 [46], DINO [47], MOBY [48],
and SiT [71]. Furthermore, the self-supervised pretrained
3DSwinT-HCL is transferred to the six commonly used hyper-
spectral datasets to assess its transferability.

3) Implementation Details: In the SSL phase, we train all
the self-supervised models for 500 epochs using the AdamW
optimizer, with a batch size of 16. The initial learning rate
is 0.001, with a cosine decay schedule. The momentum and
weight decays are 0.9 and 0.05, respectively. For the MS-LCL
module of our 3DSwinT-HCL, the number and size of local
areas are set to 8 x 4 x 4, 4 x 8§ x 8, 2 x 16 x 16, and
1 x 32 x 32 at the four stages, respectively. In the fine-tuning
phase, we only use 10% labels of self-supervised samples to
fine-tune the network, with a learning rate of 0.0005, a batch
size of 26, and CrossEntropy as the loss function.

C. Experimental Results

In this section, we first compare the 3DSwinT-HCL method
with other methods combining contrastive learning and Trans-
former based on the OHS dataset, and then, we analyze the
difference between self-supervised and supervised learning.
Finally, considering the large differences in spectrum and
resolution for different hyperspectral sensors, it is interesting
to test whether 3DSwinT-HCL can be effectively transferred
to other hyperspectral datasets.

1) Comparison With Other Contrastive Learning Methods:
Results are shown in Table III.

From Table III, we can see that our method obtains the
highest accuracy, with an OA of 80.15% and a Kappa of
0.70, which is the only model with an OA greater than
80%. In contrast to MOBY, which also adopts SwinT as the
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is better at describing the completeness and details of objects.

TABLE III

COMPARISON BETWEEN SELF-SUPERVISED METHODS (WITH 10%
LABELS FOR FINE-TUNING)

Method Arch. OA(%) Kappa params(M)
MoCo v3 ViT 75.20 0.62 42.82
SiT ViT 75.68 0.64 27.86
DINO ViT 74.60 0.63 30.16
MOBY SwinT 78.83 0.69 17.55
Ours 3DSwinT 80.15 0.70 28.90

backbone, 3DSwinT-HCL obtains better accuracy by 1.3%.
On the one hand, the existing contrastive learning approaches
only focus on the single-scale feature representation but do
not take into account the multiscale characteristics of the
land cover classes. On the other hand, their backbones seem
inadequate to extract rich spectral and spatial information
from HSI. Therefore, they fail to achieve optimal results in
the semantic segmentation task. In contrast, our proposed
3DSwinT-HCL can adaptively learn the multiscale semantic
information and fully model the spatial-spectral dependencies
during self-supervised pretraining. In addition, 3DSwinT and
HCL demonstrate good complementarity. In this way, satisfac-
tory performance can be obtained with only a few labels in the
downstream task. In addition, the MS-LCL module embedded
in the hierarchical framework can additionally focus on the
local details of objects and learn pixel-level representations,
which are more beneficial for dense prediction tasks.
Moreover, we visualize a portion of the classification results
in Fig. 8. It can be seen that the other methods produce a

- Bare land

Visualization of classification results on the OHS dataset. Our method achieves

Y Iy
0

R
5

the highest classification accuracy, presents fewer false alarms, and
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Fig. 9. Comparison of classification accuracy with different sample ratios.

The accuracy of both self-supervised and supervised learning gradually
improves as the ratio of labels increases. It can be seen that our method
outperforms the supervised learning by an average of 2.3%.

large number of false alarms, but our method can reduce this
kind of error and has fewer misclassifications. Comparatively
speaking, ours is better at depicting the completeness and
details of objects. Inevitably, however, it can be observed
that our method has drawbacks, especially in the boundary
areas. However, this can be acceptable given the very limited
amount of samples used in the SSL. In summary, in the above
experiment, our proposed 3DSwinT-HCL method shows great
potential for HSI classification.
2) Self-Supervised Fine-Tuning and Supervised Learning:

The idea of SSL is to pretrain the network on a large amount
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of unlabeled data and then fine-tune it using a few labels in
the downstream target, whereas supervised learning directly
utilizes a large number of labels for feature learning. In this
subsection, using 3DSwinT as the backbone, different ratios
of labels are utilized to fine-tune the self-supervised model,
and meanwhile, pure supervised learning is also performed
in order to verify the effectiveness of our method. From
Fig. 9, it is shown that, as the ratio of labels increases, the
accuracy of both self-supervised and supervised learning grad-
ually improves, and the 3DSwinT-HCL method consistently
outperforms supervised learning. In terms of OA, our method
surpasses supervised learning by an average of 2.3% with
the same sample ratio and 2.8% with a 30% ratio. These
results demonstrate that 3DSwinT-HCL pretraining is able to
adaptively explore more latent features and is superior for HSI
classification compared to supervised learning. To summarize,
our results demonstrate the great potential and efficiency of
SSL for HSI semantic segmentation.

D. Transfer to Other HSI Datasets

Transferability is tested in this section to evaluate whether
the proposed contrastive learning method can perform well
on other HSI datasets. The 3DSwinT model is pretrained by
the HCL self-supervised method based on the OHS dataset
and then transferred to the six commonly used hyperspectral
datasets. It is a great challenge, as the images from different
sensors have large differences in landscape characteristics, spa-
tial resolution, and spectral channels. Specifically, OHS data
has 32 spectral bands ranging from 0.46 to 0.94 um, with an
average spectral resolution of 2.5 nm and a spatial resolution
of 10 m. In contrast, the minimum and maximum numbers
of spectral channels for the six HSI datasets are 48 and
204, respectively, and the wavelength range is from 0.38 to
2.5 um with a spatial resolution of 1-30 m. Considering the
great differences between OHS and these datasets, the transfer
capability of 3DSwinT-HCL is tested in the following three
scenarios.

1) All_Random: We train the network from scratch using all
the spectral bands for each HSI dataset. The network is
randomly initialized without self-supervised information
from 3DSwinT-HCL.

2) Sub_Random: For each HSI dataset, 32 bands are chosen
according to the central wavelength of the OHS images,
and the network is then also trained from scratch.

3) Sub_HCL: Unlike 2), the network is not randomly
initialized but rather fine-tuned by the 3DSwinT-HCL’s
pretraining model.

For DFC2018 and Pavia C, 50 epochs are trained due to
their relatively large training sample sizes, and the epoch for
other datasets is set to 100. For all datasets, we set the batch
size to 100, with a learning rate of 0.0005, and AdamW is
used as the optimizer.

According to the results (see Fig. 10), Sub_HCL is always
superior to Sub_Random in all the datasets and outperforms
All_Random in the majority of them (except for Pavia C).
It can be seen that, despite the significant spatial and spectral
differences between OHS and other HSI datasets, the model
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Fig. 10. Classification results of the SSL transferred to other commonly used
hyperspectral datasets. Sub_HCL is always superior to Sub_Random for all
the datasets and outperforms All_Random in most of the cases (except for

Pavia C).

TABLE IV
ABLATION EXPERIMENTS OF 3DSWINT-HCL

3DSwinT ~ MS-GCL  MS-LCL OA(%) Kappa
x* x x 78.83 0.69
N x x 79.27 0.68
R v x 79.93 0.70
N x S 78.65 0.67
R v N 80.15 0.70

with 3DSwinT-HCL pretraining is always capable of achieving
satisfactory results when transferring to other datasets. The
classification accuracy of all datasets can be improved to some
extent, regardless of whether the resolution of the datasets
is higher or lower than 10 m of OHS. Therefore, it can be
stated that our proposed 3DSwinT-HCL method has promising
transfer ability, and the information derived from the SSL is
beneficial for other datasets with different features.

E. Ablation Experiments

This article proposes the 3DSwinT-HCL method, and the
technical contributions include the 3DSwinT backbone to
extract both spatial and spectral features of HSI; the HCL
framework for multiscale representation learning, including
the MS-GCL module to exploit image-level information; and
the MS-LCL module to capture local details. In this section,
we conduct ablation experiments to investigate the impor-
tance of these components. Experiments (see Table IV) show
that, when not using our proposed components (including
3DSwinT, MS-GCL, and MS-LCL), i.e., only the single-scale
global contrastive learning is carried out with 2DSwinT as the
backbone, the OA is 78.83%. When the backbone (2DSwinT)
is replaced by 3DSwinT, the OA increases to 79.27%, with
an improvement of 0.44%. Furthermore, when the global
contrastive learning is embedded into the proposed HCL
framework, i.e., MS-GCL, OA is raised to 79.93%, with an
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TABLE V
COMPARISON WITH SOTA CNN NETWORKS

Backbone Pretrain OA Kappa
FPGA - 0.80 0.70
SSDGL - 0.78 0.67
3DSwinT - 0.80 0.70
3DSwinT ImageNet-1k 0.83 0.75

increment of 0.66%. On the other hand, when the global
learning module is removed and only MS-LCL is considered,
the OA is 78.65%, indicating that global contrastive learning is
indispensable in the proposed framework. In detail, the results
show that global contrastive learning is the key module of the
contrastive prediction task, while local contrastive learning can
be viewed as its complementary module. Finally, OA can be
increased to 80.15% while using all the proposed components.

On the one hand, the 2-D network may cause spectral
information loss, while 3DSwinT mitigates this issue to some
extent. On the other hand, compared to the single-scale con-
trastive structure of conventional methods, our HCL takes into
account the fact that ground targets vary in scale and size,
and hence, allows for multiscale representation learning. This
consideration enables the network parameters to be updated in
a more rational direction. Moreover, from another perspective,
the pixel-level information learning ability of MS-LCL is
beneficial for the dense prediction task.

F. Discussions

The above experimental results demonstrate the effective-
ness of the proposed HCL self-supervised method and the
complementarity with the 3DSwinT backbone. In this section,
we conduct additional experiments and comparisons to further
validate the methods presented in this article, including: 1)
comparison with SOTA CNNs to verify the benefits of the
proposed 3DSwinT for HSI land cover classification; 2) com-
parison with SOTA supervised methods to show the efficiency
and potential of the HCL self-supervised method; and 3)
the impact of data augmentations on contrastive learning
performance.

1) Comparison With SOTA CNNs: We compare two SOTA
CNNs that are specifically designed for HSI classification, i.e.,
FPFA [27] and SSDGL [72]. In order to conduct a fair com-
parison, these two SOTA CNN models are also implemented
under the proposed HCL framework. Experiments demonstrate
(see Table V) that our proposed 3DSwinT outperforms SSDGL
and is comparable to FPGA in HSI classification under the
same training setting.

Furthermore, when we employ the SwinT pretraining
weights [37] on the large-scale ImageNet-1k datasets to ini-
tialize our 3DSwinT network, the OA and Kappa of the
downstream task can be further improved by 0.03 and 0.05,
respectively. To summarize, it can be said that 3DSwinT is
more suitable for HSI classification compared to the two SOTA
CNN networks. A possible explanation is that 3DSwinT can
be boosted with the aid of large-size samples, indicating its
great potential for HSI classification.
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TABLE VI
COMPARISON WITH SOTA SUPERVISION METHODS

Method OA Kappa
3D-FCN 0.77 0.66
SSRN 0.79 0.69
FPGA 0.79 0.69
SSDGL 0.78 0.67
Ours 0.80 0.70
TABLE VII

IMPACT OF DATA AUGMENTATIONS ON CONTRASTIVE LEARNING

G?Forr;lest.rlc Color Trans. OA Kappa
J x 77.94 0.66
x J 77.60 0.65
J J 80.15 0.70

TABLE VIII
EFFECTS OF GEOMETRIC TRANSFORMATIONS ON
CONTRASTIVE LEARNING

W/o OA(%) Kappa
Rotation 79.73 0.69
Crop 79.06 0.68
Flip 79.53 0.69
- 80.15 0.70

2) Comparison With SOTA Supervised Methods: All the
work in this article is done by pretraining the network by
the HCL self-supervised method and then fine-tuning it with
a few labels. In this section, we compare the above results with
four SOTA supervised methods dedicated to HSI classification,
specifically 3-D-FCN [73], SSRN [74], FPGA, and SSDGL.
Results show (see Table VI) that HCL self-supervision sur-
passes the SOTA supervised learning methods and achieves
the best classification performance, which can be attributed
to the strength of feature learning of the self-supervised pre-
training. Consequently, this experiment further demonstrates
the superiority and potential of our proposed HCL contrastive
learning method.

3) Impact of Data augmentations on Contrastive Learn-
ing Performance: Contrastive learning relies heavily on data
augmentations since they can provide the essential labels for
contrast. We investigate the importance of the two kinds
of basic data augmentations used in this study: geometric
transformation (including random cropping and scaling, flip-
ping, and rotation) and color space augmentation (including
color distortion, random blurring, and graying). As shown in
Table VII, geometric and color augmentations play important
roles, and both are of almost equal importance. The former
enables the network to learn spatially invariant features, while
the latter can be used to simulate temporal change features of
ground objects, which are two significant characteristics of RS
images. Therefore, data augmentation for contrastive learning
needs to balance both spatial and color transformations.
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Furthermore, we quantitatively discuss and analyze the
effects of the three geometric transformation operations, i.e.,
rotation, crop (random crop and resize), and flip, on the
classification results (see Table VIII). Experiments show that,
in general, all the geometric transformations can boost the
performance of contrastive learning with the increment of
OA ranging from 0.4% to 1.1%. The random crop and
resize achieve the best result, followed by the flip. Results
demonstrate that the geometric transformations based on the
whole image are effective for contrastive learning. Geometric
augmentations can make the contrastive prediction task more
informative and, hence, guide the network to learn high-quality
representations.

V. CONCLUSION

In this article, we proposed a 3DSwinT-HCL method for
HSI classification. The proposed 3DSwinT backbone con-
siders the 3-D properties of HSI and can extract rich spa-
tial and spectral features. The HCL framework can adapt
to the complex and variable multiscale features of ground
objects and adaptively mine multilevel semantic information
from unlabeled data. In addition, the MS-LCL module can
learn pixel-level information for the dense prediction task.
Our research also showed that self-supervised fine-tuning can
achieve significantly better accuracy than supervised learning
with a small number of labels. Moreover, the 3DSwinT-HCL
pretrained model can be well transferred to other hyperspectral
datasets, and classification performance for all datasets was
improved to some extent.

This study also has limitations. It should be admitted that,
in our experiments, the data used for SSL was not very large,
owing to the difficulty in collecting large-scale HSIs with
sufficient and dense semantic labels. However, our results
showed that the self-supervised model could be more robust
and sophisticated when more pretraining data were available.
In the future, we plan to perform the SSL with more and
broader data and transfer the pretrained network to semantic
segmentation tasks with different image landscapes. We shall
also consider applying the pretrained 3DSwinT-HCL model to
more downstream tasks, such as change detection, instance,
and segmentation.
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