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ABSTRACT
Building detection from very high resolution (VHR) optical remote sensing images, which is an 
essential but challenging task in remote sensing, has attracted increased attention in recent years. 
However, despite the many methods that have been developed, an in-depth review of the recent 
literature on building extraction from VHR optical images is still lacking. In this article, we present 
a comprehensive review of the recent advances (since 2000) in this field. In total, we survey and 
summarize 417 articles in terms of the building detection method, post-processing, and accuracy 
assessment. The building detection methods are categorized into physical rule based methods, 
image segmentation based methods, and traditional and advanced machine learning (i.e. deep 
learning) methods. Furthermore, four promising related research directions of building polygon 
delineation, building change detection, building type classification, and height retrieval from 
monocular optical images are also discussed. Overall, building detection from VHR optical images 
is a popular research topic that has received extensive attention, due to its great significance. It is 
hoped that this review will help researchers to have a better understanding of this topic, and thus 
assist them to conduct related work.
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1. Introduction

Buildings are the most prominent man-made structure 
and geographical feature in urban areas (Huang and 
Zhang 2012). Accurate and up-to-date building informa
tion plays a vital role in many applications, e.g. urban 
planning, environmental monitoring, real-estate man
agement, population estimation, and disaster risk eva
luation (Krayenhoff et al. 2018; Huang and Wang, 2019). 
According to Sritarapipat and Takeuchi (2017), in the 
remote sensing interpretation field, building detection 
refers to the extraction of individual building parcels 
from remote sensing imagery. Aerial and satellite very 
high resolution (VHR) images such as IKONOS, QuickBird, 
GeoEye, WorldView, Pleiades, Ziyuan-3, and Gaofen-2 
can provide us with abundant detail information in the 
spatial domain (Paci, Chini, and Emery 2009). The 
increased spatial resolution helps to improve the ability 
to separate the different objects in urban areas, and 
allows individual building information extraction. 
Accordingly, building extraction from VHR images has 
become a popular topic (Uzar 2017).

Accurate building extraction from VHR images is 
not an easy task and still remains a challenge, due to 
the complexity of buildings and their surroundings 
(Huang and Zhang 2018; Swan et al. 2022). Firstly, 
buildings have significant differences in size, shape, 
height, and function, and they also present large 
variations in high-resolution images caused by the 
illumination, viewing angle, occlusions, and shadows. 
Moreover, complicated urban scenes consisting of 
spectrally similar objects such as roads, bare ground, 
and parking lots bring difficulties to accurate building 
extraction (Huang 2011). To deal with these problems, 
numerous studies have investigated this topic and 
proposed many methods from different perspectives. 
Some review studies have also been conducted to 
describe the work carried out during the processing 
stages. For example, Mayer (1999) reported and sum
marized the studies that have used aerial images and 
were published before the year 2000. Brenner (2005) 
also reviewed building reconstruction from optical 
images and light detection and ranging (LiDAR) 
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data. Haala and Kada (2010) summarized the building 
reconstruction techniques based on airborne LiDAR 
data. However, a comprehensive and in-depth review 
of the advances in building detection from VHR opti
cal images is still lacking. Thus, in this article, we aim 
to present a comprehensive review of the recent pro
gress (since 2000) in building detection from VHR 
optical images. Some other sensor types, such as 
LiDAR and synthetic aperture radar (SAR), have also 
been used for building extraction (Zhao, Zhou, and 
Kuang 2013; Zhou and Gong 2018). However, optical 
images are still the leading data source, considering 
the higher cost of LiDAR data collection (Cao et al. 
2020) and the great difficulties involved with building 
interpretation in SAR imagery (Deng et al. 2019), due 
to its unique imaging principle.

Accordingly, this review mainly focuses on VHR opti
cal imaging systems, where “VHR optical imagery” refers 
to remote sensing data from the visible to infrared spec
trum, with a spatial resolution ranging from 0.05 m to 
4 m. The literature search was performed using an online 
database of peer-reviewed literature. The query was 
performed with the predefined keywords of “building 
detection” or “building extraction” in the article title, 
abstract, and keywords, under the category of “remote 
sensing” and using a time range from 1 January 2000, to 
31 December 2021. A set of strategies was then further 
used to manually select the papers of interest from the 
query results. Finally, a literature database was formed, 
covering 417 articles published in 87 international 

journals. The BibTeX file containing all 417 indexed arti
cles is included in Supplementary Material I. The details 
of the online database as well as the strategies used are 
provided in Supplementary Material II. These articles 
have mainly been published in the mainstream top 
journals of remote sensing (Figure 1), indicating that 
building extraction is a popular research direction for 
VHR image interpretation. Figure 2 shows the date of 
publication of these 417 articles, where it can be seen 
that the number of publications per year has increased 
exponentially with time. Before 2010, the number of 
publications per year was less than 10, mainly due to 
the poor availability of VHR (i.e. meter-level and even 
higher) remote sensing images. Benefiting from the 
more and more easily accessible data and the booming 
development of deep learning, the article amount has 
increased significantly since 2018, and reached more 
than 100 in 2021.

According to the retrieved articles, as shown in 
Figure 2, over the last two decades, a large number of 
methods have been developed for building detection 
from aerial and satellite images, which can be categor
ized into physical rule based methods, image segmenta
tion based methods, and traditional and advanced 
machine learning (i.e. deep learning) methods. Some 
works can be regarded as a combination of the above 
methods, and we counted them in each relevant cate
gory in Figure 2. These three categories of physical rule 
based methods, image segmentation based methods, 
and traditional and advanced machine learning 

Figure 1. Relevant journals in the 417 articles. The number after the abbreviation of the journal name represents the total number of 
publications.
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methods account for 24%, 42%, and 49.5%, respectively. 
Before the era of deep learning, extracting buildings was 
conducted by rules according to the physical character
istics of buildings in VHR imagery, and making a virtue 
out of the high spatial resolution of VHR imagery to 
interpret buildings as image segments. The deep learn
ing methods that were first introduced in 2016 account 
for 40.7%, demonstrating a strong competitiveness. At 
the same time, accuracy assessment as well as post- 
processing are also important parts of building detec
tion. Pixel-wise (277 of 417 articles) and object-wise (126 
articles) assessment are the most widely used 
approaches, while geometric-based assessment (26 
papers) is less common. Moreover, post-processing 
methods including correctness and completeness 
improvement (53 out of the 417 articles) are also impor
tant techniques for building detection.

This comprehensive review aims to address the 
status, challenges, and prospects for building 
detection from VHR optical images, to provide 
a better understanding of this research field for 
researchers. According to the survey, the three 
mainstream building detection techniques, i.e. phy
sical rule based methods, image segmentation 
based methods, and machine learning based meth
ods, are reviewed in Section 2. Section 3 presents 
the post-processing techniques and accuracy 
assessment approaches for building detection. 
Furthermore, on the basis of building detection, 
some building-related remote sensing image inter
pretation tasks are also discussed, including build
ing polygon delineation, building change 
detection, and building height retrieval. Finally, 
Section 5 presents our conclusions with regard to 
building detection using VHR optical remote sen
sing imagery.

2. Building detection methods for optical 
images

Over the last two decades, a large number of methods 
have been developed for building detection from 
aerial and satellite images, which can be categorized 
into physical rule based methods, image segmenta
tion based methods, and traditional and advanced 
machine learning (i.e. deep learning) methods.

2.1. Physical rule based detection methods

The physical rule based methods extract the objects 
according to the knowledge of buildings in high- 
resolution optical images, and they do not rely on the 
collection of building samples (Attarzadeh and Momeni 
2018), so these methods are of great importance. 
Moreover, the physical rule based methods are able to 
reduce the amount of manual work and save on the cost 
of the building extraction process (Attarzadeh and 
Momeni 2018). As each building feature descriptor can 
record the candidates that have a high building prob
ability, these methods identify the objects that meet the 
multiple building characteristics as a building by con
ducting probability binarization with a set of thresholds 
(Huang 2011). Accordingly, in the following, the building 
characteristics are analyzed item by item, and we present 
several representative methods that synthesize multiple 
features to detect buildings.

2.1.1 Building characteristics
A) The geometric characteristics (i.e. shape and size) 
are some of the most important properties of buildings. 
Although buildings appear in a variety of sizes and 
shapes, the most common building shape is 
a rectangle or a combination of several rectangles (e.g. 

Figure 2. Dates of publication of the building detection related articles (and the major categories) from 2000 to 2021, as indexed by 
Scopus.
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L-, T-, and U-shaped) (Ngo et al. 2017). Compared to 
elongated roads, most buildings within a certain size 
range are more spatially isotropic (Huang 2011).

B) The spectral characteristics refer to the 
reflected energy of buildings. Most modern residen
tial and commercial buildings, which are typically 
made of bright materials (e.g. glass and marble), 
usually have a higher spectral reflectance than their 
surroundings (Guo and Du 2017). However, some 
other buildings with dark materials (e.g. old concrete 
and bitumen) in the traditional residential and indus
trial areas can have a relatively low spectral reflec
tance (Zhang and Huang 2018). As a result, such 
buildings are usually more difficult to identity from 
high-resolution optical images.

C) The textural characteristics refer to the visual 
patterns produced by tonal variation over spatial areas 
(i.e. individual buildings or building clusters). In satellite 
images with a resolution of around 2 m (e.g. QuickBird, 
WorldView-2), buildings often feature homogeneous 
reflectance with little variance. However, aerial images 
can provide a finer spatial resolution (e.g. 0.05 m), in 
which the various installations on buildings, such as 
chimneys, antennas, domes, and water tanks, can be 
clearly observed (Lee, Lee, and Lee 2008). Such detailed 
objects usually result in relatively high heterogeneity for 
buildings in VHR images. In addition, the buildings and 
their surroundings, such as the cast shadows and vege
tation, often lead to high local contrast (Huang and 
Zhang 2012).

D) The contextual characteristics denote the spa
tial constraints or relationships between the target 
objects and their neighborhoods (Cheng and Han 
2016). Considering that buildings cast shadows on 
the ground (Ngo et al. 2017), shadow can be regarded 
as a strong clue for building detection. However, the 
existence, shape, and size of shadows can be influ
enced by the solar azimuth, satellite viewing angle, 
and building density (Zhang et al. 2017).

E) The vertical characteristic (i.e. above-terrain) is 
also an important property for buildings (Gilani, 
Awrangjeb, and Lu 2018). In an urban environment, 
height can be utilized to distinguish buildings from 
terrain objects (e.g. roads and rivers). Due to the 
influence of the satellite viewing angle, the occlusion 
of dense buildings at different heights indicates the 
existence of buildings, but destroys the co-occurrence 
relationship of buildings and shadows, and interrupts 
building footprint extraction (Chen et al. 2007).

In summary, as an above-terrain object, buildings 
have high local contrast, spatial isotropy, an artificial 
shape, small size, and are usually surrounded by sha
dows (Huang and Zhang 2012). Most of the physical 
rule based methods are based on a combination of 
multiple clues for buildings (Liu et al. 2019). In the 
following, several representative methods for use 
with stereo optical images are introduced.

2.1.2 Physical rule based methods using stereo 
optical images
Stereo imaging is a photogrammetric technique that 
was initially developed for creating the illusion of 
depth in an image, according to the basic principle of 
the human visual system. As suggested in Huang, Cao, 
and Li (2020), for stereo optical images, two or more 
pictures of an object are taken from different viewing 
angles, in order to make the vertical information percei
vable when observing the images. Currently, many VHR 
remote sensing satellites, such as the WorldView series 
and Ziyuan-3, are capable of producing stereo images 
that can provide additional useful clues for building 
detection (Huang et al. 2017a).

The generation of a digital surface model (DSM) is an 
essential step for detecting buildings using stereo optical 
images. Currently, the stereo matching algorithms 
(Gruen 2012), such as hierarchical semi-global matching 
(SGM) (Qin 2014), make it possible to produce a DSM for 
a larger area with a lower cost, compared to using LiDAR 
point cloud data. The DSM indicates the vertical informa
tion of the Earth’s surface, and a normalized DSM (nDSM) 
can then be generated by a top-hat morphological 
operation, to describe the height of the objects above 
the Earth’s surface. Figure 3 presents some typical urban 
scenes for building detection from stereo optical images, 
using various methods. The nDSM, which is the most 
commonly used feature derived from multi-view images, 
indicates the presence of buildings according to their 
height information. However, its performance can be 
affected by two factors: (1) the error of the digital terrain 
model (DTM), as an nDSM is often computed as DSM 
−DTM; and (2) inaccurate stereo matching, which leads 
to incompleteness in some complicated urban areas or 
blurred boundaries, especially for high-rise buildings 
(Qin, Tian, and Reinartz 2016a).

Moreover, the angular properties of buildings, based 
on the geometric and spectral variations of buildings 
from different viewing angles (Huang, Chen, and Gong 
2018a), are also a useful indicator. For instance, Liu et al. 
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(2019) designed the multi-angular built-up index (MABI) 
for use with multi-view images, which is calculated as the 
maximum value of the difference normalized by the 
reflectance values of the stereo image pairs. The MABI 
can highlight the elevated objects (e.g. buildings) with 
viewing angle differences. From Figure 3, it can be seen 
that the MABI achieves a good performance for high-rise 
and mid-rise buildings as it can reflect the angular infor
mation inherent in stereo images. However, with respect 
to low-rise buildings, the MABI does not perform as well, 
due to the insignificant angular difference in these areas.

2.1.3 Physical rule based methods using monocular 
optical images
By delineating the spectral (i.e. local contrast and high 
intensity) and planar spatial (i.e. shape, size, texture, 
and context) characteristics of buildings in optical 
images, these methods can be categorized into build
ing component based methods and building-based 
methods (Mishra, Pandey, and Baghel 2016).

The line segments, which serve as potential compo
nents of building candidates, can be first extracted by 
various methods, such as the Hough transform (Turker 
and Koc-San 2015), the Canny edge detector (Canny 
1986), and the EDLines detector (Akinlar and Topal 
2011). On the basis of the geometric shape of buildings, 
the extracted features, i.e. lines and edges, are then 
grouped and merged into complete building 

boundaries (Yan et al. 2017). Although the geometric- 
based methods are intuitive, they still have some limita
tions. Firstly, it is difficult to distinguish building features 
(e.g. building edges) from non-buildings (e.g. road 
edges) without any prior knowledge. Furthermore, only 
buildings with specific shapes (i.e. rectangular and the 
combination of multiple rectangles) can be extracted by 
such a method (Guo et al. 2016).

In terms of the building-based methods, for the 
buildings that occupy a small size in VHR optical 
images, the Harris detector with a high response to 
building corners is preferred (Liu et al. 2019). For 
individual bright buildings with a larger size and 
detailed structure, the morphological building index 
(MBI) (Huang 2011), which utilizes morphological top- 
hat by reconstruction to delineate the features of 
buildings (i.e. the reflected energy, size, and contrast), 
works well. For building area extraction, a building 
index named PanTex (Pesaresi, Gerhardinger, and 
Kayitakire 2008), which is based on the contrast 
metric of the gray-level co-occurrence matrix (GLCM) 
for different directions and displacements, can char
acterize built-up areas and their neighborhoods. 
Figure 4 presents some typical scenes (i.e. buildings 
with different heights, sizes, and reflected energy; 
buildings with sparse/dense distributions) for build
ing detection from optical images using various 
methods. Finally, the MBI, which is a representative 

 Image IBAMMSDn
Feature Result Feature  Result

High-rise 

buildings 

Mid-rise 

buildings 

Low-rise 

buildings 

 (a) (b) (c) (d) (e) 

Figure 3. Typical examples of building detection using stereo optical images (Ziyuan-3): (a) image scenes for high-, mid-, and low-rise 
buildings; (b) and (d) represent feature images for an nDSM and the multi-angular built-up index (MABI), respectively; and (c) and (e) 
represent the building detection results obtained using the nDSM and MABI, respectively, i.e. pixels with an nDSM (MABI) value larger 
than a manual threshold were extracted as buildings. The detailed technical steps involved in generating this figure are described in 
Supplementary Material III.
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automatic building index based on morphological 
operators, as mentioned previously, served as 
a comparison method, and it achieved reasonable 
results in all the scenes (see Figure 4).

2.2. Image segmentation based building detection

The pure physical rule based building extraction meth
ods often have difficulties in dealing with practical 
scenes (Mayunga, Zhang, and Coleman 2005) as the 
building features can be affected by the sensor type, 
spatial resolution, weather, illumination, and the compli
cated urban environment. In some practical applications, 
as buildings can be represented as image segments with 
specific characteristics, object-based image processing 
(OBIA) techniques can achieve satisfactory perfor
mances, with only moderate manual input (Tan et al. 
2016; Shen, Ai, and Li 2019; Bialas, Oommen, and Havens 
2019). OBIA refers to the process of dividing a VHR scene 
into non-overlapping segments and identifying the 
land-cover objects of interest. For the OBIA-based meth
ods, most of the mainstream segmentation methods 
(e.g. region-based methods such as seeded region grow
ing (SRG) (Liu, Cui, and Yan 2008)), graph-based methods 

(such as graph cut methods (Ok 2013)), and gradient- 
based methods (such as mean shift (Sirmacek 2011)) are 
applicable, and the manual processing included in the 
segmentation is specifically for building extraction. 
According to the type of manual processing, these meth
ods can be categorized into initialization-based methods 
and methods based on optimization of the segmenta
tion process.

2.2.1 Building extraction oriented segmentation 
initialization
Some segmentation methods start with an initialization 
that requires a certain amount of human interaction (Li, 
Zhang, and Zhang 2014). A typical example is the SRG 
method, which is a kind of region-based image segmen
tation method that has been used for building extrac
tion. This approach examines the neighborhood of the 
initial seed points (i.e. building pixels) and then judges 
whether the pixels should be merged to the segment. 
However, the seed point selection, which is the first step 
in region growing, usually involves user interaction. For 
example, Liu, Cui, and Yan (2008) developed a general 
framework using SRG segmentation to extract simple 
and small rectilinear buildings from their background. 

IBMxeTnaPsirraHegamI

High-rise 

buildings 

Mid-rise 

buildings 

Low-rise 

buildings 

Small 

buildings 

Dense 

buildings 

(a) (b) (c) (d) (e) (f) (g) 

Figure 4. Typical examples of building detection using a single optical image: (a) image scenes for high-rise, mid-rise, low-rise, and 
small and dense buildings; (b), (d), and (f) represent the feature images for the Harris detector, PanTex index, and the MBI, respectively; 
(c), (e), and (g) represent the building detection results of the Harris detector, PanTex index, and the MBI, respectively, i.e. pixels with 
a feature value larger than a manual threshold were extracted as buildings. The detailed technical steps involved in generating this 
figure are provided in Supplementary Material III.
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Similarly, Müller and Zaum (2005) presented an 
approach that starts with the use of the SRG method to 
segment the imagery, where the spectral and geometric 
features are then extracted to differentiate buildings and 
non-buildings.

In addition to the SRG method, the snake models 
(which are also known as active contour models), are 
often used as an alternative approach to solve the task of 
building detection (Liasis and Stavrou 2016; Chandra 
2022). Snake models are defined by energy function 
minimization, which directs the curves to move to the 
boundaries of objects. However, the performance of the 
snake models is strongly influenced by two key points, 
i.e. the initialization of the snake model and the formula
tion of the energy function (Mayunga, Coleman, and 
Zhang 2010). For example, when the initialization cannot 
cover the building objects effectively, the models have 
difficulty in selectively detecting the target object (i.e. 
building structures) in the imagery. To tackle this pro
blem, manual interaction has been introduced into the 
process of snake curve initialization. For instance, 
Mayunga, Coleman, and Zhang (2007) developed 
a semi-automatic detection method based on a snake 
model. In this method, the seed point (i.e. center of the 
building) is manually specified and a radial casting algo
rithm is employed for the initialization of the snake 
contours, to extract the buildings. The same method 
has also been employed to extract buildings in dense 
settlement areas (Mayunga, Coleman, and Zhang 2010)

2.2.2 Manual interaction in optimization of the 
segmentation process
Besides the initialization for the image segmentation 
process, manual interaction can also be conducted 
after the images are completely segmented. With the 
assistance of manual interpretation, the segmentation 
results can be further optimized, and some foreground 
objects (i.e. buildings) and background objects (i.e. non- 
buildings) can be marked for the subsequent building 
detection. For instance, Jiang et al. (2008) designed 
a semi-automatic method to detect buildings by com
bining segmentation and region selection. In this 
method, the image is first divided into several object 
segments using the mean shift algorithm, and then the 
over-segmented building objects are merged through 
a manual interaction step. In addition, Tan et al. (2016) 
developed a semi-automatic right-angle building extrac
tion method. In this method, a seed line at the center of 
the buildings in the image is manually drawn, and the 

over-segmented building objects are merged as the 
foreground area (Tan et al. 2016). With the marked fore
ground areas and background objects that are gener
ated near the image boundary, the graph cut model is 
then finally used to detect the buildings.

It should be noted that some of the common meth
ods can be either automatic or semi-automatic (Mishra, 
Pandey, and Baghel 2016), depending on the degree of 
manual interaction involved in a specific framework. For 
instance, the snake models can serve as automatic sys
tems by realizing automatic contour initialization and 
reformulating the energy function in terms of the prop
erties of buildings (Kabolizade et al. 2014). An example of 
multi-scale mean shift based segmentation is shown in 
Figure 5, where every building is manually identified at 
its optimal scale, and all the building objects are finally 
combined to generate the result.

2.3 Machine learning based building detection

Machine learning is aimed at making a computer sys
tem learn the ability to resolve a specific task from the 
provided training data (Huang et al. 2018b). Building 
extraction can be regarded as a binary classification 
task, and many approaches have employed machine 
learning based methods to distinguish buildings and 
non-buildings (Cohen et al. 2016). In the case of suffi
cient training data which stores prior knowledge of 
the buildings, the machine learning methods can deal 
with complicated problems more effectively (Qin, 
Tian, and Reinartz 2016b).

The machine learning methods can be categorized 
into classical “shallow learning” and “deep learning” 
methods, according to the depth of the model struc
ture used for the building extraction (Li et al. 2017b). 
The traditional machine learning methods typically 
use shallow models and handcrafted features, while 
the deep learning based methods are characterized 
by deep model structures and feature learning. In the 
following, these two categories of methods for build
ing detection are described in detail.

2.3.1 Classical machine learning methods with 
a shallow model structure
The classical methods consist of several steps, i.e. 
feature extraction, feature selection/fusion, and clas
sifier training (Du, Zhang, and Zhang 2015), which we 
focus on in this subsection.
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Feature extraction is the first key component. An 
expert considers the characteristics of the targets and 
then designs effective features that can distinguish the 
targets from the background (Chen and Han, 2016). For 
the task of building detection, the commonly extracted 
features are the spectral, textural, morphological, and 
contextual features (Turker et al., 2015). Such features 
can describe the building characteristics from various 
perspectives. For instance, differential morphological 
profiles (DMPs) can be used to describe the local spec
tral-structural features (e.g. bright and dark compo
nents) of the objects, which can characterize the co- 
occurrence relationship between buildings and sha
dows (Zhang et al. 2017). In addition, several other 
features, such as local binary patterns (LBPs) (Dornaika 
et al. 2016), the histogram of oriented gradients (HOG) 
features (Li, Cheng, and Yu 2016), and GLCM measures 
(Guo and Du 2017), have been widely applied in build
ing extraction. Moreover, some non-building features, 
such as the normalized difference vegetation index 
(NDVI) and normalized difference water index (NDWI), 
which can improve the building-background separabil
ity, have also been used (Li et al. 2010).

After the process of feature extraction, the comple
mentary features are fused (Taha and Ibrahim 2022). One 
widely used feature fusion method is feature vector 
concatenation. However, a simple stacked feature set 
can result in a high-dimensional feature space with 
information redundancy, so that feature selection is 
necessary in such cases (Zhang et al. 2017). Feature 
selection is aimed at generating a feature subset that is 
composed of the most informative features, which 

account for only a small proportion of the feature dimen
sionality, but have a classification performance that is 
comparable to that of the original feature set. For 
instance, Guo and Du (2017) first generated a high- 
dimensional feature set for building description, includ
ing spectral, geometric, and textural features. The corre
lation-based feature selection (CFS) strategy was then 
used to select an optimal feature subset and reduce the 
dimensionality. Zhang et al. (2017) first extracted multi
ple candidate features for building density estimation, 
and then evaluated the importance of each feature using 
recursive feature elimination (RFE) embedded in support 
vector regression (SVR). Finally, only one-third of the 
initial features were selected, according to the feature 
importance.

With informative features and collected labeled 
samples, a classifier can be trained to achieve building 
detection (Chen and Han, 2016). The widely used 
feature learning approaches include support vector 
machine (SVM) (Dornaika et al. 2016), AdaBoost 
(Cohen et al. 2016), random forest (RF) (Huang, 
Chen, and Gong 2018a), k-nearest neighbor (kNN) 
(Chandra and Ghosh 2018), and artificial neural net
works (ANNs) (Teimouri, Mokhtarzade, and Zoej 
2016). Besides training a single classifier for building 
classification, the fusion of multiple classifiers at the 
decision level is also an effective approach to further 
improve the detection performance. For instance, 
Senaras, Ozay, and Yarman Vural (2013) trained sev
eral classifiers using different features (color, texture, 
and shape), and then fused the results produced by 
each classifier using a hierarchical architecture.

Figure 5. An example of mean shift based building detection (Huang and Zhang 2008). Left: image scene. Middle: three segmentation 
maps at large, middle, and small scales. Right: the final building detection results.
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2.3.2 Deep learning: the advanced end-to-end 
building detection methods
Handcrafted features are usually selected and gener
ated by experts, in order to obtain optimal results. The 
performance of the classical methods is therefore 
heavily reliant on human ingenuity in the feature 
design (Xu et al. 2018). Moreover, the so-called 
“semantic gap” exists between the image features 
(e.g. color and shape) and the semantics of buildings 
(e.g. the co-occurrence between building and sha
dow). Considering the complicated urban scenes 
with increasingly difficult building extraction, the 
descriptive ability of these shallow features can 
become limited, or even completely exhausted 
(Cheng and Han, 2016).

Recently, deep learning has shown its impressive 
feature representation ability and has obtained nota
ble successes in various applications (Zhang, Zhang, 
and Du 2016). Compared to the classical works based 
on handcrafted features, the recently designed deep 
networks are classical data-driven models, which 
automatically learn high-level and hierarchical fea
tures using the massive training data (Ps and Aithal 
2022). In the following, the benchmark building 
detection datasets and the deep learning based mod
els for building detection are introduced.

A)Building detection datasets
Since the Zeebrugge dataset was published as part 

of the 2015 IEEE GRSS Data Fusion Contest, dozens of 
building detection datasets have been released. Note 
that the datasets used to evaluate the traditional 
methods are typically small in size, and the training 
and test sets are collected from the same local region 
(or image), resulting in a poor generalization ability. In 
the era of deep learning, the more advanced datasets 
(see Table 1) ensure that the training and test sets are 
spatially independent, the spatial coverage is wider, 
and the data volume is larger, which is in accordance 
with reality.

Considering the size of the buildings (>10 m2), 
Table 1 lists some benchmark satellite/aerial datasets, 
for most of which the spatial resolution ranges from the 
centimeter level to 2 m, except for the relatively coarse 
resolution of SpaceNet 7 (i.e. 4 m). In addition to the 
widely used RGB channels (for instance, Figure 6(a)), 
some datasets also provide extra useful information for 
further depicting buildings. With regard to the spectral 
information, the Potsdam and WHU-Satellite datasets 
have RGB/near-infrared (NIR) bands, and the SpaceNet 

and SpaceNet 4 datasets are made up of eight spectral 
bands of the WorldView 2/3 sensors. The specific net
work modules with the inclusion of multispectral infor
mation can help to distinguish natural surfaces from 
buildings (Huang et al. 2021b). With regard to the ver
tical information, the Potsdam, Vaihingen, Zeebrugge, 
and DFC19-JAX datasets provide airborne LiDAR derived 
nDSMs, and the SpaceNet 4 dataset is made up of 27 
unique views, for which the viewing angles range from 
−32.5° to 54.0° (Weir et al. 2019). Several datasets (e.g. 
DFC19-JAX) have further attempted to boost the deep 
learning networks by combining planar and stereo 
remote sensing observations (Cao and Huang 2021). 
With regard to the temporal characteristics, the WHU 
Building Change Detection, SECOND, Hi-UCD, and 
ZKXT_2021 datasets contain multi-temporal remote 
sensing observations, building footprints for each date, 
and building change records. The SpaceNet 7 dataset of 
Planet satellite imagery mosaics includes 24 temporal 
images (one per month). With regard to the differences 
of the imaging angles of multi-temporal observations 
and the static property of buildings, a multi-temporal 
dataset can also be seen as a form of multi-view dataset. 
Thus, by the use of the multi-temporal datasets, it is 
possible to delineate the vertical information, to 
improve the detection performance (Papadomanolaki, 
Vakalopoulou, and Karantzalos 2021). In addition, given 
the dense time-series datasets, such as SpaceNet 7, it is 
also worthwhile designing phenological information 
related modules to distinguish buildings (i.e. the static 
man-made structures) from natural surfaces.

In terms of the labels of the datasets, despite the fact 
that building extraction is generally regarded as being 
equivalent to detecting roof contours, most datasets 
(e.g. Inria and SpaceNet) directly treat the building 
footprints as the evaluation targets (Chen et al. 2020). 
It should be noted that the complicated misalignment 
between the footprints and roof outlines worsens the 
difficulty of spatial positioning. Moreover, the label 
quality of these benchmark datasets can be uneven, 
mainly due to the burdensome cost of labeling large- 
scale data (Zhang et al. 2020). There are three major 
label sources: crowdsourced geospatial data (Jung 
et al., 2021), government open-source data (Chen 
et al. 2020), and interactive annotation with artificial 
intelligence tools (Acuna et al. 2018). For instance, 
OpenStreetMap (OSM),1 which is a widely used source 
of crowdsourced geospatial data, was used to con
struct the labels of the SpaceNet, SpaceNet 4, 
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SpaceNet 7, and DFC19-JAX datasets (i.e. the most 
large-scale datasets in Table 1). Land Information New 
Zealand (LINZ)2 released a set of aerial imagery and the 
corresponding building map, which were used in 
the WHU-Aerial and AIRS datasets to manually refine 
the building map and construct the benchmark data
sets. More recently, Hao et al. (2021) released an inter
active tool for building semantic annotation tasks.3 

Generally speaking, the quality of the building labels 
is affected by the outdated labels, spatial misalign
ment, wrong labels from the sources (e.g. OSM), and 
the degree of manual refinement. Among the bench
mark datasets listed in Table 1, the AIRS, Zeebrugge, 
Potsdam, and Vaihingen datasets have been manually 
edited in a strict manner, and their labels have the 
highest accuracy.

In terms of generality and diversity, buildings under 
different geographical, economic, religious, and cultural 
conditions can be very different, and the global spatial 
distribution of the building detection datasets is very 
uneven (i.e. mainly located in China, Europe, New 
Zealand, and the UK). Although the SpaceNet 7 dataset 
is spread out across the globe and covers six continents, 
its generality is limited by its relatively rough spatial 
resolution (i.e. 4 m). For a deep learning network, since 
its detection ability is heavily dependent on the training 
samples, it is of great significance to further construct 
a large-scale and representative dataset.

B) Deep models for building detection

In the early period, based on the image recognition 
paradigm (e.g. VGG/ResNet) in computer vision, 
researchers used sliding windows to crop whole remote 
sensing images into regular patches (e.g. sized 64 × 64), 
learned the features hierarchically, and labeled each 
patch (i.e. “building” or not) (Alshehhi et al. 2017). 
Although some progress has been made in these meth
ods, the “mosaic-like” phenomenon and high computa
tional redundancy inevitably occur in such patch-wise 
processing (Alshehhi et al. 2017).

To overcome this problem, fine-grained inference, i.e. 
semantic segmentation, which assigns a label (i.e. “build
ing” or “background”) to every pixel in a given image, has 
become more popular for building detection (Xu et al. 
2018). There are two mainstream network architectures 
for semantic segmentation: (1) the encoder-decoder 
U-shaped architecture (Navab et al. 2015); and (2) multi- 
scale subnetworks in parallel (e.g. HRNet (Sun et al. 
2019)). As the name implies, the U-shaped architecture 
consists of two parts: an encoder path (i.e. the left-hand 
side of the U) to downsample and aggregate the seman
tic feature representations at multiple different levels, 
and a decoder path (i.e. the right-hand part of the U) to 
gradually upsample and allocate the semantic informa
tion to each level. Generally speaking, the encoder can 
be modeled by the afore-mentioned patch-wise net
work, the decoder is carried out as the reverse of the 
encoder, and skip connections connect the features with 
the same spatial scale in the two afore-mentioned paths, 

(a) SpaceNet 7 (b) Zeebrugge (c) Vaihingen (d) Potsdam 

Figure 6. Building patches in the open-access datasets: (a) two true-color parcels from Paris in the SpaceNet dataset, (b) two true-color 
parcels in the Zeebrugge dataset, (c) two false-color parcels in the Vaihingen dataset, and (d) a true-color parcel in the Potsdam 
dataset. These datasets can be freely downloaded from the websites listed in .Table 1
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to keep the fine details. Although the U-shaped net
works can achieve a desirable overall accuracy and build
ing area coverage estimation, blob-like segments (Ji, 
Wei, and Lu 2019) indicate a poor performance in the 
target edge parts, and the spatial details of the results 
can be inferior to the input optical imagery. Thus, 
the second type of architecture, e.g. HRNet, aims to 
keep the high-resolution feature representations by 
repeatedly fusing the parallel high-to-low resolution 
subnetworks (Sun et al. 2019). Benefiting from the 
repeated multi-scale fusion, HRNet has become 
a popular sematic segmentation architecture, and has 
achieved high spatial delineation for building extraction 
(Zhu et al. 2021a).

As the studies have moved forward, researchers have 
found that the omission of small buildings and the holes 
in large buildings cannot be solved well with only 
a semantic segmentation network, as the inference of 
the pixel labels is independent of each other (Ji et al. 
2019). Thus, in contrast to semantic segmentation, 
instance segmentation, which is aimed at allocating 
a unique label for each instance (i.e. individual buildings), 
has been considered. Mask RCNN is the most widely 
used instance segmentation architecture in building 
extraction (Liu et al. 2021b). Mask RCNN consists of 
object detection and mask segmentation. By treating 
each building as an individual object, the first module 
uses a ResNet-like subnetwork to extract high-level 
semantic information and identify the location of build
ing objects. Mask segmentation is then used to deter
mine the class label of each pixel (i.e. building or not) 
within the identified proposal. Considering the spatial 
details of buildings, a recent natural approach is to use 
fine-grained features in semantic segmentation to 
replace ResNet in instance segmentation (Zhao, 
Persello, and Stein 2021). In fact, this approach that 
combines instance segmentation and semantic segmen
tation could be the future direction of building 
detection.

Moreover, the characteristics of buildings can be for
mulated as plug-and-play modules and inserted into the 
afore-mentioned architectures, to achieve task-specific 
improvements. Given the limited space available, several 
representative studies from four aspects are described 
here. Firstly, considering that buildings appear in 
a variety of sizes, the Siamese U-Net method (Ji, Wei, 
and Lu 2019) combines segmentation maps of different 
resolutions to produce scale-invariant predictions, and 
the pyramid scene parsing network (PSPNet) method 

(Zhao et al. 2017) utilizes a pyramid pooling module to 
combine the multi-level features extracted by the enco
der. Secondly, in view of the edge information of build
ings, Jiang et al. (2020) used structural similarity to 
evaluate the predicted and real boundary pixels and 
alleviate the blob-like segments. Furthermore, Wen 
et al. (2021) designed a multi-scale erosion network 
coupled with a semantic decoding module for building 
edge detection. Thirdly, in view of the geometry of 
building rooftops, adversarial learning for shape regular
ization has been used to model the shape patterns of 
buildings (Ding et al., 2021a), and a modified PointNet 
method (Qi et al. 2017) was proposed to learn the vertex 
deformation, to further refine the shape of buildings. In 
addition, Chen et al. (2020) simulated the process of 
manual delineation of rooftop outlines by 
a convolutional recurrent neural network (CRNN), to 
enable the boundaries of the rooftops to be generated 
with straight lines and sharp corners. Lastly, for the 
vertical characteristic of buildings, Ferrari et al. (2021) 
designed RGB and co-located DSM streams to extract 
specific building features, and then fused them together 
in a cross-modal stream. In addition, a lot of works have 
simultaneously taken several sources of prior informa
tion about buildings into consideration (Ahmed et al. 
2021; Ding et al. 2021bb; Feng et al. 2021; Wang et al. 
2021; ZZhao, Persello, and Stein 2021; Zhu et al. 2021b; 
Chattopadhyay and Kak 2022; Chen et al. 2022; Li et al. 
2022), resulting in complementary improvements in the 
delineation of buildings.

3. Post-processing and accuracy assessment for 
building detection

On the basis of the initially extracted building results, 
post-processing can significantly improve the correct
ness and completeness of the detected buildings. The 
main post-processing methods are summarized in the 
following. The standard metrics used for building 
detection evaluation are also introduced. Finally, an 
experimental comparison as well as a discussion are 
provided to analyze the detection methods and the 
post-processing step.

3.1. Post-processing for building detection

Post-processing is aimed at refining the original 
detection result in order to enhance its accuracy 
(Huang et al. 2017b). The initial building detection 
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results produced by various methods often suffer 
from false alarms and omissions. The false alarms are 
usually related to roads, open ground, and bright soil, 
as these terrain objects often present a similar spec
tral reflectance to buildings. The omissions mainly 
refer to dark and heterogeneous roofs (Zhang, 
Zhang, and Du 2016). To deal with these problems, 
a post-processing framework is essential.

3.1.1 A) Correctness improvement
Soil and roads are the main sources of false alarms 
during building detection (Huang et al. 2017b). Such 
false alarms can be eliminated by effective prior knowl
edge (e.g. spectral, geometric, and contextual con
straints). Specifically, the spectral constraints, e.g. the 
NDVI or the hue component of the hue-saturation- 
value (HSV) color space, can alleviate the false alarms 
caused by soil (Huang et al. 2017b). Geometric con
straints are based on connected component analysis of 
the initial binary building map. The commonly used 
geometric metrics, such as area or the length-width 
ratio, can remove small noisy items or elongated 
objects (e.g. roads). Finally, a contextual constraint 
usually refers to shadow verification for building can
didates (Manno-Kovacs and Sziranyi 2015). By impos
ing the shadow constraint on the initially detected 
building results, ground objects such as parking lots 
and open areas can be removed. Although shadows 
may have different shapes and sizes in high-resolution 
optical images, it can be easier to extract shadow 
information than to directly detect buildings (Li et al. 
2017a). To date, most researchers have used threshold
ing methods based on the panchromatic, visible, and 
NIR channels, or color space transformation, to achieve 
shadow extraction (Ghanea, Moallem, and Momeni 
2016; Liasis and Stavrou 2016). Several examples of 
false alarm mitigation are presented in Figure 7.

3.1.2 B) Completeness improvement
In the initial building results, some buildings may be 
identified only partly (Huang et al. 2017b), due to the 
heterogeneity of building roofs. In addition, some 
small holes may appear in the building objects, as 
shown in Figure 4(c,e, and g). To deal with such 
problems, morphological operations and the region 
growing method can be used to fill the holes and 
supplement the incomplete buildings (Gao et al. 
2018), as shown in the examples in Figure 8. 
However, it should be considered that it is difficult 

to recover buildings that are completely undetected 
(Huang et al. 2017b). Such omission errors often 
appear in very challenging scenes, e.g. dark roofs 
with low contrast with the surroundings. 
Accordingly, in practice, it is reasonable to preserve 
more building candidates that can be further verified, 
according to the knowledge and rule constraints 
(Huang et al. 2017b). Such a strategy can achieve 
a balance between the correctness and completeness 
of building detection results (Li et al. 2017a).

For a given detection region, although the post- 
processing approaches can result in an accuracy 
improvement, the post-processing rules and thresh
olds are currently set by trial by error, and the general
ization and automation level are poor. For instance, the 
geometric constraints, such as the area or length-width 
ratio, are sensitive to the spatial resolution of VHR 
imagery and the landscape of the target region. 
Considering the maturity level of the afore-mentioned 
building detection techniques and their applicability 
for downstream users, post-processing is still neces
sary. Meanwhile, the better the initial building detec
tion results, the easier the post-processing will be.

3.2. Accuracy assessment for building detection

3.2.1 A) Pixel-wise assessment
Three standard and commonly used quantitative 
metrics are used in this article for evaluating the build
ing detection results at the pixel level, namely, the 
intersection over union (IoU), precision (P), recall (R), 
and F-measure (F, also called the F-score) (Ok, Senaras, 
and Yuksel 2013). The evaluation measures are based 
on the overlapping areas between the reference data 
and detection result. For the pixel-based classification, 
every pixel is labeled into one of four classes: true 
positive (TP), false positive (FP), false negative (FN), or 
true negative (TN). TP refers to a building pixel that is 
correctly identified. FP indicates a non-building pixel 
that is identified as building. FN represents a building 
pixel that is identified as non-building. TN corresponds 
to a non-building pixel that is correctly identified. 

P ¼
card TPð Þ

card TPð Þ þ card FPð Þ
(1) 

R ¼
card TPð Þ

card TPð Þ þ card FNð Þ
(2) 
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F ¼ 1þ α2� � P � R
P � α2 þ R

(3) 

pixel wise IoU ¼
Ar \ Ap

Ar [ Ap
(4) 

where card(.) means the number of pixels classified to 
each type; α is a non-negative hyper-parameter to 
balance the two metrics; and Ar and Ap represent the 
footprints delineated by the reference and the pre
diction, respectively. Thus, the pixel-wise IoU mea
sures whether each building pixel in the prediction 
map is labeled in the reference map.

The precision/recall indicates the correctness/com
pleteness of the predicted buildings. The F-measure 
combines these two metrics into a single metric to 
comprehensively evaluate the quality of the detection 
result. Assigning α2 < 1 in Equation (3) can give more 
importance to the precision metric. As suggested in 
many studies, precision and recall are usually consid
ered to be equally important, so setting α as 1 is 
appropriate (Jozdani and Chen 2020). The IoU is 
defined as the overlap ratio of the prediction and the 
reference, and is another widely used overall metric.

3.2.2 B) Object-wise assessment
For the object-based accuracy assessment, the mean 
average precision (AP) and mean average recall (AR) 
over multiple IoU scores are used (Jozdani and Chen 
2020). The object-wise IoU is defined as the ratio 
between the area of the intersection and the area of 
the union of each extracted individual building footprint 
and its closest reference building mask. Specifically, the 
AP and AR are averaged over the object-wise IoU values, 
with thresholds from 0.50 to 0.95 and an interval of 0.05: 

AP ¼
AP0:5 þ AP0:55 þ . . .þ AP0:95

10
(5) 

where APthr means the correctness of the predicted 
buildings at the object-wise IoU>thr, thr∈{0.5, . . . 0.95}. 
The AR can be formulated in a similar fashion. In addition, 
considering the variety of building sizes, AP(S,M,L) and 
AR(S,M,L) evaluate the detection results for small, medium, 
and large buildings, respectively (Li, Di Wegner, and 
Lucchi 2019). As defined in ZZhao, Persello, and Stein 
(2021), small, medium, and large represent an area of < 
322 pixels, an area between 322 pixels and 962 pixels, and 
an area > 962 pixels, respectively,

(a) 

(b) 

(c) 

Image Initial result Post-processing 

Figure 7. Examples of post-processing for building detection: (a) spectral constraint, (b) shape verification, and (c) shadow verification. 
Left column: false-color high spatial resolution images; middle column: initial building footprint generated by the method proposed 
by Huang and Zhang (2011).
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3 Geometric assessment. As an artificial structure, 
individual buildings have specific geometric characteris
tics. The geometric assessment metrics can be grouped 
into vertex-, boundary-, and shape-based metrics.

Since each individual extracted building and its 
closest reference building mask can be assigned as 
two sets of vertices, the vertex-based metrics (Chen 
et al. 2020) can be computed as: 

VerF ¼
1
k

Xk

thr¼1

2Pthr � Rthr

Pthr þ Rthr
;

VerP ¼
1
k

Xk

thr¼1

Pthr;

VerR ¼
1
k

Xk

thr¼1

Rthr

(6) 

where thr is the threshold value around the reference 
building mask; thr ∈ {1, . . ., k} (k = 5); and PT and RT 

are, respectively, the vertex precision and recall under 
threshold thr. At the same time, boundary metrics 
such as the boundary based F-score (BoundF), 

precision (BoundP), and recall (BoundR) can also be 
computed in a similar fashion (Cheng et al. 2019; 
Huang, Tang, and Xu 2022).

Another widely used vertex-based metric is the 
Hausdorff distance (Hd) (Xie et al. 2020; Huang, 
Tang, and Xu 2022), which measures the maximal- 
minimal distance between two sets of vertices: 

Hd Av; Bvð Þ ¼ max h Av; Bvð Þ; h Bv;Avð Þ½ �; where h Av; Bvð Þ

¼ max
a2Av

min
b2Bv

a � bk k

� �

; h Bv;Avð Þ

¼ max
b2Bv

min
a2Av

b � ak k

� �

;

(7) 

where Av and Bv are two sets of vertices from the 
reference mask and estimated parcel, respectively. || 
|| denotes the spatial distance between the two 
vertices.

The Ecurve metric, which was developed by Ding 
et al. (2021a), can measure the misalignment in build
ing boundaries: 

Image Initial result Post-processing 

Figure 8. Examples of filling the holes and supplementing the incomplete buildings. The detailed technical steps involved in 
generating this figure are provided in Supplementary Material III.

GISCIENCE & REMOTE SENSING 1213



Ecurve Av; Bvð Þ ¼ gc Avð Þ � gc Bvð Þk k (8) 

where gc refers to the contour curvature function 
(Gonzalez, Woods, and Masters 2009), and a large 
Ecurve indicates that the boundary of the predicted 
building boundary is uneven.

To estimate the average shape dissimilarity for an 
extracted building footprint compared to the corre
sponding reference building, a metric named Eshape 

can be used (Ding et al. 2021a): 

Eshape Av; Bvð Þ ¼ fs Avð Þ � fs Bvð Þk kwhere fs �ð Þ

¼ 4π
card �ð Þ

p �ð Þ2

 !

(9) 

where fs(.) is the widely used perimeter-area ratio 
metric to estimate the compactness of the object, 
and p(.) and card(.) are the perimeter and the area 
of the object, respectively. Thus, Equation (9) can 
be used to estimate the shape dissimilarity (in 
terms of compactness) for an extracted building 
footprint (Av) compared to the corresponding 
reference building (Bv).

According to the 417 articles considered in this 
review, pixel-wise assessment (277 of the 417 articles) 
is the most widely used approach, and many object 
oriented building detection methods can be evalu
ated by the pixel-wise metrics (Zeng, Wang, and 
Lehrbass 2013). Pixel-wise assessment is more conve
nient for area-based evaluation and statistics 
(Olofsson et al. 2014), while it can be biased for build
ings with a large size. In contrast, object-wise assess
ment and geometric-based assessment are more 
robust to the building size, while the cost of the 
reference labels is higher. It is noted that precision, 
recall, F-measure, and IoU can be conducted at both 
the pixel level and object level. Precision is preferred 
when evaluating the possibility of correctly detecting 
buildings by a proposed method; recall is preferred 
when the task focuses on reducing building omis
sions, in applications such as land resource surveying; 
the F-measure combines these two metrics into 
a single metric to comprehensively evaluate the qual
ity of the detection result; and the IoU is 
a standardized criteria for deep learning based tasks. 
Moreover, geometric-based assessment is more use
ful for the tasks focused on building layout/morphol
ogy (Zeng, Wang, and Lehrbass 2013).

3.3. Comparison and discussion

By surveying the 417 articles, it was found that the 
results of the ISPRS Semantic 2D Labeling Contest 
(https://www.isprs.org/education/benchmarks/ 
UrbanSemLab/results/) can be used to evaluate the 
mainstream approaches in a fair manner. The details 
of the results of this contest are provided in 
Supplementary Material IV. Based on the contest 
results, the current situation, characteristics, and 
potential of the mainstream detection methods can 
be compared and analyzed, as follows:

Firstly, there is only one result (“UT_MEV” in the list) 
that is based on a physical rule (i.e. the fusion of the 
spectral, spatial, and vertical characteristics of build
ings), which was rated no. 137 overall in the Vaihingen 
2D Labeling Contest (140 results in total). This sug
gests that, from the perspective of accuracy, the phy
sical rule based detection methods are inferior to the 
other approaches. The diversity of buildings in com
plicated urban areas is the main bottleneck for this 
kind of method. Although the features can indicate 
the existence probability for buildings, the omission 
and commission errors are still severe. Thus, the use of 
physical rule based methods is falling. Meanwhile, 
post-processing by the use of physical rules for build
ings does have potential, as the initial detection 
results will have had many of the complicated back
ground signals filtered out.

Except for the UT_MEV method, the other results in 
both the Vaihingen and Potsdam 2D labeling contests 
are all based on supervised classification, and most of 
the top-ranked results are based on deep learning. As 
indicated by the average F-score of all the related 
results, the differences between the deep learning 
based methods and the classical machine learning 
based methods are 1.94% (Vaihingen) and 4.75% 
(Potsdam), respectively. On the basis of the spectral- 
spatial-vertical man-made building features, most of 
the recent classical machine learning based works 
that are equipped with image segmentation techni
ques train the models with dozens of parameters. The 
man-made features are low level and not specially 
designed for the target building region, and the mod
els are too simple to capture the complicated patterns 
of buildings. When dealing with a new building task, 
the existing non-deep learning models are difficult to 
generalize or transfer. In contrast, under the guidance 
of the training data in a given region, the deep 
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learning approaches can simultaneously learn the 
features of buildings and the detection model in an 
end-to-end manner. Deep learning networks with 
millions of parameters can capture building patterns 
well. Moreover, many plug-and-play modules that 
focus on the buildings characteristic in a target region 
can be easily added to (or removed from) a pre- 
trained network to construct a new model, indicating 
the high flexibility of the deep learning approach. 
Although deep learning techniques have achieved 
promising performances in building detection, sev
eral challenges remain. Firstly, deep networks need 
a huge volume of labeled data (Zhao et al. 2017), but 
it is impractical to acquire abundant and precise data 
for deep architecture training. Secondly, the feature 
representation in deep learning is difficult to explain 
and, accordingly, hyper-parameter tuning can be sub
jective and inefficient. In the future, much effort 
should be made to construct an effective and robust 
deep learning network for building detection. 
Another potential research direction would be to 
develop a deep learning network in the manner of 
fusing data- and model-driven formalization, i.e. 
investigating the network architectures and under
standing the characteristics of buildings in VHR opti
cal images.

Lastly, according to the results, image segmenta
tion, vertical information, and post-processing result 
in improvements of 0.34%, 0.64%, and 0.38% in 
F-measure, indicating the positive function of these 
techniques (see Supplementary Material IV for more 
details). In the 417 articles, there are 92, 106, and 53 
studies focusing on these techniques, respectively. It 
is shown that the vertical information is the most 
beneficial, while the post-processing makes 
a considerable positive contribution. As the initial 
building detection will have filtered out many of the 
complicated background signals, pixel-wise correct
ness and completeness improvement can be 
achieved in the post-processing step.

4. Research perspectives: related optical 
remote sensing interpretation tasks

4.1. Building polygon delineation

For many geographic information system (GIS) appli
cations, building detection is an intermediate step in 
a more comprehensive workflow (Zebedin et al. 

2006), which is aimed at achieving an abstract and 
vectorized representation of the building contours. 
Before the comeback of deep learning, building poly
gon delineation was usually formulated as a multi- 
step and bottom-up workflow, as follows: (1) building 
detection (see Sections 2.1–2.3.1); (2) building parcel 
refinement (see Section 3.1); (3) vectorization; and (4) 
simplification. Vectorization involves producing ver
tices of the polygons outlining the building instances, 
which converts the raster result into a building poly
gon shapefile format. Simplification involves reducing 
the redundant vertices while maintaining the building 
contours. A well-known polygon simplification 
method is the Douglas-Peucker algorithm (Douglas 
and Peucker 1973), which regularizes the building 
curve by approximately representing the curve as 
a series of points and then reducing the points on 
the curve. The basic steps of the Douglas-Peucker 
algorithm are illustrated in Figure 9 and introduced 
as follows:

1) Connect two points between the head and tail of 
the curve (e.g. 1 and 9 in Figure 8(a)) to measure the 
distance from the middle points to the straight line.

2) If the maximum distance (e.g. the distance of 4 
to the straight line in Figure 8(a)) is greater than 
a predefined threshold, then the corresponding 
points are retained; otherwise, all the points between 
the head and tail points are discarded (e.g. 3, 5, and 7 
in Figure 8(c)).

3) Partition the reserved points, i.e. the head and tail 
points, into two parts (e.g. in Figure 8(b), 1–4 as the first 
part and 4–9 as the second part), and repeat the above 
steps until there are no discardable points (Figure 8(c-d)).

Although the multi-step and bottom-up workflow 
is popular (Dawen et al., 2021; Daranagama and 
Witayangkurn 2021), the necessary human interven
tion (such as setting a threshold by trial and error) 
comes at a high cost (Partovi et al. 2017), and omis
sion errors may still exist along the boundaries 
(ZZhao, Persello, and Stein 2021). In contrast, deep 
learning networks that directly predict the polygons 
from the imagery (Chen et al. 2020; Wei and Ji 2021; 
ZZhao, Persello, and Stein 2021) are a relatively new 
and promising research direction.

A deep building polygon generation network is for
mulated as an end-to-end framework, where the first 
method to be developed, which was named 
PolygonRNN (Castrejón et al. 2017), was made up of 
a basic architecture with two subnetworks: (1) 
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a building instance segmentation subnetwork to 
encode the image features; and (2) a building outline 
polygon prediction subnetwork to infer the positions 
of the vertices and sequentially connect them. In 
PolygonRNN, the first subnetwork is a modified VGG 
architecture, and the second subnetwork is 
a sequential recurrent network: i.e. a two-layer convo
lutional long short-term memory (LSTM) network using 
the image features and the information of the first and 
last vertices to predict the current vertex. In this man
ner, the geometric relationship between the vertices 
and boundary lines can be embedded. On the basis of 
PolygonRNN, recent studies have introduced several 
improvements, such as adding building refinement 
modules between the two subnetworks (ZZhao, 
Persello, and Stein 2021), using more advanced recur
rent neural network (RNN) modules (Castrejón et al. 
2017; Huang, Tang, and Xu 2022), and replacing the 
RNN with other layers, such as graph convolutional 
blocks (Wei and Ji 2021) or convolutional neural net
works (CNNs) (Chen et al. 2020). However, to date, 
although the related studies have vigorously 
expanded, a lot of effort is still needed to achieve 
a practical level of building detection.

4.2. Building change detection

As an interpretation task based on building extrac
tion, building change detection has many applica
tions, such as disaster assessment (Chen et al. 2021) 
and urbanization monitoring (Huang et al. 2017a). 

Generally speaking, the building change detection 
task includes determination of both the location and 
type of the change (Papadomanolaki, Vakalopoulou, 
and Karantzalos 2021). According to Huang, Cao, and 
Li (2020), for the change types of buildings, these can 
also be summarized into three categories: new con
struction, demolition, and reconstruction. However, 
as the identification of the building change type is 
relatively difficult, the current research has mainly 
focused on determining the change location (Liu 
et al. 2021a).

Recently, building change detection methods have 
gradually developed from traditional to deep learning 
based methods (Sun et al. 2020; Daranagama and 
Witayangkurn 2021; Song and Jiang 2021). The tradi
tional approaches can be summarized into: (1) post- 
classification methods; and (2) direct classification 
methods. The first type of method independently 
produces multi-temporal building maps from inde
pendent classifications, and then the changed build
ings are identified by comparing these maps (Wen 
et al. 2019). The second type of method accomplishes 
this task by directly measuring the change magnitude 
(Huang et al. 2014). Both approaches have their 
respective advantages and disadvantages. For 
instance, illumination variations and spatial misalign
ment are major obstacles for the first category of 
approaches, and the accumulation of errors from 
each independent building detection is also 
a challenge for the second category (Li, Huang, and 
Chang 2020). Supervised deep learning methods with 

Figure 9. An illustration of the Douglas-Peucker algorithm (Douglas and Peucker 1973).
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massive labeled data can achieve more promising 
performances. According to the method used to man
age the bi-temporal images, these studies can be 
divided into early fusion methods and late fusion 
methods (Daudt, Le Saux, and Boulch 2018). In the 
early fusion methods, VHR optical images collected at 
different times are stacked and then fed into 
a semantic segmentation based network to deter
mine the change magnitude. In the late fusion meth
ods, the building features of bi-temporal images are 
separately extracted by two independent encoders, 
and then combined and finally fed into a decoder to 
generate a change map. Based on these two architec
tures, several attempts have been made to formulate 
a specific network to deal with the problems such as 
the complicated backgrounds in dense urban scenes 
(Liu et al. 2021a), pseudo-changes such as roofs with 
different colors, vehicles, and containers (Song and 
Jiang 2021), geometric misalignment due to relief 
displacement (Zhang et al. 2021), the rarity and spar
sity of changed building samples (Daranagama and 
Witayangkurn 2021), and the spectral differences and 
scale variations of bi-temporal images (Liu et al. 
2021a). It is worth noting that the uncertainty of 
multi-temporal VHR georeferencing can introduce 
significant errors. Even if, on the whole, the VHR 
images achieve a subpixel georeferencing accuracy, 
the spatial misalignment of high-rise buildings will 
still be serious. To deal with this issue, georeferencing 
error tolerated methods that make full use of the 
spatial contextual information have been used for 
VHR building change detection (Huang et al. 2014). 
Moreover, when the training samples can inform us 
whether the object of interest is a building object at 
each time point, a multi-task network that simulta
neously performs the building change detection and 
building detection can further improve the change 
detection performance (Sun et al. 2020).

Compared to the studies that have explored 
building change detection in the two-dimensional 
(2D) domain (e.g. Yu et al. 2016; Huang et al. 
2017a), three-dimensional (3D) building change 
extraction remains a relatively new topic. 3D build
ing information refers to the height and volume of 
the buildings. In addition, some other building 
parameters, such as the floor area ratio and sky 
view factor, can also be calculated. The typical 3D 
information can be obtained from various data 
sources, including LiDAR point cloud data, digital 

elevation models, multi-view images, and even 
monocular images. The building change detection 
task can be expanded to 3D space, in applications 
such as building construction process tracking, 
urban vertical growth monitoring, and 3D city 
model updating (Wen et al. 2019). Although 3D 
building change detection has great potential in 
various applications, some challenges still remain. 
The first issue is the uncertainty of the 3D data. For 
instance, with respect to multi-view images, the 
image matching may fail to detect high-rise build
ings, and thus result in inaccurate height informa
tion. Accordingly, more advanced algorithms are 
still needed to improve the accuracy of 3D data. 
Furthermore, the access to multi-temporal 3D data 
is often costly. It is thus necessary to develop 
methods for time-series 3D building data genera
tion and updating in a relatively economic manner. 
An alternative solution may be the fusion of multi- 
temporal stereo images (e.g. ZY-3) and an accurate 
3D building model derived at one specific date.

4.3. Building type classification

Most of the existing research has focused on building 
detection (Liu et al. 2021a), i.e. distinguishing building 
objects from non-building objects. In recent applica
tions, building types rather than the location and 
geometric information have been the focus, in various 
aspects, such as energy consumption modeling, dis
aster risk assessment, and seismic building vulnerabil
ity evaluation (Wurm, Schmitt, and Taubenböck 2017). 
The aim of building type classification is to classify the 
buildings into different classes according to their 
characteristics. For instance, according to their height, 
buildings can be classified into low-, mid-, and high- 
rise buildings; they can also be categorized into block 
developments, terraced buildings, and detached 
buildings, based on their geometry and morphology; 
and they can be divided into residential, commercial, 
and industrial buildings, considering their urban func
tions (Du, Zhang, and Zhang 2015; Bo, Bei, and Song 
2018). Generally speaking, compared to building type 
classification in terms of building height and mor
phology, identifying the semantic type (e.g. residen
tial and commercial) can be more challenging, owing 
to the semantic gap between the image features and 
the building function in the real world (Taubenböck 
et al. 2013).
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A few studies have investigated building type clas
sification from remote sensing data, for which the 
framework usually includes two main steps: (1) build
ing extraction; and (2) type classification. Since the 
precise extraction of building objects is an essential 
prerequisite for building type classification, the exist
ing studies have tended to use LiDAR and GIS data 
that can provide accurate building footprints and 
height (Mariana et al. 2014). 2D and 3D metrics, such 
as area, perimeter, and volume, have then been 
applied to describe the geometric characteristics of 
the different building types (Wurm, Schmitt, and 
Taubenböck 2017l; Huang et al., 2021a). With respect 
to building function classification, multi-source data 
fusion is an appropriate approach. For instance, Du, 
Zhang, and Zhang (2015) undertook building seman
tic classification by integrating high-resolution optical 
images and GIS data. Various features, i.e. the spectra, 
texture, and geometry, were then combined with an 
improved RF classifier, which was used to classify the 
buildings according to their function, such as apart
ments, and industrial buildings. Huang, Chen, and 
Gong (2018a) employed multi-view images and pro
posed a series of angular difference features at multi
ple levels that can not only reflect the height 
information of buildings, but can also provide the 
possibility to discriminate buildings with similar 
heights. In their study, the results demonstrated that 
the local angular variations are beneficial for semantic 
building classification, e.g. distinguishing residential 
apartments, factories, and cottages.

4.4. Building height retrieval from monocular 
images

Height, which is one of the most significant character
istics of buildings, is of great importance in understand
ing building morphology and function within urban 
scenes (Amirkolaee et al. 2019). Currently, height infor
mation can be obtained from LiDAR point cloud data or 
multi-view images using dense matching (Saeidi et al. 
2014). However, such datasets are not always available, 
and monocular optical images are still the most domi
nant data source for building information extraction 
(Karatsiolis, Kamilaris, and Cole 2021). Thus, 
a promising research direction would be to estimate 
building height information from monocular images, in 
the absence of other auxiliary data sources (e.g. LiDAR 
and stereo images) (Liasis and Stavrou 2016).

One useful clue that can be considered for height 
estimation is the contextual information, e.g. the sha
dows cast by buildings (Bosch et al. 2019). Generally 
speaking, a geometric prior between a building and its 
corresponding shadow can be quantitatively modeled 
(e.g. by a linear function) by the elevation angles of the 
sun and satellite and the length of the shadow (Liasis 
and Stavrou 2016). By establishing such a relationship, 
the building height can be estimated. In this case, 
accurate shadow detection is a critical basis for build
ing height retrieval. Some widely used methods for 
shadow detection are the histogram threshold techni
que, invariant color models, morphological transfor
mation, and the active contour model (Huang and 
Zhang 2012; Ok 2013; Liasis and Stavrou 2016). It 
should be noted that building height estimation 
based on shadow information is more suitable for 
scenes with sparsely distributed buildings, so that the 
shadow structures can be completely observed. In fact, 
high-density building regions can result in fragmented 
and incomplete shadow components, due to the 
occlusions, which can seriously affect the accuracy of 
building height retrieval.

In addition to shadow-based methods, the recently 
developed deep learning models have great potential 
for building height retrieval from monocular images. 
Generally speaking, height estimation from monocular 
images can be technically difficult as there is an inher
ent ambiguity in transforming the intensity or color 
properties into height information (Mou and Zhu 
2018). However, it is easier for humans to infer the 
depth information from monocular images in terms of 
the visual cues, including object size, texture, context, 
occlusion, and orientation (Amirkolaee and Arefi 2019). 
The deep learning models have great potential to 
extract mid- and high-level abstract features that can 
serve as cues for depth perception, and thus have 
potential for height estimation from monocular images. 
To date, limited efforts have been made to investigate 
this issue (Amirkolaee and Arefi 2019), where the deep 
network architectures were made up of encoding and 
decoding parts, which were used for abstract feature 
extraction and height value transformation, respec
tively. These frameworks achieved reasonable accura
cies with respect to low- and mid-rise buildings, but 
some challenges still remain. Firstly, the accuracy for 
high-rise buildings was not fully satisfactory. An alter
native solution may be the fusion of traditional features 
and deep features. For instance, the contextual 
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information, e.g. shadow properties, combined with 
multispectral features, could be jointly used as inputs 
for deep learning models. The other problem is the 
reliance on prepared training data, e.g. reference 
nDSM data. Under this circumstance, the transferability 
of a deep learning model should be further investi
gated, in order to improve its efficiency for large-area 
applications.

5. Conclusion

Building extraction from VHR optical images is an 
essential but challenging research topic, and much 
effort has been made in this field. However, a deep 
and comprehensive review of this topic is still lacking in 
the current research community. Accordingly, in this 
article, we have presented a review of the recent 
advances (since 2000) in building extraction from VHR 
optical images. We surveyed a large number of studies 
and summarized them in terms of the workflow of 
building detection from high-resolution images, includ
ing the detection method, post-processing, and accu
racy assessment. Specifically, the various methods for 
building detection were categorized into physical rule 
based methods, image segmentation based methods, 
and traditional and advanced machine learning (i.e. 
deep learning) methods. Furthermore, we further dis
cussed multi-source data fusion for building detection 
(i.e. the fusion of optical images and LiDAR/SAR data). 
Finally, we suggested four promising research direc
tions, i.e. building polygon delineation, detailed build
ing type classification according to the building 
morphology and function, building height retrieval 
from monocular images, and building change detec
tion. It is our hope that that this review will provide 
researchers with a better understanding of the issues in 
building extraction from VHR optical images.

Notes

1. https://www.openstreetmap.org/
2. https://www.linz.govt.nz/data/linz-data
3. https://github.com/PaddlePaddle/PaddleSeg/blob/ 

develop/EISeg/docs/remote_sensing.md
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