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A B S T R A C T   

Hyperspectral image (HSI) classification is one of the most important remote sensing techniques. Currently, the 
performances of most of the HSI classification networks on the public HSI datasets are overoptimistic (i.e., the 
overall accuracy exceeds 98 %). This deficiency is partly due to the very limited scale of these existing datasets, 
which impedes the network generalization and poses limitations for the future development. The existing 
hyperspectral datasets urgently need to be scaled up in size. Therefore, in this study, we built a dataset named the 
WHU-OHS dataset, which consists of about 90 million manually labeled samples of 7795 Orbita hyperspectral 
satellite (OHS) image patches (sized 512 × 512) from 40 Chinese locations. This dataset ranges from the visible 
to near-infrared range, with an average spectral resolution of 15 nm. The extensive geographical distribution, 
large spatial coverage, and widely used classification system make the WHU-OHS dataset a challenging 
benchmark. This dataset was validated by comprehensive experiments using several representative deep HSI 
classification networks. Furthermore, the transferability of the HSI classification networks under the conditions 
of the same/different HSI sensors was tested. In particular, when classifying the existing public HSI datasets, 
using initial parameters obtained by pre-training on the WHU-OHS dataset can further improve the inference 
accuracy as well as the training efficiency. The WHU-OHS dataset and a PyTorch toolbox for large-scale HSI 
classification are available at https://irsip.whu.edu.cn/resources/resources_v2.php and https://github.com/zjjer 
ica/WHU-OHS-Pytorch, respectively.   

1. Introduction 

The ability to understand the Earth’s surface has been significantly 
promoted by the availability of vast amounts of remote sensing data and 
advanced remote sensing technologies (Li et al., 2019a, 2019b). Among 
the various remote sensing data sources, hyperspectral image (HSI) data 
have the unique advantages of a high spectral resolution, continuous 
frequency, and wide range of electromagnetic spectrum (Wambugu 
et al., 2021). As a result, HSI classification is recognized as being one of 
the most important remote sensing techniques (Li et al., 2014; Datta 
et al., 2022; Jaiswal et al., 2021). 

To investigate the current situation, we analyzed the journal articles 
published from Jan. 2016 to Jan. 2021 in the remote sensing commu
nity. Specifically, three representative journals (i.e., ISPRS Journal of 
Photogrammetry and Remote Sensing, Remote Sensing of Environment, and 
IEEE Transactions on Geoscience and Remote Sensing) were selected. 
Please note that we did not review all the remote sensing journals, as our 

aim was not to count the total number of hyperspectral papers, but to 
reflect the overall trends. Furthermore, we performed a meta-analysis of 
the classification algorithms used in the afore-mentioned journal articles 
(see Supplementary Material I). The analysis of all the HSI classification 
related articles in the three journals revealed the following character
istics (Table 1): 

We found 312 journal articles on this topic over the last five years, 
indicating that HSI classification is a hot research topic in the remote 
sensing community. In total, 277 of these articles utilized the existing 
publicly labeled datasets (the first eight datasets in Table 2) to validate 
the effectiveness of the designed classification methods. In Table 2, from 
the visible to near-infrared spectrum (or at least the short-wave infrared 
region), each dataset has tens to hundreds of continuous bands with a 
dozen or so categories, and covers a localized landscape with a small 
spatial coverage (i.e., <350 km2). All the datasets except for the Botswana 
dataset are made up of aerial photographs. As the flight plans of airborne 
equipment are carried out under clear sky conditions with good 
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visibility and no clouds, the imaging conditions of airborne images are 
typically more stable than those of satellite images. Thus, when the 
training and test data are drawn from the same small HSI (Li et al., 
2015b), most of the current methods (especially those that are more 
prone to spatial smoothing) are overoptimistic (i.e., the overall accuracy 
(OA) exceeds 98 %) (Xu et al., 2022). 

Since pixels within a homogeneous parcel violate the sample inde
pendence assumption, the actual sample size cannot be regarded as the 
number of pixels. Although several datasets have millions of labeled 
pixels, when taking parcels as the basic unit, the sample size of each 
dataset is quite limited (Table 2). Furthermore, for most of the current 
public datasets, the reference samples are sparse, occupying only a small 
proportion of the whole image. The sparse (see the snapshots of each 
public dataset presented in Fig. 1) and limited reference samples are 
divided into a test set and a training set, leading to the following two 
shortcomings. Firstly, an insufficient test set can bias the accuracy 
evaluation and restrict the reliability of further applications. Thus, there 
is an immediate need to build a dense and large HSI benchmark dataset. 
Secondly, the small number of training samples is a well-known chal
lenge for HSI classification (Li et al., 2015a; Gao et al., 2022), as the 
training models can be ill-posed. To deal with this problem, some recent 
machine learning paradigms, such as active learning (Xue et al., 2021) 
and semi-supervised learning (Hu et al., 2018; Li et al., 2020), assume 
that the same type of surfaces follow the same distribution in the feature 
space, and can obtain sematic information from the unlabeled samples. 

While these efforts can relieve the small number of training samples 
issue, for the classification of an HSI image (i.e., the “target domain 
task”), the large amount of existing semantic information (i.e., the 
“knowledge” from the source domain) can be helpful. This is the core 
idea of transfer learning, which is one of the hot topics in the HSI clas
sification field (Rao et al., 2022). As noted from the 312 surveyed arti
cles, except for a few studies jointly using training samples from two 
similar datasets to investigate the role of transfer learning (Liang et al., 
2021), most of the current studies still adopt simulated data. In this 
approach, several disjoint sub-images are cut from a single image, as 
source and target images, respectively. Thus, the superiority of transfer 
learning, which involves inheriting semantic information from external 
HSI data, has not been fully exploited. The main dilemma of transfer 
learning is how to overcome the large differences in the data modalities, 
sensors, landscapes, and categories among the multiple HSIs, which is a 
problem more often encountered in practical interpretation tasks. 

We identified 111 deep learning related articles, representing the 
deep learning era for HSI classification (Audebert et al., 2019; Wambugu 
et al., 2021). The current research shows that the model complexity of 
the HSI classification networks is much lower than that of the very high 
spatial resolution remote sensing (VHR) image networks (Hu et al., 
2021). To date, most of the complicated but well-performing deep 
models have been trained by the use of large numbers of samples. Under 
the condition of there being no publicly accessible large-scale bench
mark datasets for HSI classification, there are three main techniques 
used to compensate for the inadequacy of the labeled samples.  

(1) The most intuitive technique is data augmentation (Zhu et al., 
2018), which involves synthesizing “pseudo” samples from a 
small number of real samples by, for instance, rotating the real 
samples (Zhang et al., 2021). However, it is generally believed 
that the quality of synthetic samples is far from that of real 

samples, and in HSI processing, the performance is even worse, 
due to the low signal-to-noise ratio of HSI images (Li et al., 2019a, 
2019b).  

(2) The second popular technique is to use a small number of target 
domain samples to fine-tune the existing deep models pre-trained 
from other fields with large numbers of samples (Windrim et al., 
2018). However, the big gap between HSI datasets and datasets 
from other domains (e.g., natural (RGB) imagery, text data, and 
VHR imagery) poses a challenge to the transferability. 

(3) The recent progress in self-supervised learning (Chen and Bruz
zone, 2022), which involves directly learning the essential char
acteristics of data from unlabeled data, has been a milestone in 
many fields such as sematic segmentation (Li et al., 2021), change 
detection (Chen and Bruzzone, 2022), and scene classification 
(Zhao et al., 2020) through the use of VHR imagery. Thus, 
although the fine spectral bands of HSI data can precisely delin
eate the different land-cover types, the shortage of open-access 
large-scale HSI datasets, as well as validation samples, can 
hinder the use of HSI data with these new machine learning 
techniques (see Table 2). In addition, the size of the public 
hyperspectral datasets is much smaller than that of the VHR 
datasets, which severely restricts the development of HSI 
interpretation. 

There is therefore an urgent need to construct a large-scale hyper
spectral dataset, so as to further explore deep learning techniques in this 
area. The contributions of this paper can be summarized as follows: 

(1) We present a large-scale land-use/land-cover (LULC) HSI classi
fication dataset, namely, the WHU-OHS dataset, covering 
>150,000 km2 in China, which is made up of Orbita hyper
spectral satellite (OHS) images. To the best of our knowledge, this 
is the largest open-source hyperspectral remote sensing dataset.  

(2) On the basis of the WHU-OHS dataset, we conducted systematic 
comparisons with several representative deep learning based HSI 
classification methods, with/without consideration of multi- 
scene heterogeneity.  

(3) We investigate the potential of transferring from the WHU-OHS 
dataset (by pre-training) to the other current hyperspectral 
datasets (Table 2).  

(4) A PyTorch toolbox (https://github.com/zjjerica/WHU-OH 
S-Pytorch) for large-scale HSI classification is introduced. 

The rest of this paper is organized as follows. Section 2 describes the 
construction of the WHU-OHS dataset, which consists of 42 OHS satellite 
images and covers an area of >150,000 km2 in China. Section 3 sum
marizes the current status of the deep learning based HSI classification 
methods. In Sections 4 and 5, the series of comprehensive experiments 
conducted on the WHU-OHS dataset are described, with/without 
consideration of multi-scene heterogeneity. In Section 6, we discuss the 
feasibility of transferring from the WHU-OHS dataset to the other 
existing and widely used hyperspectral datasets. In Section 7, we discuss 
the potential use of the WHU-OHS dataset in future work. Finally, Sec
tion 8 concludes the paper. 

Table 1 
Numbers of surveyed articles and their specific characteristics.  

Total number Transfer learning Deep learning Convolutional neural network (CNN) Recurrent neural network (RNN) Generative adversarial network (GAN) 

312 18 111 96 10 12 
Public data Spectral-spatial Auto- 

encoder 
3D- CNN Sematic segmentation Capsule net 

277 246 27 28 14 3  
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2. WHU-OHS dataset 

2.1. Orbita hyperspectral micro-nano satellite images and pre-processing 

According to the description in the user manual, the hyperspectral 
constellation composed of 10 Orbita hyperspectral micro-nano satellites 
was launched and is managed by Zhuhai Orbita Aerospace, China. The 
sun-synchronous orbits of each satellite are about 500 km in altitude, 
with an inclination of around 98◦. The imagery has a spatial resolution 
of 10 m (nadir) and a swath width of 60 km (nadir). With the 10 sat
ellites, the hyperspectral constellation can realize global observation 
within 2 days. With a spectral range of 400–1000 nm, there are 256 
spectral channels in total, with an average spectral resolution of 2.5 nm. 
The OHS constellation can acquire Earth observation data with a high 
spatial-spectral-temporal resolution and a large spatial coverage. As a 
result, OHS data have been applied in LULC mapping, crop estimation 
and monitoring, and other applications. 

For each image, the pre-processing, including relative radiometric 
calibration, atmospheric correction, and geometric registration, was 
conducted in the ENVI 5.3 environment. By using the Radiometric 
Calibration toolbox in ENVI 5.3, the relative radiometric calibration is 
aimed at eliminating the sensor error and transferring the digital num
ber value of the original signal to an apparent radiance value. Based on 
the MODTRAN4 radiative transfer model (Berk et al., 1999), atmo
spheric correction was implemented using the Fast Line-of-sight Atmo
spheric Analysis of Hypercubes (FLAASH) tool in ENVI 5.3. In this 
model, GMTED2010 data (Danielson and Gesch, 2011) are used to es
timate the average elevation. The atmospheric parameters and the 
aerosols in the MODTRAN4 model are mainly determined by longitude 
and latitude, imaging time, and land-cover types. Thus, for the proposed 
dataset, the atmospheric models included subarctic summer, mid- 
latitude summer, and tropical models, and the aerosols included urban 
aerosols and rural background aerosols. In addition, the spectral band 
with a central wavelength of 820 nm was also used for water vapor 
inversion. The effectiveness of the atmospheric correction step is dis
cussed in Supplementary Material II. Next, using the rational polynomial 
coefficient (RPC) Orthorectification toolbox in ENVI 5.3, orthophoto 
correction without control points was carried out based on the 
GMTED2010 global digital elevation model (DEM) dataset (Danielson 

and Gesch, 2011). These data-processing procedures were conducted by 
Zhuhai Orbita Aerospace, China. 

Considering the spectral details and data volume, Zhuhai Orbita 
Aerospace provides imagery with 32 spectral bands selected from the 
256 channels. The central wavelength of each band is listed in Table 3. 
In view of the number of spectral bands, spectral bandwidths, and 
spectral range, the proposed WHU-OHS dataset basically meets the 
definition of hyperspectral imagery (Rinker, 1990; Manolakis et al., 
2016). 

2.2. Land-use/land-cover types 

A hierarchical classification system with seven major classes and 24 
classes was adopted for the proposed WHU-OHS dataset, based on the 
Chinese Land Use Classification Criteria (GB/T21010-2017), as shown 
in Fig. 2. The descriptions of the classes are provided in Table 4. The 
intra-class spectral diversity was calculated on the basis of the within- 
class scatter matrix (Altman et al., 1994). As shown in Eq. (1), for the 
ith class, given Ni samples, the scatter matrix S(i)

w can be denoted as: 

S(i)
w =

1
N
∑Ni

k=1
(X(i)

k − m(i))(X(i)
k − m(i))

T
(1) 

where X(i)
k and m(i) refer to the spectral feature of the kth sample and 

the average spectral feature of the ith class, respectively. For the 42 OHS 
images, min-max scaling spectral feature normalization was carried out 
as follows: 

X(i)
k = X(i)

k,0 − mini/maxi − mini (2) 

where mini and maxi refer to the minimum and the maximum 
spectral reflectance values for all the ith class samples, respectively.X(i)

k,0 

refers to the original spectral features. The trace of S(i)
w then measures the 

spectral diversity of these Ni samples. Table 4 presents the intra-class 
diversity (ICD) for each class. According to this table, the spectral di
versity of all the classes across the 42 OHS images is high. 

2.3. Dataset construction for deep learning 

The WHU-OHS dataset is made up of 42 OHS satellite images 

Table 2 
Public and newly released datasets for HSI classification.  

Dataset Platform and sensor Spectral Spatial Reference labels 

Bands 
(available 
bands) 

Range (μm) Size (pixels) Resolution 
(meters) 

Classes Sample size 

Pixels Parcels** 

Indian Pines = Aerial: AVIRIS 224 (200) 0.4–2.5 145 × 145 20.0 16 10,249 40 
Salinas Valley Aerial: AVIRIS 224 (204) 0.4–2.5 512 × 217 3.7 16 54,129 24 
KSC Aerial: AVIRIS 224 (176) 0.4–2.5 512 × 614 18.0 13 4756 59 
Washington DC Mall Aerial: HYDICE 210 (191) 0.4–2.4 1208 × 307 1.5 ~ 3.0 7 26,332 399 
DFC 2013 Aerial: CASI-1500 144 (144) 0.38–1.05 1095 × 349 2.5 15 15,029 547 
DFC 2018 Aerial: CASI-1500 50 (48) 0.38–1.05 4786 × 1202 1.0 20 573 k 2255 
Pavia U Aerial: ROSIS 115 (103) 0.43–0.85 610 × 340 1.3 9 42,776 265 
Pavia C Aerial: ROSIS 115 (102) 0.43–0.85 1096 × 715 1.3 9 148,152 663 
AeroRIT (Rangnekar 

et al., 2020) 
Aerial: Headwall Micro E 372 0.397–1.003 1973 × 3975 0.4 5 6,306,697 2534 

WHU-Hi-HanChuan UAV aerial: Headwall Nano-HS 
imaging 

270 0.40–1.00 1217 × 303 0.109 16 368,751 155 

WHU-Hi-HongHu UAV aerial: Headwall Nano-HS 
imaging 

270 0.40–1.00 940 × 475 0.043 22 446,500 44 

WHU-Hi-LongKou UAV aerial: Headwall Nano-HS 
imaging 

270 0.40–1.00 550 × 400 0.463 9 220,000 22 

Matiwan Village (Cen 
et al., 2020) 

UAV aerial: V-NIR imaging 
spectrometer 

250 0.40–1.00 3750 × 1580 0.5 20 5,925,000 135 

Botswana Satellite: Hyperion 242 (145) 0.4–2.5 256 × 1476 30.0 14 3248 86 
WHU-OHS Satellite: Orbita hyperspectral micro- 

nano satellites 
32 0.40–1.00 7795 × 512 ×

512 
10 24 90 million 117,286 

* A parcel represents a collection of identically labeled, spatially contiguous pixels. 
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Fig. 1. Snapshots of each public dataset for HSI classification.  
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acquired from >40 different locations in China (Fig. 2). Each OHS image 
is named after its location, and is listed and abbreviated as described in 
the readme file of the dataset (e.g., “Jinzhong” in Shanxi province is 
abbreviated as O1). The extensive geographical distribution, the large 
spatial coverage, and the widely used classification system make the 
WHU-OHS dataset a challenging benchmark database for HSI 
classification. 

Each OHS image with around 2.3 million manually labeled pixels has 
been seamlessly cropped into 16 (i.e., 4 × 4) tiles with equal size, where 
12 and 4 tiles are employed as the training and test samples, respec
tively. We cropped each tile into 512 × 512 pixels with a stride of 32. All 
the sub-images in the test tiles were used for the inference, and the sub- 
images in the training tiles were randomly divided into training and 
validation sets, with a ratio of 9:1. 

The dataset was organized in the format shown in Fig. 3. The train 
(tr), validation (val), and test (ts) folders and a readme text file are in the 
first-level subdirectory, where each folder contains two subfolders, 
called image and label, respectively. Each file in the third-level sub
directory utilizes the abbreviation of the OHS imagery and the number 
of the unordered sub-images. For instance, T1_0002.img means the 
second sub-image of the first target OHS image, and T1_0002.jpg records 
the associated pixel-wise label. For the transferability testing, we chose 
eight pairs of OHS images, in which each pair contained one source 
image and one target image (denoted as S1 and T1), which were 
spatially adjacent and had similar land-cover landscapes. The readme 
file records the name and abbreviation of every OHS image (e.g., S1 is 
short for Changchun). This dataset will be made publicly available for all 
research needs. There are 4822, 513, and 2460 sub-images in the 
training, validation, and test sets, respectively. Several sub-image ex
amples are presented in Fig. 4. 

3. Representative deep learning methods for HSI classification 

Referring to the recent reviews (Audebert et al., 2019; Li et al., 
2019b; Wambugu et al., 2021), the existing deep learning methods for 
HSI classification can be categorized as spectral, spatial, and spectral- 
spatial methods, in terms of the feature types. As shown in Table 1, 
the 96 CNN-related articles indicate that convolutional filters (abbre
viated as conv) are the layers that are most often used to model the 
spectral and spectral-spatial features. Generally speaking, there are two 
approaches to exploiting spectral-spatial information by 2D 

Table 3 
The central wavelength of each spectral band of the OHS imagery.  

No. of 
bands 

CWB 
(nm) 

No. of 
bands 

CWB 
(nm) 

No. of 
bands 

CWB 
(nm) 

No. of 
bands 

CWB 
(nm) 

1 466 9 569 17 716 25 836 
2 480 10 610 18 730 26 850 
3 500 11 626 19 746 27 866 
4 520 12 640 20 760 28 880 
5 536 13 656 21 776 29 896 
6 550 14 670 22 790 30 910 
7 566 15 686 23 806 31 926 
8 580 16 700 24 820 32 940 

CWB = central wavelength of each band. 

Fig. 2. Left: The geographical locations of the 42 images in the WHU-OHS dataset. Right: Examples of local OHS parcels (true-color compositions with R: 670 nm; G: 
566 nm; B: 480 nm) and their corresponding reference labels. 

J. Li et al.                                                                                                                                                                                                                                         



International Journal of Applied Earth Observation and Geoinformation 113 (2022) 103022

6

convolution. The first approach is the same as that used in natural im
agery, i.e., the spatially convolved features extracted from each spectral 
band are equally summed (Zhu et al., 2019). The second approach is 
designed especially for remote sensing images, i.e., an HSI 3D patch 
centered on a test sample is flattened to the format of (height × width) ×
bands, and 2D convolution is then performed on it (Luo et al., 2018). 
Meanwhile, considering that an HSI patch is naturally a 3D tensor, 3D 
convolution seems more reasonable for HSI classification. In fact, 28 of 
the 96 articles are based on 3D CNN models. In addition, there are 10 
articles based on recurrent neural networks (RNNs) and 12 on genera
tive adversarial networks (GANs). 

In terms of the processing unit, most methods use a patch (i.e., a set 
of pixels within a spatial neighborhood) centered on a test pixel to mine 
the spectral-spatial information. However, as each sample can be 
repeatedly used as the spatial or neighboring context, this patch-based 
approach leads to the utilization of redundant information. Since HSI 
classification involves assigning a label for each pixel, pixel-based 
spectral-spatial sematic segmentation has also been a research hotspot. 
In this study, seven representative deep learning based HSI classification 
methods were chosen for a series of comprehensive tests on the WHU- 
OHS dataset (Table 5 and Fig. 5): 

Gated recurrent unit (GRU) (Mou et al., 2017): Considering that each 
pixel can be modeled as an orderly and continuous spectral vector, a 
GRU is employed to simultaneously characterize the local spectral cor
relation and global band-to-band variability. 

One-dimensional convolutional neural network (1D-CNN) (Hu et al., 
2015): This model uses two 1D convolutional layers to hierarchically 
mine the local spectral correlation of each HSI pixel. 

Two-dimensional convolutional neural network (2D-CNN) (Luo 
et al., 2018): In this model, all the pixels in a patch are separately fed 
into a single 1D convolutional layer, stitched into a 2D matrix, and are 
then transformed via two 2D convolutional layers to mine the spectral- 
spatial features. 

HSI-GAN (Zhu et al., 2018): This model is composed of a generator (a 
2D-CNN with five convolutional layers) that tries to generate fake 
patches that are as real as possible, and a discriminator (a 2D-CNN with 
six convolutional layers) that tries to identify the real patches. The 
spectral-spatial features can be extracted from the discriminator when 
the network reaches the Nash equilibrium. 

Capsule network (CapsNet) (Zhu et al., 2019): To deal with the 
problem of CNNs, i.e., the 2D convolutions in the same layer are irrel
evant, this network uses capsule layers to mine the correlation between 
channels, and simultaneously learn the spatial-channel features. 

Three-dimensional convolutional neural network (3D-CNN) (Chen 
et al., 2016): This model utilizes two 3D convolutional layers to hier
archically mine the local spectral-spatial correlation of each HSI patch. 

Three-dimensional fully convolutional neural network (3D-FCN) 
(Zou et al., 2020): This semantic segmentation network concatenates 
four 3D (i.e., spectral-spatial) and five 1D (i.e., spectral) fully convolu
tional layers (with a spatial stride of 1) to explore the spectral-spatial 
features for each HSI pixel. 

4. Experiments on single OHS images 

4.1. Experimental settings 

From the perspective of pattern recognition, a classifier would expect 
that the training data and the test data have the same feature distribu
tion. In this section, we evaluate the representative deep learning 
methods under this condition. To meet this condition, the experiments 
were independently conducted on each OHS image. 

All the experiments were implemented on a hardware environment 
with an Inter(R) Core(TM) i9-9900X processor and an NVIDIA GeForce 
RTX 2080Ti GPU with 12 GB memory. For each network, the learning 
rate was exponentially decayed when the validation loss did not reduce 
during the training stage, and the batch size was set to 100. The other 

Table 4 
The hierarchical classification system and the intra-class diversity of the WHU- 
OHS dataset.  

Major 
class 

Class Description ICD 

Farmland  Land where crops are grown, 
including beaches and shore land that 
has been cultivated for more than 
three years.   

Paddy field Arable land with guaranteed water 
source and irrigation facilities, 
including arable land where rice and 
dryland crops are rotated.  

0.6182  

Dry farm Cultivated land without man-made 
water sources, including irrigated dry 
planting, vegetable fields, and fallow 
fields.  

0.4555 

Forest  Forestry land, including growing 
trees, shrubs, trees, bamboo, and 
coastal mangrove land.   

Woodland Forest land with crown density > 30 
%.  

0.4452  

Shrubbery Coppice land and shrubland with 
crown density > 30 % and canopy <
2 m.  

0.5865  

Sparse woodland Forest land with crown density of 
10–30 %.  

0.4819  

Other forest land Slash, nurseries, and garden plots, 
such as orchards, mulberry gardens, 
and tea plantations.  

0.3350 

Grassland  Dominated by herbaceous annuals.   
High-covered 
grassland 

Herbaceous area with sufficient soil 
moisture. Coverage > 50 %.  

0.3706  

Medium- covered 
grassland 

Herbaceous area with insufficient 
moisture. Coverage: 20–50 %.  

0.4844  

Low-covered 
grassland 

Sparse natural herbaceous area with 
insufficient moisture. Coverage: 5–20 
%.  

0.5779 

Water 
body  

Natural inland water bodies.   

River/canal Natural rivers or artificially excavated 
canals (including embankments).  

0.5453  

Lake Natural waterlogged areas below the 
perennial water level.  

0.9947  

Reservoir/pond Land below the perennial water level 
in artificially constructed water 
storage areas.  

0.5042  

Beach land The tidal immersion zone between the 
high tide level and the low tide level 
of the coastal spring tide.  

1.0326  

Shoal natural submerged ridge, bank, or bar 
that consists of, or is covered by, sand 
or other unconsolidated material and 
rises from the bed of a body of water 
to near the surface  

0.4102 

Built-up 
land  

Human settlement land, industrial 
and mining land, and transportation 
land.   

Urban built-up Built-up in urban areas.  0.4005  
Rural settlement Human settlements in rural areas.  0.2769  
Other 
construction land 

Factories and mines, large-scale 
industrial districts, quarries, oil- 
fields, and transportation facilities.  

0.3489 

Unused 
land  

Unused land, and land that is difficult 
to use.   

Sand Desert and other sandy land. 
Vegetation coverage < 5 %.  

0.5730  

Gobi Surface mainly composed of crushed 
gravel. Vegetation coverage < 5 %.  

1.3903  

Saline/alkali soil The accumulation of saline/alkali 
soil, with sparse saline-tolerant 
plants.  

0.5480  

Marshland District characterized by marshes, 
swamps, bogs, or the like.  

0.6444  

Bare land Dominated by soil, vegetation 
coverage < 5 %.  

0.5023  

Bare rock Rock or gravel cover > 5 %.  0.6818 
Ocean  Marine area.  1.5408  

Class-wise average ICD 0.6145  
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hyper-parameters for each network are listed in Table 6. 

4.2. Experimental results 

The “Num. of images” in Table 7 indicates the numbers of OHS im
ages that include the corresponding category. In Table 7, the class-wise 
performance is reported via the average of the F1-score (i.e., the geo
metric average of the producer’s accuracy and user’s accuracy), based 
on the 42 OHS images. In this table, the best and second-best results are 
highlighted with bold and underlined, respectively. 

We first focus on the class-wise characteristics. On average, each 
image contains 13 classes, which is comparable to the existing datasets 
(Table 2). Except for a few categories (e.g., beach land, ocean, Gobi, and 
saline/alkali soil), most of the land-cover categories are widely distrib
uted in the 42 OHS images. In view of the class-wise accuracies of the 
two spectral-only networks, the ocean, lake, and sand categories have 
desirable F1-scores, which is mainly due to their distinctive spectral 
characteristics. With the aid of spatial information, the performances for 
all the classes, except ocean, are improved, and the built-up and bare 
land classes can also achieve a desirable accuracy (i.e., all the F1-scores 
are >0.7). 

We then compare the representative deep learning methods. The 
spectral-spatial networks are far superior to the spectral-only networks, 
and the 3D-FCN model achieves the best results. For the spectral-only 
networks, i.e., the 1D-CNN and GRU models, the former learns the 
local band-to-band variability with two 1D convolutional layers, and the 
latter simultaneously extracts the local spectral variability and the 
global spectral correlation through recurrent layers. 

When analyzing the five spectral-spatial networks, the 2D-CNN 
model obtains the worst performance, even though it has the most pa
rameters. The 3D-CNN model outperforms the 2D-CNN model by 5.4 % 
in the class average F1-score (CF1). This can be attributed to the fact that 
the 3D-CNN model considers the intrinsic tensor data structure of HSI 
data, while the spatial domain in the 2D-CNN model is flattened to one 
dimension. CapsNet uses a “capsule operator” to preserve the hierar
chical relationships between the 2D convolutional filters, and achieves a 
CF1 increment of 4.8 %. The HSI-GAN model achieves a CF1 increment 
of 3.9 %, courtesy of the generator used to simulate the HSI signals. The 
HSI-GAN and CapsNet models show comparable performances, whereas 
the 3D-FCN and 3D-CNN models achieve superior accuracies. The 3D- 
FCN model obtains the best results, overall, due to its deeper network 
layers and the concatenation of the spectral-spatial features extracted by 

the 3D convolutional layers and the spectral features extracted by the 1D 
convolutional layers. 

In the following, we compare the existing hyperspectral datasets and 
the newly developed WHU-OHS dataset, based on these representative 
methods. As reported in the previous articles (Hu et al., 2015; Chen 
et al., 2016; Mou et al., 2017; Luo et al., 2018; Zhu et al., 2018; Zhu 
et al., 2019; Zou et al., 2020), all the representative methods applied on 
the existing datasets can reach performance levels of OA > 98 %, which 
are much higher levels than those achieved on the WHU-OHS dataset 
(Table 7). The reasons for this are summarized as follows. 

Firstly, owing to the small spatial coverage of the existing HSI 
datasets, although the training and test samples are spatially disjoint, 
it is still difficult to meet the assumption of the training and test data 
being independent. Although the simulated HSI signals of the HSI- 
GAN model and the pixel-wise procedure of the 3D-FCN model can 
be helpful for the classification task with limited training samples, 
the parameters of these two networks (i.e., HSI-GAN: 1.70 mil.; 3D- 
FCN: 2.04 mil.) are still huge, leading to a risk of model overfitting. 
Thus, the accuracy assessed by the use of the test samples in the 
existing datasets might be overestimated, as demonstrated in Zou 
et al. (2020). 
Secondly, all the existing datasets (except for the Botswana dataset) 
were obtained from airborne remote sensing platforms, and the im
aging conditions of the airborne platforms are more stable than those 
of satellite observations. That is, although both platforms observe 
real scenarios, samples in the airborne datasets are purer, due to their 
higher spatial resolution and lower signal-to-noise ratio. In contrast 
the samples in the new WHU-OHS satellite dataset are more diverse. 
Thus, the WHU-OHS dataset is much more challenging than the 
existing datasets, and the large number of samples is more appro
priate for evaluating the advanced and complex networks in a more 
fair and reasonable manner. 

5. Transfer learning experiments on OHS images 

5.1. Experimental settings 

As a real-world HSI classification task often provides a limited 
number of training samples, transfer learning, which involves applying 
information extracted from a source HSI scene to the target scene, is a 
practical technique. Considering the large sample size and the wide 

Fig. 3. Data organization of the WHU-OHS dataset.  
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Fig. 4. Samples from the WHU-OHS dataset. The top sub-image is dominated by cropland (including both paddy field and dry farmland), and several rural set
tlements are scattered in the scene. The sub-images in the middle and bottom are all located in the suburbs and contain human-dominated landscapes and natural 
objects. The middle sub-image is in a plain with a dense network of rivers, and the bottom sub-image is of a mountainous city with various woodland types. 
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geographical distribution, it is of interest to investigate the potential of 
the WHU-OHS dataset as source data for transfer learning. 

Specifically, we employed two types of source domain settings. In the 
first case (Fig. 6a), we chose eight pairs of OHS images, in which each 
pair contained one source image and one target image, which were 
spatially adjacent and had similar land-cover landscapes. In fact, the 
class-wise average ICD of each pair (see Supplementary Material II for 
more details) suggested that domain shift existed. To comprehensively 
test the transferability, the following three scenarios were adopted: 

S-I: source to target direct prediction is to train the target network 
according to the training samples from the source domain only. 

S-II: target training from scratch indicates that the network is 
randomly initialized and then trained using the samples from the target 
image. 

S-III: source pre-training and target fine-tuning indicates that the 
network is first trained by the training samples from the source image, 
and is then fine-tuned with the training samples from the paired target 
image. 

As illustrated in Fig. 6b, the second experimental setting was on the 
basis of all 42 OHS images. These images were divided into two parts: 
the eight target images used in the first experiment were still considered 
to be the targets, and the other 34 images were used for the pre-training. 
Please note that, in order to fairly compare the results of the first and 
second experiments, the network was pre-trained with all 34 source 
images and tested on each of the eight target images. This experimental 
setting was aimed at testing whether large-scale pre-training can boost 
the classification accuracy for the target domain. The following three 
test scenarios were designed: 

M-I: represents the direct prediction of the target image by the 
network trained with only the samples of the 34 source images. 

M-II: the same as S-II. 
M-III: indicates that the network was pre-trained by the samples 

from the 34 source images and then further fine-tuned by the samples 
from the target image. 

Considering the performance and the complexity of the seven deep 
networks mentioned above, we chose the 3D-CNN and 3D-FCN models 
in these experiments. During the pre-training and fine-tuning phase of 
each network, the learning rate was exponentially decayed when the 
validation loss did not reduce during the training stage, and the batch 
size was set to 100. The hyper-parameters for each network are listed in 
Table 8. As scenario II (including both S-II and M-II) is actually the 
initialization of scenario III, the hyper-parameters for the pre-training of 
scenario III and the training of scenario II were the same. The training 
and test data for these images were the same as those in Section 4. 

5.2. Experimental results 

Generally speaking, as seen in Table 9, the CF1 values of all the direct 
predictions are lower than those of training from scratch, even though 
the source and target images were collected from the same HSI sensor (i. 
e., OHS). This indicates that the imaging differences severely limit the 
generalization ability of the deep learning networks, and the knowledge 
from the target image is still essential for model transfer. In the case of 
the 3D-CNN model, with the pre-learned features, most of the fine-tuned 
networks achieve higher CF1 scores, and the increments increase with 
the number of source training samples. The 3D-FCN model is inferior to 
the 3D-CNN model in scenario I, indicating the better generalization 
ability of the latter. Meanwhile, the 3D-FCN model obtains a higher CF1 
score in scenario II, suggesting that the 3D-FCN model depends more on 
the information from the local image scene, due to its extra 1D spectral 
convolutional branch. When we focus on scenario III, it is clear that the 
benefits of a large-scale dataset are more significant for the 3D-CNN 
model. 

For the class-wise accuracy, in scenario I, the two farmland classes, 
low-covered grassland, and the three built-up classes show a desirable 
generalization ability, indicating the potential for the related thematic 
mapping tasks. However, by observing the performance difference be
tween scenarios I and II for ocean, lake, sand, and bare land, the samples 
of these categories in the target domain are essential, and the imaging 
difference severely restricts the model generalization. 

From the CF1 accuracy, it can also be seen that the results for sce
nario II are better than those for scenario I, in most cases. Considering 
the accuracy difference between scenarios II and III, the 3D-CNN and 
3D-FCN models achieve 86 and 57 positive transfers (i.e., accuracy of III 
> accuracy of II) in the 100 class transfers (Table 8), respectively. This 
infers that, in most cases, the information (i.e., samples) from the source 
images is beneficial for improving the classification of the target images. 
In particular, the results show that the 3D-CNN model has better 
transferability than the 3D-FCN model. Meanwhile, the negative transfer 
indicates that the pre-trained features may contain source domain 
biased information, which degrades the performance of the fine-tuning. 
In summary, the transfer learning experiments confirm the potential of 
pre-training features on the large-scale WHU-OHS dataset, and also 
indicate the requirement for designing more advanced transfer learning 
methods. 

6. Transfer learning from the WHU-OHS dataset to the existing 
datasets 

Considering the large differences in spectral range and resolution 
between the existing hyperspectral sensors (Table 2), whether and how 
knowledge can be transferred and applied across sensors is an important 
question. In this section, we describe the experiments conducted to 
investigate the transferability of the WHU-OHS dataset to the other 
existing and widely used hyperspectral datasets. 

6.1. Experimental settings 

Nine public and commonly used hyperspectral datasets, i.e., Indian 
Pines, Salinas, KSC, Botswana, Pavia U, Pavia C, DFC2013, DFC2018, 
and Washington DC Mall (see Table 2 for details), were tested in these 
experiments. The training and test sets of the Indian Pines and Pavia 
University datasets were downloaded from https://dase.grss-ieee.org, 
and the training and test sets of the DFC2013, DFC2018, and Wash
ington DC Mall datasets were downloaded from https://hyperspectral. 
ee.uh.edu/ and https://engineering.purdue.edu/~biehl/MultiSpec/h 
yperspectral.html, respectively. For the other five datasets, we 
randomly divided the whole ground truth into two sets, ensuring that 
the training set and test set were spatially disjoint. Please note that the 
spatial resolution of the WHU-OHS dataset is 10 m, whereas the first four 
public datasets have a spatial resolution of 20–30 m, and the other five 

Table 5 
Characteristics of the seven representative deep learning based HSI classification 
methods.   

Feature 
type 

Model Numbers of 
parameters* 

Processing 
unit 

GRU Spectral RNN 53.53 k Pixel 
1D-CNN Spectral CNN with 1D conv 62.60 k Pixel 
2D-CNN Spectral- 

spatial 
CNN with 1D and 
2D conv 

30.52 mil Patch 

HSI- 
GAN 

Spectral- 
spatial 

CNN with 2D conv 
and GAN 

1.70 mil Patch 

CapsNet Spectral- 
spatial 

Capsule layer and 
CNN with 2D conv 

104.54 k Patch 

3D-CNN Spectral- 
spatial 

CNN with 3D conv 233.59 k Patch 

3D-FCN Spectral- 
spatial 

CNN with 3D conv 2.041 mil Pixel 

*In this table, k is the abbreviation for thousand, and mil. is the abbreviation for 
million. 
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Fig. 5. Frameworks of the seven representative deep learning based HSI classification methods.  
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datasets have a very high spatial resolution of 0.5–2 m. The numbers of 
training and test samples for each dataset are presented in Table 10. 

Meanwhile, considering that these public datasets have distinct 
spectral bands and intervals, the following four scenarios were con
ducted to test the transferability from the WHU-OHS dataset to the other 
existing public HSI datasets: 

(I) Full-Random: As a baseline, the network was randomly initial
ized and trained from scratch. All the spectral bands were used in this 
approach, without additional information from the WHU-OHS dataset. 

(II) Sub-Random: Considering the large difference in spectral range 
and spatial resolution between these hyperspectral datasets, 32 bands 

were manually selected for each public dataset, based on the central 
wavelength of each spectral band of the OHS images, and the network 
was trained from scratch. The 32 sub-channels of all the spectral bands 
were used in this approach, without information transferred from the 
WHU-OHS dataset. 

(III) Sub-OHS: The network that was pre-trained on the WHU-OHS 
dataset was fine-tuned by the use of the training samples from the 32 
selected bands. 

(IV) Full-OHS: The network that was pre-trained on the WHU-OHS 
dataset was fine-tuned. All the spectral bands and additional informa
tion from the WHU-OHS dataset were used in this approach. Thus, the 

Fig. 5. (continued). 
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initial networks for fine-tuning were composed of the parameters pre- 
trained by the WHU-OHS dataset and other random initialization 
parameters. 

The 3D-CNN and 3D-FCN models were chosen in these experiments, 
with the OA, Kappa, and CF1 scores used for the evaluation. Considering 
the large training sample sets of the Pavia C and DFC2018 datasets, the 
epochs for these two datasets were set to 50, and for the other seven 
datasets, the epochs were set to 200 and 100 for the 3D-CNN and 3D- 
FCN models, respectively. For each public dataset, stochastic gradient 
descent (SGD) was employed as the optimizer for the 3D-CNN model, 
with a learning rate of 0.001 and a batch size of 100. The Adam opti
mizer was used with the 3D-FCN model, with a learning rate of 0. 0001 
and a batch size of 100. 

6.2. Experimental results 

It is clear from Fig. 7 that, for the 3D-CNN model, the Full-OHS 
scenario is superior to the other three scenarios on eight datasets 
(except for Salinas), in terms of OA, Kappa, and particularly CF1. For the 
3D-FCN model, Sub-OHS performs better than Sub-Random on eight 
datasets (except for Washington DC Mall), and Full-OHS outperforms 

Table 6 
Hyper-parameters used to train each deep network on single OHS images.  

Network Initial learning rate Optimizer Num. of 
epochs 

1D-CNN 0.001 Adam 20 
GRU 0.001 Adam 20 
2D-CNN 0.1 Stochastic gradient descent 

(SGD) 
40 

HIS- 
GAN 

Generator: 0.00002 
Discriminator: 
0.0002 

Generator: Adam 
Discriminator: SGD 

100 

CapsNet 0.001 Adam 35 
3D-CNN 0.01 SGD 40 
3D-FCN 0.001 Adam 45  

Table 7 
Average accuracy of the seven representative methods for the 42 OHS images.  

Class name Num. of images 1DCNN GRU 2D-CNN HSI-GAN 3D-CNN Capsule 3D-FCN 

Paddy field 25  0.572  0.573  0.624  0.654  0.701  0.679  0.713 
Dry farm 35  0.584  0.583  0.602  0.634  0.680  0.670  0.679 
Woodland 35  0.635  0.633  0.659  0.703  0.718  0.713  0.747 
Shrubbery 20  0.340  0.382  0.452  0.461  0.494  0.432  0.551 
Sparse woodland 20  0.263  0.284  0.326  0.363  0.367  0.390  0.419 
Other forest land 30  0.285  0.294  0.340  0.402  0.418  0.421  0.466 
High-covered grassland 36  0.327  0.338  0.405  0.425  0.430  0.459  0.561 
Medium-covered grassland 26  0.342  0.338  0.395  0.442  0.426  0.442  0.513 
Low-covered grassland 19  0.442  0.447  0.490  0.530  0.574  0.566  0.599 
River/canal 36  0.579  0.586  0.624  0.702  0.693  0.667  0.687 
Lake 19  0.832  0.819  0.851  0.866  0.894  0.852  0.893 
Reservoir/pond 35  0.672  0.672  0.694  0.728  0.739  0.748  0.774 
Beach land 4  0.562  0.620  0.610  0.629  0.666  0.600  0.678 
Shoal 28  0.398  0.398  0.476  0.534  0.550  0.505  0.649 
Urban built-up 39  0.649  0.645  0.702  0.760  0.784  0.789  0.792 
Rural settlement 40  0.453  0.455  0.484  0.545  0.616  0.593  0.594 
Other construction land 40  0.462  0.467  0.493  0.548  0.624  0.587  0.600 
Sand 5  0.715  0.719  0.759  0.759  0.803  0.794  0.831 
Gobi 3  0.579  0.572  0.663  0.716  0.502  0.695  0.732 
Saline/alkali soil 5  0.563  0.544  0.582  0.655  0.615  0.649  0.662 
Marshland 16  0.542  0.551  0.630  0.684  0.677  0.688  0.752 
Bare land 16  0.642  0.629  0.715  0.741  0.787  0.713  0.778 
Bare rock 16  0.509  0.516  0.631  0.674  0.728  0.703  0.779 
Ocean 4  0.960  0.959  0.949  0.949  0.965  0.962  0.948 
Class average F1-score (CF1) 0.538  0.543  0.590  0.629  0.644  0.638  0.683  

Fig. 6. The two types of source domain settings in the transfer learning experiments: (a) the first experimental setting (single source, involving S-I, S-II, and S-III); 
and (b) the second setting (multiple sources, involving M-I, M-II, and M-III). 
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Full-Random on five datasets (but not Pavia C, KSC, DFC 2013, and DFC 
2018). Please note that, for the cases of the exceptions, the accuracy 
degradation is marginal, but in the cases of the positive examples, the 
accuracy gains obtained from the WHU-OHS pre-training are significant. 
In particular, although the spatial resolution of the WHU-OHS dataset is 
10 m, it is able to bring an accuracy increment for both the middle- 
resolution datasets (i.e., 20–30 m) and the high-resolution datasets (i. 
e., meter/sub-meter). 

Furthermore, the training loss and the training accuracy curves are 
presented in Fig. 8 to analyze the gains obtained with pre-training on the 
WHU-OHS dataset. In the case of the 3D-CNN model, with the assistance 
of the WHU-OHS dataset, the Sub-OHS scenario achieves both better and 
faster convergence. In the case of the 3D-FCN model, the curves for the 
Sub-OHS scenario are inferior, even though the classification accuracy 
for the Sub-OHS scenario is superior. This can possibly be attributed to 
the over-parameterization of the networks. Specifically, the training 
sample size for the Indian Pines, Pavia U, and DFC2013 datasets was 
4457, 2381, and 2253, respectively, and the parameter size for the 3D- 
CNN and 3D-FCN models was 233.59 k and 2.041 mil., respectively. 
Thus, the 3D-FCN model may suffer more from model overfitting than 
the 3D-CNN model, while the overfitting of the 3D-FCN model can be 

effectively relieved courtesy of the pre-training on the WHU-OHS 
dataset. In summary, it can be concluded that the proposed WHU-OHS 
dataset can make a positive contribution when classifying the existing 
HSI datasets. 

7. Discussion: The use of the WHU-OHS dataset in future work 

A direct use of the WHU-OHS dataset will be as an HSI classification 
benchmark, for developing and testing new algorithms. Future HSI 
classification networks will be able to go deeper with more complicated 
but flexible modules (e.g., the 3D swin transformer (Liu et al., 2022) and 
non-local blocks (Zhu et al., 2021)) and architectures (Wang et al., 
2020). With this large-scale hyperspectral dataset, researchers should be 
able to design a backbone specifically for HSI classification. 

From the results of the transferability testing, it was confirmed that 
the WHU-OHS dataset can be used for pre-training, and the knowledge 
can be transferred to other hyperspectral datasets. Moreover, in this 
study, the band selection during the transfer can be regarded as a 
“prompt processing” (Ben-David et al., 2021), which reformulates and 
adapts the downstream task according to the upstream task. In this 
context, the downstream task is classification of a certain specific 
hyperspectral dataset, and the upstream task is pre-training on the 
WHU-OHS dataset. The new “prompt-based learning” paradigm, as well 
as self-supervised learning (Chen et al., 2020), is becoming a research 

Table 8 
Hyper-parameters used in the experimental settings described in Section 5.  

Deep 
network 

Phase Initial learning 
rate 

Optimizer Num. of 
epochs 

3D-CNN S-III: fine- 
tune  

0.01 SGD 40 

M-III: pre- 
train  

0.0001 SGD 40 

M-III: fine- 
tune  

0.0001 SGD 40 

3D-FCN S-III: fine- 
tune  

0.001 Adam 45 

M-III: pre- 
train  

0.000001 Adam 20 

M-III: fine- 
tune  

0.000001 Adam 45  

Table 9 
Direct prediction (I), training from scratch (II), and fine-tuning (III) on eight target images by the use of single (S) and multiple (M) source OHS images.  

Network 3D-CNN 3D-FCN 

Class name Num. of target images S-I M-I S-II S-III M-III S-I M-I S-II S-III M-III 

Paddy field 5 0.354 0.443 0.711 0.721 0.726 0.333 0.253 0.690 0.684 0.684 
Dry farm 4 0.307 0.384 0.729 0.747 0.750 0.234 0.278 0.692 0.715 0.689 
Woodland 7 0.382 0.516 0.666 0.678 0.685 0.277 0.547 0.675 0.686 0.680 
Shrubbery 2 0.000 0.114 0.169 0.187 0.178 0.000 0.002 0.167 0.182 0.172 
Sparse woodland 3 0.001 0.021 0.187 0.224 0.209 0.001 0.139 0.192 0.205 0.193 
Other forest land 6 0.053 0.077 0.240 0.221 0.239 0.006 0.029 0.244 0.251 0.248 
High-covered grassland 7 0.016 0.098 0.182 0.269 0.251 0.001 0.113 0.330 0.291 0.314 
Medium-covered grassland 3 0.042 0.193 0.409 0.579 0.591 0.025 0.309 0.499 0.519 0.512 
Low-covered grassland 2 0.294 0.055 0.733 0.665 0.667 0.236 0.082 0.584 0.555 0.579 
River/canal 7 0.218 0.627 0.864 0.883 0.896 0.194 0.451 0.827 0.809 0.819 
Lake 2 0.079 0.250 0.967 0.957 0.960 0.067 0.558 0.978 0.974 0.979 
Reservoir/pond 8 0.134 0.360 0.585 0.609 0.639 0.093 0.283 0.694 0.702 0.703 
Beach land 1 0.000 0.000 0.556 0.605 0.550 0.000 0.002 0.577 0.552 0.641 
Shoal 5 0.053 0.009 0.589 0.635 0.628 0.009 0.009 0.667 0.667 0.676 
Urban built-up 8 0.329 0.588 0.836 0.825 0.819 0.182 0.418 0.800 0.794 0.797 
Rural settlement 7 0.243 0.334 0.574 0.625 0.627 0.201 0.247 0.527 0.524 0.508 
Other construction land 8 0.336 0.449 0.724 0.664 0.659 0.180 0.370 0.648 0.645 0.639 
Gobi 1 0.051 0.000 0.113 0.836 0.846 0.031 0.000 0.792 0.835 0.809 
Saline/alkali soil 1 0.000 0.000 0.833 0.859 0.883 0.000 0.002 0.726 0.800 0.783 
Marshland 6 0.000 0.000 0.675 0.733 0.770 0.000 0.000 0.771 0.743 0.777 
Bare land 4 0.001 0.001 0.729 0.699 0.728 0.000 0.000 0.595 0.657 0.610 
Bare rock 2 0.050 0.004 0.580 0.701 0.696 0.041 0.002 0.858 0.865 0.849 
Ocean 1 0.000 0.024 0.953 0.955 0.977 0.000 0.228 0.921 0.937 0.932 
Class average F1-score (CF1) 0.170 0.280 0.601 0.629 0.635 0.118 0.235 0.619 0.619 0.619 

* 
∑

Num. of target images = 100. The CF1 accuracy in the table indicates the average for the 100 classes. 
MII is the same as S-II. 
For each accuracy metric, the best and second-best results are highlighted in bold and underlined, respectively. 

Table 10 
Sample sizes for the nine public hyperspectral datasets.  

Existing dataset Number of training samples Number of test samples 

Indian Pines 4457 4384 
Pavia U 2381 36,825 
Salinas 13,916 35,711 
Pavia C 46,243 93,028 
KSC 1524 3299 
Botswana 1248 1824 
DFC2013 2533 12,074 
DFC2018 219,397 248,407 
Washington DC Mall 672 19,159  

J. Li et al.                                                                                                                                                                                                                                         



International Journal of Applied Earth Observation and Geoinformation 113 (2022) 103022

14

Fig. 7. Accuracy assessment on the nine public hyperspectral datasets: (a) 3D-CNN, (b) 3D-FCN. Each set of columns illustrates the results obtained on one public 
hyperspectral dataset. The blue, red, green, and orange columns refer to the quantitative evaluation of the Sub-Random, Full-Random, Sub-OHS, and Full-OHS 
scenarios, respectively. The OA, Kappa, and CF1 values are presented from left to right. 
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hotspot in the field of natural image processing. The WHU-OHS dataset 
should be an appropriate dataset for testing these new learning para
digms in HSI processing. 

Considering the wide spatial distribution, large spatial coverage, 
diverse geographical landscapes, and the widely used LULC classifica
tion system, the WHU-OHS represents an interesting and promising 
large-scale hyperspectral dataset for pre-training, training, validation, 
and testing. 

8. Conclusion 

With the wide spatial distribution and large spatial coverage, the 
WHU-OHS dataset represents the largest HSI classification dataset to 
date. According to the comprehensive experiments conducted in this 
study, it was confirmed that the WHU-OHS dataset is much more chal
lenging than the existing hyperspectral datasets, due to its large data 
volume, wide geophysical distribution, and large sample size. In terms of 
the transferability testing, it was found that the large-scale dataset 
contains diverse imaging conditions and geographical landscapes, and 
hence overcomes the limitations of the imaging differences between 
various sensors and study areas, to some extent. Thus, the WHU-OHS 
dataset represents a challenging data benchmark for hyperspectral 
image classification, especially in the era of deep learning. Moreover, 
the open-access PyTorch toolbox with seven representative deep neural 
networks for large-scale HSI image classification will also be beneficial 
to the development of this field. 
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