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Abstract—In this paper, we propose a joint collaborative rep-
resentation (CR) classification method with multitask learning
for hyperspectral imagery. The proposed approach consists of
the following aspects. First, several complementary features are
extracted from the hyperspectral image. We next apply these
features into the unified multitask-learning-based CR framework
to acquire a representation vector and adaptive weight for each
feature. Finally, the contextual neighborhood information of the
image is incorporated into each feature to further improve the
classification performance. The experimental results suggest that
the proposed algorithm obtains a competitive performance and
outperforms other state-of-the-art regression-based classifiers and
the classical support vector machine classifier.

Index Terms—Classification, hyperspectral imagery (HSI), joint
collaborative representation (CR) model, multitask learning,
sparse representation.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI), spanning the visible
to the infrared spectrum with a high spectral resolution,

provides fine spectral differences between various materials of
interest, thus supporting improved target detection and classifi-
cation capabilities, relative to multispectral images [1], [2]. In
the hyperspectral supervised classification case, the class label
of each pixel, denoted by a vector whose entries correspond
to the narrow spectral band responses, is determined by a given
training set from each class [3]–[6]. The support vector machine
(SVM) [7]–[11], a supervised learning method that generates
input–output mapping functions from a set of labeled train-
ing data, is a powerful HSI classifier [12]–[15]. Melgani and
Bruzzone [12] assessed the potential of the SVM classifier in
the hyperdimensional feature spaces, with a pleasing classifica-
tion performance. Fauvel et al. [13] incorporated spatial infor-
mation into the spectral-only SVM classifier by the fusion of the
morphological information and the original hyperspectral data.
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Pal and Foody [14] noted that feature selection could be
a valuable preprocessing operation for the SVM classifica-
tion method. Tarabalka et al. [15] presented an accurate
spectral–spatial-based probabilistic SVM pixelwise method
by adding the use of a Markov random field regularization.
Recently, the collaborative representation (CR) mechanism
[16], which approximates the unlabeled pixel as a linear com-
bination of all of the training samples, has also played an
important role in HSI classification [17]–[19].

In recent years, it has become common to design a classi-
fier which combines multiple features (e.g., spectral, texture,
and shape) to improve the classification accuracy for HSI
[20], [21]. The idea behind this is that one single feature can
only depict the hyperspectral image from one perspective, and
it is obvious that none of the common feature descriptors will
have the same discriminative power for all classes [22]. To
effectively characterize hyperspectral data, it is natural to com-
bine several complementary feature descriptions to represent
a pixel’s information more fully. Zhang et al. [23] introduced
a patch alignment framework to linearly combine multiple
features and obtain a unified low-dimensional representation of
these multiple features for the subsequent SVM classification.
Jimenez et al. [24] focused on the different influences of var-
ious linear unsupervised feature extraction methods for high-
dimensional data classification. Zheng et al. [25] applied the
multitask joint sparse representation classification (MTJSRC)
proposed in [26] with spatial filtering postprocessing into large-
scale satellite image annotation and obtained excellent results.

In HSI, neighboring pixels usually consist of similar mate-
rials (i.e., highly spectrally correlated pixels), which can be
used in the classification procedure to support the analysis
performance [13], [15]. Waqas et al. [27] pruned the over-
complete dictionary to an automatically chosen optimal nearest
basis with the assumption of locally linear embedding to steady
the performance of the CR-based classifier. Chen et al. [17]
proposed a joint sparse representation classification method
(JSRC) based on the joint sparsity model (JSM) [28] with
neighborhood pixel information to support HSI classification.

In view of this, we combine multiple features and the
spatial neighborhood information into a unified framework
and propose a joint CR classification method with multitask
learning (JCRC-MTL) for HSI. The contributions of this pa-
per are twofold. First, multiple features are integrated via a
unified multitask learning approach to complement each other
for pixel recognition. Second, the neighborhood pixels around
the unlabeled pixel are constructed as a joint signal set and
are integrated in the multitask joint CR framework to utilize
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the neighborhood information. The proposed method aims at
enhancing the discrimination of hyperspectral pixels by com-
bining the complementary information of different features in a
multitask learning fusion to achieve an improved classification
result. Experiments on several hyperspectral images validated
the effectiveness of the proposed JCRC-MTL algorithm.

We next discuss the relationship between the proposed
JCRC-MTL classification method and the other CR-related
methods. By stacking the training samples from all of the
classes simultaneously to construct the overcomplete dictio-
nary, it is assumed that every pixel belongs to one of these
classes and it will be located in some low-dimensional subspace
of the feature spaces spanned by the dictionary. In view of this,
Wright et al. [29] first applied sparse representation with an
�1-norm regularization to the pattern recognition task and suc-
cessfully explored the discriminative ability of the sparse coef-
ficient vector. Some further studies based on this work have also
been developed. Under the assumption of the JSM, Chen et al.
[17] utilized the contextual information and constrained the rep-
resentation coefficient of the joint signal matrix constructed by
stacking the neighborhood pixels around the central unlabeled
one and itself with the row-sparse �row,0-norm, which denotes
the number of nonzero rows of the variable, to achieve a better
classification result. Yuan et al. [26] and Zheng et al. [25]
both realized the complementary nature of multiple features
and built multitask joint sparse representation models which
exploit the invariant similarities between various features. It
has been observed that the algorithms mentioned previously
can achieve a better classification result than the classical SRC
[29]. Although reaching an improved recognition rate, it is
still a factor that the sparsity constraint with �1-norm is time-
consuming. In recent years, Zhang et al. [16] further revealed
that it is not necessary to regularize the sparse coefficient α
by the computationally expensive �1-norm regularization when
the feature dimension is high enough. They pointed out that it
is the CR, which represents the test pixel collaboratively with
training samples from all of the classes, rather than the sparsity
constraint, that determines the performance of the algorithm. In
the representation stage, the CR classification via regularized
least squares (referred to as CRC in this paper) used in [16] just
takes the �2-norm instead of the �1-norm.

With the contextual prior, we propose a joint CR model for
HSI classification, which is similar to the JSM but with much
less computational complexity [30]. In this way, the CRC can be
considered as a special case of JCRC, with only one pixel in the
joint signal input. Moreover, Yang et al. [31] investigated
the distinctiveness and similarity of the different features in
the multiple feature model in the CR-based framework and
achieved a state-of-the-art performance. Since these priors, as
well as the sparsity constraint, have been shown to perform
well, we integrate the aforementioned techniques and use the
multiple features and contextual neighborhood information to
further improve the classification performance.

The rest of this paper is organized as follows. Section II
briefly reviews the related works. Section III proposes the joint
CR classification method with multitask learning (JCRC-MTL)
for HSI. The experimental results of the proposed algorithm are
given in Section IV. Finally, Section V concludes this paper.

II. CR WITH MULTIPLE FEATURES FOR HSI

In this section, we first introduce four typical image features
for HSI and then introduce a CR classification method that
integrates the four features with a weighted multitask learning
method.

A. Multiple Feature Extraction

In the proposed algorithm, four image features are utilized.
Each feature of a pixel is represented as a single vector. The
four features comprise the spectral value feature, the spectral
gradient feature, the Gabor texture feature, and the differential
morphological profile (DMP). Examples of these four features
extracted from a Reflective Optics System Imaging Spectrome-
ter (ROSIS) image over Pavia city, Italy, are illustrated in Fig. 1.

1) Spectral Value Feature: The spectral feature of a hyper-
spectral pixel is acquired by arranging the digital number (DN)
of all of the l bands

sSpectral = [s1, s2, . . . si, . . . , sl]
′ ∈ R

l (1)

where si denotes the DN in band i.
2) Spectral Gradient Feature: The spectral gradient is a sur-

face reflectance descriptor which is invariant to scene geometry
and incident illumination [33]. This feature encodes the infor-
mation at discrete spectral locations about how fast the surface
albedo changes as the spectrum changes. The spectral gradient
feature of a hyperspectral pixel is calculated as follows:

sGradient = [g1, g2, . . . , gi−1, . . . , gl−1]
′

= [s2 − s1, s3 − s2, . . . , si

− si−1, . . . , sl − sl−1]
′ ∈ R

l−1 (2)

where si denotes the spectral value of band i and gi−1 is the
i− 1th entry of the gradient vector.

3) Gabor Texture Feature: The Gabor wavelet filter [34],
whose impulse response is defined by a Gaussian envelope
and a complex plane wave, has been widely used in HSI
analysis [35], [36]. In this paper, we perform a 2-D Gabor
wavelet transform corresponding to the orientation and scale of
the physical structures on the first principal component (PC),
denoted as I of the hyperspectral image [32], to extract the
Gabor texture feature.

The generalized 2-D Gabor function can be defined as [23]

Gs,d(x, y) = Gῡ(x̄) =
‖ῡ‖
δ2

· e−
‖ῡ‖2·‖x̄‖2

2δ2 ·
[
ei·ῡ·x̄ − e−

δ2

2

]

(3)

where x̄ = (x, y) is the spatial domain variable and the fre-
quency vector ῡ(s,d) = (π/2fs) · ei(πd/8), in which f = 2,
s = 0, 1, . . . , 4 and d = 0, 1, . . . , 11, which determines the
5 scales and the 12 directions of the Gabor function. The num-
ber of oscillations under the Gaussian envelope is determined
by δ = 2π. The Gabor texture feature contains the magnitude
information in the first PC I with the Gabor function of the
specific scale parameter s and direction parameter d

Fs,d(x, y) = Gs,d(x, y) ∗ I(x, y). (4)
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Fig. 1. Some bands of the four features of a ROSIS image over Pavia city, Italy. First row: the spectral value feature images in spectral bands 3, 36, 78, and 102.
Second row: the spectral gradient feature images in dimensions 20, 45, 74, and 88. Third row: the Gabor texture feature images in dimensions 2, 26, 40, and 52
extracted from the first PC of the hyperspectral image [32]. Bottom row: the DMP shape feature in dimensions 1, 3, 13, and 19 extracted from the first PC of the
hyperspectral image.

The texture feature of a pixel located on (x, y) is obtained by

sTexture = [F1,1(x, y), . . . , Fs,d(x, y)]
′ ∈ R

60

sTexture = [F1,1(x, y), . . . , Fs,d(x, y)]
′ ∈ R

60. (5)

4) DMP: Shape Feature: Morphological profiles (MPs)
[37], performing a series of morphological openings and clos-
ings with a family of structuring elements (SEs) of increasing
size, can create an image feature set with effective discrim-
inative ability. The opening and closing operators are basic
dual morphological operators and enable us to keep the overall
feature structure relatively undisturbed. In this paper, we use
a reconstruction filter, which has been proved to have a better
shape preservation ability than the classical morphological
filters [38]. We extract the DMP feature on the first three PCs
of the hyperspectral image [21].

Let γSE(I) and φSE(I) be the morphological opening and
closing by reconstruction with the SEs for grayscale image I .
sMP is defined using a series of SEs with increasing sizes on I

sMPγ
=

{
sMPλ

γ
(I) = γλ(I), ∀λ ∈ [0, n]

}

sMPφ
=

{
sMPλ

φ
(I) = φλ(I), ∀λ ∈ [0, n]

}

with γ0(I) = φ0(I) = I (6)

where λ = 1, . . . , 10 represents the radius of the disk-shaped
SEs. Subsequently, sDMP’s are defined as vectors where the

measures of the slopes of sMP are stored for each step of an
increasing SE series

sDMPγ
=

{
sDMPλ

γ
(I) =

∣∣∣sMPλ
γ
(I1)− sMPλ−1

γ
(I)

∣∣∣

∀λ ∈ [1, n]
}

sDMPφ
=

{
sDMPλ

φ
(I) =

∣∣∣sMPλ
φ
(I1)− sMPλ−1

φ
(I)

∣∣∣

∀λ ∈ [1, n]
}
. (7)

In the proposed scheme, sDMPγ
and sDMPφ

are concatenated
into a sDMP vector in order to represent both the bright and
dark features of an image. Finally, the features extracted from
the first few PCs are stacked to represent the shape feature

s1,DMP =
{
s′DMPγ

, s′DMPφ

}

sDMP =
[
s′1,DMP, s

′
2,DMP, s

′
3,DMP

]′ ∈ R
60. (8)

B. CR Classification With Multitask Learning (CRC-MTL)
for HSI

As mentioned previously, the spectral value and spectral
gradient features reflect the characteristics of each pixel via
the spectral reflectance and derivative reflectance, the Gabor
texture feature can enhance the detailed edge information, and
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the DMP feature focuses on the local contrast in a spatial
window. In this way, each feature describes the hyperspectral
scene from a single perspective and therefore cannot contain
all of the discriminative information. In addition, it is widely
acknowledged that to extract one optimal feature for all of
the classes is not realistic. Therefore, instead of using a single
feature for all classes, a better way is to combine the multiple
complementary features in the image analysis [22].

Recently, based on the CR mechanism, Yang et al. [31]
extended the traditional CR-based classification (CRC) method
to the multiple feature case with a multitask learning approach
(referred to as the relaxed CR model in [31]). They built the
corresponding dictionary for each feature and explored the
representation coefficients of the different features over their
associated dictionaries for the subsequent recognition task.
This approach exploits the similarity and distinctiveness of
different features over the unlabeled pixel and gives a pleasing
performance in face recognition [29]. In this section, we de-
scribe the corresponding classification procedure with multiple
meaningful features, as applied to HSI.

We first review the CR model (CRM) [29], [30], [39] with
a single feature (e.g., the spectral value feature). Supposing
that we have M distinct classes, for the single feature denoted
as k with lk dimensions, we set Ak

i ∈ R
lk×Nii = 1, . . . ,M

as the ith subdictionary whose columns are the Ni training
samples from the ith class and N =

∑
i Ni. The collaborative

dictionary Ak, which is made up of all of the subdictionaries
{Ak

i }i=1,...,M , maps each hyperspectral pixel into a high-
dimensional space corresponding to the dictionary. The CR
model of the unlabeled pixel sp can be expressed as

sk =
[
Ak

1α
k
1 . . .A

k
iα

k
i . . .A

k
Mαk

M

]
= Akαk + εk (9)

where sk represents the single feature k of the unlabeled
pixel sp, αk

i represents the coefficient subvector over the ith
subdictionary Ak

i , and εk is the random noise. As described
in [30], the CR vector contains discriminative information,
to some degree, and can be used to perform the subsequent
classification task. This is the motivation for representing the
unlabeled pixel sk as a weighted composition of dictionary Ak.
The collaborative vector αk can be easily obtained by solving
the following optimization problem:

α̂k = argmin
αk

{
‖sk −Akαk‖22 + λ‖αk‖22

}
(10)

where λ is a positive parameter to balance the data fidelity term
and the regularization term.

As for the multiple feature case, we suppose that each pixel
has K different modalities of features [31]. For the unlabeled
pixel sp, we denote sk as the kth modality of the feature to be
coded, Ak as the dictionary of the kth modality of the feature,
and αk as the coding vector of sk over Ak. One pixel described
by K features can be represented as

s1 =A1
1α

1
1 + · · ·+A1

Mα1
M + ε1 = A1α1 + ε1

...
...

sK =AK
1 αK

1 + · · ·+AK
MαK

M + εK = AKαK + εK . (11)

Since the multiple different features {sk}k=1,...,K are ex-
tracted from the different perspectives of one unlabeled
hyperspectral pixel and their corresponding subdictionaries
{Ak}k=1,...,K are constructed with the features of the same
training samples, it is reasonable that these features may share
some similarities [31]. Therefore, it can be assumed that the
representation coefficients of these features {αk}k=1,...,K over
their associated subdictionaries should be similar. On the other
hand, since different features are distinct from each other, the
representation coefficients should be diverse enough to preserve
the additional complementary information, which makes the
representation flexible.

In order to balance the similarity and the diversity of the
different features in the linear regression, regularization is
utilized to constrain the collaborative coding vector of each
feature

K∑
k=1

ωk‖αk − ᾱ‖22 (12)

where αk, k = 1, . . . ,K, is the coefficient vector of the kth
feature vector sk over the kth dictionary Ak, ᾱ is the mean
vector of all αk, and ωk is the weight assigned to the kth
feature. Here, ‖αk − ᾱ‖22 is used to reduce the variance of the
coefficient vector αk, which makes the representation stable,
and ωk is used to indicate the distinctiveness of each feature
vector sk, which can make the representation flexible. This
regularization can be incorporated into the multitask CR model
{
[α̂k, ω̂k]

}
k=1,...,K

= arg min
αk,ωk

K∑
k=1

(
‖sk−Akαk‖22+λ‖αk‖22+τωk‖αk−ᾱ‖22

)

s.t. prior{ωk} (13)

where λ and τ are regularization parameters to trade off the data
fidelity term and the two regularization terms.

Once {[α̂k, ω̂k]}k=1,...,K are obtained, we can calcu-
late the residual errors between the multiple feature signal
{sk}k=1,...,K and the approximations obtained over their cor-
responding subdictionaries {Ak}k=1,...,K , i = 1, . . . ,M

ri =
K∑

k=1

ω̂k
∥∥∥sk −Ak

i α̂
k
i

∥∥∥
2

2
(14)

where α̂k
i is the subset of the coefficient vector α̂k associated

with class i. The label of the unlabeled pixel sp is then deter-
mined by the minimal total residual

class(sp) = arg min
i=1,...,M

{ri}. (15)

III. PROPOSED FRAMEWORK

In this section, we extend the multitask CR framework by
incorporating the contextual neighborhood information of the
image and propose a joint CR classification approach with
multitask learning (JCRC-MTL) for HSI.
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Fig. 2. Schematic illustration of the joint CR classification algorithm with multitask learning. Given a hyperspectral image, multiple modalities of the features
are extracted. We construct the multitask joint signal matrices {Sk}k=1,2,3,4 for the four features, and Sk = [sk1 , s

k
2 , . . . , s

k
T ] with T columns, where T is the

spatial neighboring window size. Each matrix is represented as a linear combination of the corresponding training feature dictionary. To preserve the diversity,
the different weights of the various features are also simultaneously estimated in the linear representation procedure. Finally, the classification decision is made
according to the weighted overall reconstruction error of the individual class.

A. Joint CR Classification Method With Multitask Learning
for HSI

For the HSI case, it is usually assumed that neighboring
hyperspectral pixels will consist of similar materials. Therefore,
HSI pixels in a small spatial neighborhood are likely to be
highly correlated and share many similarities. Previous work in
[17] suggested that, by combining these contextual neighboring
pixels with the unlabeled pixel into a CR in HSI, the classifi-
cation accuracy can be significantly improved. For the case of
only the spectral value feature, these hyperspectral pixels in a
neighborhood can be simultaneously approximated by a linear
combination of the common training pixels, while the common
training pixels are assigned a different set of coefficients [17].
Similarly, for the multiple-feature case, these neighboring pix-
els can also be utilized for every feature. That is, the represen-
tation coefficients {αk

t }t=1,...,T (where T is the neighborhood
size) of any feature k (e.g., spectral value, spectral gradient,
Gabor texture, and DMP shape feature for the hyperspectral
image) in a spatial neighborhood are approximated by a col-
laborative linear combination of common atoms from the given
dictionary Ak. On the other hand, the representation coefficient
set {αk

t }t=1,...,T of each feature should be both stable and
diverse to acquire the additional complementary information
for an accurate subsequent recognition procedure. Although
the multitask CR classification with these four meaningful
features considers the spatial features, CRC-MTL utilizes the
majority pattern of all of the contextual pixels, instead of only
the unlabeled pixel, and shows a more robust performance. A
visual illustration of the classification scheme for HSI with the
proposed JCRC-MTL is shown in Fig. 2.

To illustrate the proposed model, consider two neigh-
boring hyperspectral pixels sp and sq, which consist of

similar materials. With respect to the multiple feature
dictionaries{Ak}k=1,...,K , sp can be shown as

s1p =A1
1α

1
1,p + · · ·+A1

Mα1
M,p + ε1p =

M∑
i

A1
iα

1
i,p + ε1p

...
...

...

sKp =AK
1 αK

1,p + · · ·+AK
MαK

M,p + εKp =

M∑
i

AK
i αK

i,p + εKp

(16)

where Ak
i denotes the ith low-dimensional subspace of the

feature k, αk
i,p is the corresponding coefficient subvector over

the subdictionary Ak
i , and εkp represents the random noise

associated with feature k. With the assumption that sp and sq
consist of similar materials, the pixel sq can also be approxi-
mated by a linear combination of the same dominant subspace

s1q =A1
1α

1
1,q + · · ·+A1

Mα1
M,q + ε1q =

M∑
i

A1
iα

1
i,q + ε1q

...
...

...

sKq =AK
1 αK

1,q + · · ·+AK
MαK

M,q + εKq =
M∑
i

AK
i αK

i,q + εKq .

(17)

We next simultaneously stack all of the pixels in the neigh-
borhood patch S = [s1 . . . sc . . . sT ] centered at the hyperspec-
tral pixel sc, of size T , to construct the joint signal matrix
set {Sk}k=1,...K = {[sk1sk2 . . . skT ]}k=1,...K , which contains K
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matrices sized lk × T for each neighborhood patch. Using
the joint CR model with the multitask learning procedure,
{Sk}k=1,...K can be represented by

S1 =
[
s11 . . . s

1
T

]

=

⎡
⎢⎣

(
A1

1α
1
1,1 + · · ·+A1

Mα1
M,1 + ξ11

)′
...(

A1
1α

1
1,T + · · ·+A1

Mα1
M,T + ξ1T

)′

⎤
⎥⎦
′

=A1
1

⎡
⎢⎣

(
α1

1,1

)′
...(

α1
1,T

)′

⎤
⎥⎦
′

+ · · ·+A1
M

⎡
⎢⎣

(
α1

M,1

)′
...(

α1
M,T

)′

⎤
⎥⎦
′

+Σ1

=
M∑
i

A1
iΨ

1
i +Σ1

...
...

SK =
[
sK1 . . . sKT

]

=

⎡
⎢⎣

(
AK

1 αK
1,1 + · · ·+AK

MαK
M,1 + ξK1

)′
...(

AK
1 αK

1,T + · · ·+AK
MαK

M,T + ξKT
)′

⎤
⎥⎦

′

=AK
1

⎡
⎢⎣

(
αK

1,1

)′
...(

αK
1,T

)′

⎤
⎥⎦
′

+ · · ·+AK
M

⎡
⎢⎣

(
αK

M,1

)′
...(

αK
M,T

)′

⎤
⎥⎦
′

+ΣK

=
M∑
i

AK
i ΨK

i +ΣK (18)

where {Ψk}k=1,...,K is a set of the coding coefficient
matrix associated with the corresponding feature dictionary
{Ak}k=1,...,K and {Ψk}k=1,...,K is the subset of
{Ψk}k=1,...,K over the subdictionary {Ak}k=1,...,K .
{Σk}k=1,...,K is the random noise matrix set for the
neighborhood patch. In this scheme, two constraints have
been included to make the label result reasonable. The first
constraint assumes that the coefficients of an unlabeled pixel
crossing multiple features in the proposed model should
simultaneously ensure both stability and flexibility. The
second prior considers that the hyperspectral pixels in a small
neighboring window should share the same low-dimensional
dominant subspace.

Given the training pixels, after we construct the mul-
titask dictionaries with multiple features {Ak}k=1,...,K ,
{[Ψk, ωk]}k=1,...,K can be calculated by the following joint CR
model with multitask learning:

{
[Ψ̂

k
, ω̂k]

}
k=1,...,K

=arg min
Ψk,ωk

K∑
k=1

(
‖Sk−AkΨk‖2F +λ‖Ψk‖2F +τωk‖Ψk−Ψ̄‖2F

)

s.t. prior{ωk}. (19)

Assuming that the weights {ωk} can be prelearned by using
a validation data set and can be fixed in advance, (19) can be
denoted as

{
[Ψ̂

k
]
}
k=1,...,K

= arg min
Ψk,ωk

K∑
k=1

(
‖Sk −AkΨk‖2F

+λ‖Ψk‖2F + τωk‖Ψk − Ψ̄‖2F
)

(20)

where Ψ̄ =
∑K

k=1 Ψ
k/K is the mean matrix of the coefficient

set {Ψk}k=1,...,K , λ and τ are two positive parameters, and ωk

is the weight assigned to the kth feature.
We can get a close-form solution for k = 1, . . . ,K

Ψk =Ψ0,k + τ
ωk

∑K
η=1 ω

η
PkQ

K∑
η=1

ωηΨ0,k (21)

Ψ̄ =

K∑
k=1

ωkΨk/

K∑
k=1

ωk (22)

where Pk = ((Ak)
T
Ak + I(λ+ τωk))−1, Ψ0,k =

Pk(Ak)
T
Sk, and Q = (I−

∑K
η=1 �

ηPη)
−1

for (21),

where �η = τ(ωη)2/
∑K

k=1 ω
k.

For the unlabeled pixel, once the weights {ω̂k}k=1,...,K and

the coefficient matrix set {Ψ̂k}k=1,...,K for all of the features
are obtained, the overall coding error for class i is shown as

ri =

K∑
k=1

ω̂k
∥∥∥Sk −Ak

i Ψ̂
k

i

∥∥∥
2

F
(23)

where Ψ̂
k

i is the coefficient matrix associated with feature k and
class i. The label of the unlabeled pixel sc is then determined
by the minimal total residual

class(sc) = arg min
i=1,...,M

{ri}. (24)

The computational burden for the proposed JCRC-MTL
algorithm can be shown as follows. For the kth feature, we
suppose that the size of Sk is lk × T and the size of dictionary
Ak is lk × n (where lk is the dimensionality of the kth feature,
T denotes the size of the spatial window, and n refers to
the number of training samples of the data set). When the
weight values are known, the time complexity of the closed-
form solution (21) is O(

∑K
k=1(2n

2 + n2T + nT lk)), as the

Pk(Ak)
T
Sk costs O(n2 + nT lk) and the PkQ

∑K
η=1 ω

ηΨ0,k

costs O(n2 + n2T ).

B. Final Classification Scheme of HSI

The implementation details of the proposed JCRC-MTL
algorithm for HSI are shown in Algorithm 1.
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Algorithm 1: The JCRC-MTL algorithm for HSI

Input:
1) A HSI, in which each pixel sc is represented as

{skc}k=1,...,K

2) Regularization parameters λ and τ , spatial neighbor-
hood size T , and the given weight vector for every
feature ωk = {ωk}k=1,...,K

Initialization:
1) Multiple feature extraction from the hyperspectral

image
2) Construct the multiple features dictionaries

{Ak}k=1,...,K with all of the training set in this
hyperspectral image, and normalize each column of
Ak to have unit �2-norm

For each unlabeled pixel in the hyperspectral image:
1) Construct the multiple feature joint collaborative ma-

trix set {Sk}k=1,...K

2) Code {Sk}k=1,...K over the dictionaries
{Ak}k=1,...,K , and acquire the coefficient matrices
{Ψk}k=1,...,K via (21) and (22)

3) Compute the regularized residuals and label the unla-
beled pixel via (23) and (24)

4) Turn to the next pixel
End For
Output: A 2-D matrix which records the labels of the HSI

IV. EXPERIMENTS

In this section, we utilize two classical hyperspectral data
sets to validate the effectiveness and superiority of the proposed
JCRC-MTL algorithm. All of the experiments were carried out
using MATLAB on a PC with one 3.50-GHz processer and
16.0 GB of RAM.

A. ROSIS Urban Data Set: Pavia University, Italy

1) Data Set Description: This scene was acquired by the
ROSIS sensor during a flight campaign over Pavia Univer-
sity, northern Italy. The number of available spectral bands is
103, and the geometric resolution is 1.3 m. The image size
is 610 × 610 pixels, and we cut a patch sized 610 × 340.
The false color composite of the Pavia University image is
shown in Fig. 4(a). Based on the feature extraction procedure
described in Section II-A, we obtain the spectral value vector
sSpectral ∈ R

103, the spectral gradient vector sGradient ∈ R
102,

the Gabor texture vector sGabor ∈ R
60, and the DMP shape

feature sDMP ∈ R
60, in which radius λDMP = {1, 2, . . . 10}

and b = {PC1,PC2,PC3} for each pixel in the HSI. This
image contains nine ground-truth classes, as shown in Table I.
The ground truth is visually shown in Fig. 4(b).

2) Evaluation of the Multiple Feature Combination: This
section is utilized to demonstrate the superiority of the multiple
feature combination capability in the proposed JCRC-MTL
algorithm. From the ground truth, we randomly select 30 pixels

TABLE I
NINE GROUND-TRUTH CLASSES OF THE ROSIS

PAVIA UNIVERSITY DATA SET

for each class as the training samples and the rest as the test
samples to validate the performances. The following classifiers
are used for the comparisons: the CR classifier with each single
feature, the SVM classifier with each single feature, and the
SVM classifier which directly stacks all four feature vectors
into an augmented higher dimensional feature [21] (referred
to as SVM-VS in this paper). Every SVM-based classifier in
this experiment uses the radial basis function (RBF) kernel
[12], [13]. The CR classification with multiple-task learning
[31] (CRC-MTL), which can be considered as a special case of
JCRC-MTL when the joint feature signal set is just the feature
vector set of the central unlabeled pixel itself, is also included
in the comparisons. All of the parameters for every classifier in
this experiment are obtained by tenfold cross-validation (CV)
[40]. For the multitask-learning-based algorithms, we fix each
feature equally and set ωk = 0.25. The classification accuracies
are averaged over ten runs for each classifier to reduce the
possible bias induced by the random sampling.

The classification accuracy for each class, the average OA
with the associated standard deviation, and the average kappa
coefficient with the standard deviation, using the different
classifiers, are shown in Table II for the test data. The z
value [41], which reflects the significant differences between
two classifiers, is also included in Table II. The z test value
can be computed by z = κ̂1 − κ̂2/

√
σ̂2
κ1

+ σ̂2
κ2

, where κ̂1 and
κ̂2 are the estimated kappa coefficient values for the related
classifier and σ̂2

κ1
and σ̂2

κ2
represent the estimated variances of

the derived kappa coefficients. For the widely used 5% level of
significance, we consider that there is a significant difference
between the two classifications if |z| > 1.96 holds. In this part,
we take the classification result of the proposed JCRC-MTL as
the baseline and calculate the z values of the other classification
results. Each value in the last row of Table II represents the
average running time of the associated classifier. In Table II,
the best results for each quality index are labeled in bold, and
the optimal results for each single-feature-based classifier are
underlined. Due to space constraint, we have omitted the visual
classification maps in this section, while some visual maps
of these 11 classifiers are shown in Fig. 4. Overall, it can be
seen that the proposed JCRC-MTL algorithm achieves the best
performance for each class.

We now investigate the complementary properties of the
aforementioned multiple features. Fig. 3 shows the correlation
coefficient matrix across the different features for this data set.
The first 103 dimensions correspond to the spectral value fea-
ture, the next 102 dimensions for the spectral gradient feature,
the following 60 dimensions for the Gabor texture feature, and
the last 60 dimensions for the DMP shape feature. It can be
observed that the intrafeature correlations are generally smaller
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TABLE II
CLASSIFICATION ACCURACY FOR THE PAVIA UNIVERSITY DATA SET WITH THE TEST

SET IN THE EVALUATION OF THE MULTIPLE FEATURE COMBINATION SECTION

Fig. 3. Correlation coefficient matrix across different features for the Pavia
University data set.

than the interfeature correlations, which preliminarily suggests
the complementary properties of the four features. The two
classifiers, CRC and SVM, are implemented here to reduce
the possible bias induced by a single classification algorithm.
Comparing these classification results in the first eight columns
in Table IV, it is shown that almost all of the features, except for
the spectral gradient feature, can achieve the best performance
on certain classes. For instance, with the CRC method, the
spectral value feature achieves the best classification result with
class 5, the Gabor texture feature obtains the best result with
class 2, and the DMP shape feature performs the best on the
rest of the classes. Similar observations can be made for the
SVM classification method. That is to say, different features can
reflect different aspects of the discriminative information of the
HSI and are complementary to each other. It is therefore natural
to combine the four features to improve the classification result.

This point is validated by the classification results of SVM-VS
and CRC-MTL. Here, it can be seen that the SVM-VS approach
has an improvement of 0.0739 on OA over the best result of
the SVM classifier with a single feature, and the CRC-MTL
method shows a remarkable improvement of 0.1733 over the
CRC method with a single feature. It is also demonstrated that
the improvement of CRC-MTL over CRC is greater than that of
the SVM-VS approach over SVM with a single feature, which
validates the superiority of the multitask learning approach.
Finally, we focus on the effect of the joint spatial signals in the
JCRC-MTL method. Here, it is also shown that, with the help
of the neighboring pixels, the classification accuracy can be
further improved, reaching an OA of 0.9674. In conclusion, it is
demonstrated that the discrimination of these features between
different classes can be further enhanced, with more robustness,
in the proposed JCRC-MTL method.

3) Classification Result: In this section, we further analyze
the accuracy of the proposed JCRC-MTL algorithm with the
Pavia University data set. The aforementioned ten random
independent classifications with 30 training samples per class
are utilized in this section. The single-feature-based algorithms
consist of SVM with the RBF kernel, CRC, SRC with an
improved �1-norm algorithm called lasso [42], [43], and JSRC
[17] with the greedy pursuit algorithm (referred to as SOMP in
[44]). As suggested in the last section, since the spectral value
feature and the DMP-feature-based classifiers lead to better
accuracies than the others, each single-feature-based classifi-
cation algorithm has the two instances. For example, CRC-S
refers to the classifier utilizing the spectral value feature via the
CRC classification, and CRC-D refers to the classifier utilizing
the DMP feature. For the multiple-feature-based algorithm, we
also first utilize the SVM-VS, with regard to its desirable per-
formance. In addition, two classifiers with multitask learning
are also included in the comparisons. One is CRC-MTL, and the
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Fig. 4. Classification results with the Pavia University image. (a) False color image (R:102, G:56, and B:31). (b) Ground truth. (c) CRC-S. (d) CRC-D.
(e) SRC-S. (f) SRC-D. (g) SVM-S. (h) SVM-D. (i) JSRC-S. (j) JSRC-D. (k) SVM-VS. (l) SRC-MTL. (m) CRC-MTL. (n) JCRC-MTL.

other is the sparse representation classification with multitask
learning (SRC-MTL) algorithm (also referred to as MTJSRC
in [26]).

The detailed analysis of the classification result for the Pavia
University data set is described in this section. The range of
the parameters for CV can be shown as follows: the regulariza-
tion parameters λ and τ for the three multitask-learning-based
classification algorithms range from 1e− 6 to 1e− 1, and the
neighborhood size for JCRC-MTL and JSRC ranges from 1 to
169. Parameter settings for the other classifiers are also selected
by tenfold CV from a reasonable range.

The thematic maps of the various classifiers are visually
shown in Fig. 4(c)–(n), respectively. For the test data, the
quantitative results for each class, the average OA with the

associated standard deviation, and the average kappa coefficient
with the standard deviation using the different classifiers are
shown in Table III. Comparing the classification results of
CRC-MTL, SRC-MTL, and SVM-VS with those of the single-
feature-based classifiers, it can be seen that the multiple features
can indeed offer additional complementary information for the
classification, and they improve the classification result over
that of a single feature. It is also shown that the multiple-
feature-based classifiers require much more computational bur-
den than the others, while the CRC-based classifier is the fastest
among the single-feature-based classifiers. A detailed running
time analysis for the four multiple-feature-based classifiers is
provided in Section IV-A5. In light of the recognition rate,
the improvements of JSRC over SRC suggest that the spatial
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TABLE III
CLASSIFICATION ACCURACY FOR THE PAVIA UNIVERSITY IMAGE WITH THE TEST SET

Fig. 5. Classification accuracy versus parameters for the various classification algorithms. (a) Regularization parameter λ for JCRC-MTL and CRC-MTL.
(b) Regularization parameter τ for JCRC-MTL and CRC-AWMTL. (c) Size of the spatial neighborhood window T for JSRC-S, JSRC-D, and JCRC-MTL.

neighborhood pixels can also improve the classification ef-
fectiveness. By simultaneously incorporating the multiple fea-
tures and the spatial neighborhood information, the proposed
JCRC-MTL method achieves the best results for most classes
and the best OA and kappa coefficient and shows a significant
improvement over the classical SVM method.

4) Parameter Analysis: In this section, we examine the ef-
fect of the parameters on the classification performance of the
various algorithms with the Pavia University image. We fix the
other parameters as the corresponding optimal and focus on
one specific parameter. The experiments for λ, τ , and T are
repeated ten times using different randomly chosen training sets
to reduce the possible bias induced by the random sampling.
The horizontal axis shown in each subfigure in Fig. 5 is the
value range of the corresponding parameter, while the vertical
axis shows the OA (in percent) of the different classifiers.

In Fig. 5(a), it can be seen that the performance of all of
the multitask-learning-based classification algorithms generally
improves as the regularization parameter λ increases and then
begins to decrease after the maximum value, and JCRC-MTL

shows a better and more stable performance than CRC-MTL.
Since λ makes a tradeoff between the data fidelity term and
the prior term of the coefficient matrix for each feature, it
is demonstrated that the multitask-based algorithms are quite
robust to this parameter over a wide range of values.

In Fig. 5(b), both JCRC-MTL and CRC-MTL are quite
stable and achieve a pleasing accuracy when the regularization
parameter τ ranges from 1e− 6 to 1e− 1. Once τ exceeds a
certain threshold (denoted as 1e− 2 in this experiment), the
dominant part of (13) becomes the last term ωk‖Ψk − Ψ̄‖2F ,
which will weaken the discriminative power for the subsequent
classification.

Finally, we range T from 9 to 169 to investigate the effect
of the neighborhood size. In Fig. 5(c), it can be seen that the
classification result of the proposed method is slightly better
than those of the JSRC-based classifiers for all of the neigh-
borhood sizes. After reaching the extreme point, the accuracy
curve of the proposed method is more stable than that of the
other two methods. It can therefore be concluded that JCRC-
MTL is robust with regard to different neighborhood sizes.
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Fig. 6. Effect of the number of training samples per class Ni for the Pavia
University data set. For fairness, the number of training pixels for each class is
equal.

TABLE IV
RUNNING TIME ANALYSIS FOR THE FOUR MULTIPLE-FEATURE-BASED

CLASSIFIERS FOR THE PAVIA UNIVERSITY DATA SET

5) Running Time and the Effect of the Number of Training
Samples: Next, we show the effect of the number of training
samples on the classification accuracy of the four multiple-
feature-based algorithms, as shown in Fig. 6. For fairness, the
number of training pixels for each class is equal, and we ran-
domly choose 10–60 labeled pixels in each class as the training
samples and the remainder as the test ones. The horizontal axis
in Fig. 6 is the number of training samples, while the vertical
axis shows the OA of the different algorithms. The accuracy
is averaged over ten runs at each point to reduce the possible
bias induced by the random sampling. It is immediately clear
from Fig. 6 that, in most cases, the overall accuracy increases
monotonically as the training samples increase and so does
the stability of each classifier. For the small sample set case,
SVM-VS shows an inferior performance to the others, which
suggests that the multitask-learning-based algorithms are more
robust, especially the proposed JCRC-MTL. With the increase
of the training samples, SVM-VS gradually tends to be compa-
rable to SRC-MTL. Compared with the first three classifiers, it
is demonstrated that the CR is more suitable than a sparse rep-
resentation, and the multitask learning enables a more elegant
performance than the well-used vector stacking approach when
dealing with multiple-feature-related cases. It is further shown
in Fig. 6 that the final proposed JCRC-MTL can give a state-
of-the-art result even when the number of training samples is
quite limited, which further verifies the superiority of the joint
contextual information imposed into the proposed algorithm.

For the running time comparison, the detailed average run-
ning times for each case of each classifier are shown in
Table IV. It is shown that the first two classifiers have compara-
ble running times, and they are faster than the latter CR-based
classifiers. Although the running time of SVM-VS seems to

TABLE V
NINE GROUND-TRUTH CLASSES OF THE AVIRIS

INDIAN PINES IMAGE DATA SET

be optimal, it should be noted that the SVM is implemented
by the LibSVM [45] package, which utilizes C++ software to
speed it up. It should also be noted that the speed superiority of
SRC-MTL over CRC-MTL is mainly caused by the accelerated
proximal gradient [26] method utilized in the algorithm, which
accelerates the convergence speed. When dealing with a large-
scale training sample set as the dictionary, CRC-MTL and
JCRC-MTL, utilizing the matrix inverse operation, will be left
behind, as shown in Table IV. In view of this, it is consid-
ered that SRC-MTL is the fastest, and the proposed algorithm
requires more computing time, due to the CR with multitask
learning and the extended contextual information increasing the
computational load. It is, however, reasonable to believe that,
with the rapid development in computer hardware, the time cost
of the proposed method will soon no longer be an issue.

B. AVIRIS Data Set: Indian Pines Image

This scene was gathered by the Airborne/Visible Infrared
Imaging Spectrometer (AVIRIS) sensor over the Indian Pines
test site in Northwest Indiana, and it consists of 145 × 145
pixels and 220 spectral reflectance bands in the wavelength
range of 0.4–2.5 μm. The false color composite of the Indian
Pines image is shown in Fig. 7(a). We reduced the number
of bands to 200 by removing the bands covering the regions
of water absorption: 104–108, 150–163, and 220, as in [46].
The spatial resolution for this image is about 20 m. The feature
extraction procedure is the same as that utilized in the former
experiment. From the reference data, we randomly sample 30
pixels for each class as the training samples and the rest as
the test set. This image contains ten ground-truth classes, and
details of the quantities are shown in Table V. In addition, the
ground truth is visually shown in Fig. 7(b).

The thematic results using CRC, SRC, SVM with the RBF
kernel, JSRC, CRC-MTL, MTJL-SRC, and JCRC-MTL are
visually shown in Fig. 7(c)–(n), respectively. The quantitative
evaluations, which include the classification accuracy for each
class, the OA, the kappa coefficient value κ, the running time,
and the z test value, which all take the result of JCRC-MTL as
the baseline, are shown in Table VI. The experimental design
of this table is the same as that of Table III, and we again
give the average results over ten runs for each classifier. The
ranges of the parameters are the same as those for the ROSIS
image experiment, and all of the parameters for each classifier
are obtained by tenfold CV. Overall, it can be concluded that
the proposed JCRC-MTL method yields the best performance
by simultaneously incorporating the multiple features and the
neighborhood information.
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Fig. 7. Classification results with the Indian Pines image. (a) False color image (R:57, G:27, and B:17). (b) Ground truth. (c) CRC-S. (d) CRC-D. (e) SRC-S.
(f) SRC-D. (g) SVM-S. (h) SVM-D. (i) JSRC-S. (j) JSRC-D. (k) SVM-VS. (l) SRC-MTL. (m) CRC-MTL. (n) JCRC-MTL.

TABLE VI
CLASSIFICATION ACCURACY FOR THE INDIAN PINES IMAGE WITH THE TEST SET

We now analyze the performances of all of the classifiers
in detail. For the single-feature-based classifiers, it can be
clearly observed that the DMP-feature-based classifiers are
far superior to the spectral-feature-based ones, which suggests
the superiority of the MP for preserving the discriminative
information between different classes. Most of the multiple-
feature-based classifiers, except for SRC-MTL, show superior
classification results to the counterpart single-feature-based
ones, which indicates that the multiple features offer additional

useful information to improve the discrimination, even though
this image is not a high spatial resolution image. For the
multiple-feature-based classifiers, it is first observed that the
inferior accuracy of SRC-MTL, which is even weaker than
the direct feature stacking approach (referred to as SVM-VS),
suggests the limitations of this algorithm in this experiment.
Comparing the two z values from JCRC-MTL and CRC-
MTL, it is noted that the incorporation of the neighborhood
information in the proposed algorithm leads to a significant
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improvement, with regard to the spatial smoothness of the
image. Similar observations can be made in the comparison
between JSRC and SRC.

V. CONCLUSION

This paper has proposed a novel joint CR classification
method with multitask learning (JCRC-MTL) for HSI. In the
proposed approach, an HSI pixel is depicted with multiple
complementary features from different perspectives, which are
simultaneously integrated in the CR-based classification frame-
work via the multitask learning approach. The neighborhood
information is utilized to further improve the performance of
the proposed JCRC-MTL classification method. The proposed
JCRC-MTL classification method was tested on ROSIS and
AVIRIS hyperspectral images, and the extensive experimental
results confirm the effectiveness of the proposed hyperspectral
classifier.

However, the proposed multitask learning framework could
still be further improved in certain aspects. For instance, how
to select the more-correlated neighboring pixels in the neigh-
borhood patch to the test one has not been considered in the
current algorithm. Therefore, our future work will focus on how
to construct a more meaningful signal matrix for each feature.
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