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Abstract— Multiview stereo (MVS) aerial image depth
estimation is a research frontier in the remote sensing field.
Recent deep learning-based advances in close-range object
reconstruction have suggested the great potential of this
approach. Meanwhile, the deformation problem and the scale
variation issue are also worthy of attention. These characteristics
of aerial images limit the applicability of the current methods for
aerial image depth estimation. Moreover, there are few available
benchmark datasets for aerial image depth estimation. In this
regard, this article describes a new benchmark dataset called
the LuoJia-MVS dataset (http://irsip.whu.edu.cn/resources/
resources_en_v2.php), as well as a new deep neural network
known as the hierarchical deformable cascade MVS network
(HDC-MVSNet). The LuoJia-MVS dataset contains 7972 five-
view images with a spatial resolution of 10 cm, pixel-wise
depths, and precise camera parameters, and was generated from
an accurate digital surface model (DSM) built from thousands
of stereo aerial images. In the HDC-MVSNet network, a new
full-scale feature pyramid extraction module, a hierarchical set
of 3-D convolutional blocks, and “true 3-D” deformable 3-D
convolutional layers are specifically designed by considering the
aforementioned characteristics of aerial images. Overall and
ablation experiments on the WHU and LuoJia-MVS datasets
validated the superiority of HDC-MVSNet over the current
state-of-the-art MVS depth estimation methods and confirmed
that the newly built dataset can provide an effective benchmark.
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I. INTRODUCTION

A. Motivations

OVER the past decades, multiview stereo (MVS) aer-
ial image depth estimation has been a hot research

field [1], [2]. At present, large-scale and highly accurate 3-D
reconstruction of the Earth’s surface is dominated by com-
mercial software, such as Smart3D,1 SURE [3], and Pix4D.2

However, subject to the utilized conventional dense matching
methods [4], [5], [6], [7], the software is at risk of false
matching when dealing with scenarios with perspective distor-
tion [8], and the required post-processing comes with a large
manual labor cost [28]. Benefiting from the recent success
of deep learning, learning-based MVS methods can produce
higher-quality results than the conventional dense matching-
based methods for close-range reconstruction [10], [11]. Thus,
it is worthwhile introducing the learning-based MVS technique
into aerial image depth estimation [12] as it has the advantage
of being able to alleviate the above shortcomings [13].

B. Related Works

Benchmarks play a fundamental role in developing and
evaluating MVS algorithms [14], [15]. To the best of our
knowledge, there are only a few open-access MVS benchmark
datasets: Middlebury [9], DTU [16], Tanks and Temples [17],
ETH3D [18], BlendedMVS [19], and WHU [13]. The first
five datasets are made up of close-range multiview images,
which differ significantly from aerial images in view angle
and camera parameters, and cannot be used as benchmarks
for aerial image depth estimation. A recent dataset called
the WHU dataset [13], which comes with accurate camera
parameters and complete ground-truth depth maps, is the only
multiview aerial image dataset created for aerial image depth
estimation. The WHU dataset is a synthetic aerial image
dataset, which was sampled from a region with an area of
about 6.7 × 2.2 km, containing dense high-rise buildings,

1http://www.bentley.com/en/products/brands/contextcapture
2http://www.pix4d.com/
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sparse factories, mountains covered by forest, bare land, and
rivers [13]. Considering the limitations coming from dataset
scarcity and insufficient land-cover diversity, it is still impor-
tant to publish new datasets to support research in this field.

In recent years, many learning-based MVS deep neural
networks have been developed [20], which can be divided
into two main categories: voxel-based methods [21] and depth
map-based methods [10]. The former methods parameterize a
regular voxel mesh and learn a 3-D cost volume to build a
3-D scene model in an end-to-end manner. However, due to
the huge memory cost of 3-D volumes, it is difficult to balance
resolution and accuracy, and the process is limited by the error
caused by spatial discretization [11]. According to a recent
survey [22], the depth map-based approaches are superior
due to their comprehensive consideration of efficiency and
accuracy, although they are inherently 2.5-D. Moreover, as the
digital surface model (DSM) is also an important product for
aerial image-based applications, depth map-based techniques
are worthy of attention.

Inspired by the binocular stereo matching deep neural
networks [2], [22], the MVS network (MVSNet) network pro-
posed by Yao et al. [10] introduces differentiable homography
warping to encode the camera parameters and construct the
3-D cost volume, based on the plane sweep algorithm [23].
In MVSNet, the depth map-based neural network is com-
posed of three modules: 1) feature extraction; 2) homography
warping; and 3) 3-D cost volume regularization and depth
regression. R-MVSNet [24], which was also proposed by the
authors of MVSNet, utilizes a convolutional gated recurrent
network instead of a 3-D convolutional neural network (3-D
CNN [25]) to sequentially regularize the cost maps. Thus,
R-MVSNet can achieve higher-resolution reconstruction at
the same memory cost. MVSNet-Cas [26] decomposes the
single cost volume into a cascade of multiple stages and
introduces a coarse-to-fine regularization framework. The cas-
cade networks that can keep the fine contextual information,
as well as achieve high-resolution reconstruction, have become
popular frameworks [27], [28]. The follow-up methods based
on this paradigm modify one or several modules to improve
the resolution or reduce the memory cost. For example,
by using lightweight operators to replace the original convo-
lutional [29], [30] or recurrent layers [31], [32], or sparsely
sampling the data to be processed [33] by using the inherent
spatial coherence of the depth maps (i.e., the core idea of
PatchMatch [34]). However, in order to share the weights of
the subsequent regularization module, each cost volume with
different channels is transformed with a uniform 3-D CNN
layer, which loses the multifeature information of the high-
level cost volumes.

Although studies on close-range object reconstruction have
made certain progress, the differences between close-range
and aerial images still pose a challenge to the applicability
of the above neural networks. RED-Net [13], which was the
first network designed for MVS aerial image depth estimation,
introduces a recurrent encoder–decoder architecture, instead
of the stacking of three gated recurrent units (GRUs) in
R-MVSNet, and has outperformed the conventional state-
of-the-art MVS aerial image depth estimation methods.

In contrast to MVSNet and R-MVSNet, RED-Net downsam-
ples the output depth four times and reconstructs the depth
map with a full resolution. More recently, MS-REDNet [28],
which is a cascade version of RED-Net, further utilizes a
high-resolution encoder–decoder module (i.e., U-Net [35]) to
exploit the full resolution of the extracted features. However,
both RED-Net and MS-REDNet struggle with the high GPU
memory problem, and cannot scale up well to realistic imagery
with large sizes. As a result, there is still much room for
improvement.

C. Contributions

In this context, the objective of this research was to address
the task of aerial image depth estimation by dealing with the
shortcomings described above. Specifically, the contributions
of this article can be summarized as follows:

1) We built a new large-scale open-source MVS aerial
image dataset named the LuoJia-MVS dataset (named
after the address of our university). The LuoJia-MVS
dataset contains 7972 multiview units. Each unit is com-
posed of five red-green-blue (RGB) images with a spatial
size of 768 × 384 and a spatial resolution of 10 cm. Each
image is also equipped with a depth map of the same
size and a set of precise camera parameters. The dataset
includes various land-cover types, such as cultivated
land, forest, and residential land. The dataset can thus
supplement the existing benchmark datasets, allowing
more diverse aerial image depth estimation evaluation.

2) We propose a hierarchical deformable cascade MVS
network (HDC-MVSNet) for aerial image depth
estimation. HDC-MVSNet simultaneously undertakes
high-resolution multiscale feature extraction and
hierarchical cost volume module construction to
generate full-resolution depth with abundant contextual
information. First, with regard to the land-cover objects
at varying scales and with a coarse spatial resolution,
while the feature pyramid network (FPN) [37] in
MVSNet-CAS can only fuse spatial information of two
adjacent scales, a full-scale feature pyramid extraction
module is employed to incorporate low-level details
with high-level semantics from the feature maps in
different scales. Second, on the basis of the cascade
structure proposed in MVSNet-CAS, a hierarchical set
of 3-D convolutional blocks is further constructed to
leverage the multifeature information of the multistage
cost volumes. Third, a deformable 3-D convolutional
block is further applied to replace the regular 3-D
convolutional block in the cost volume regularization
module, to extend the 3-D receptive field with a small-
size convolution kernel and deal with the deformation
of the objects in multiview aerial images.

The rest of this article is organized as follows. Section II
introduces the LuoJia-MVS dataset in detail. Section III then
provides an overall review of the related deep neural networks.
The proposed HDC-MVSNet method is introduced in detail in
Section IV. Section V provides the experimental comparison
as well as a discussion of the proposed HDC-MVSNet method
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Fig. 1. LuoJia-MVS dataset. Area 0: the complete dataset consists of
7972 multiview units. Areas 1–4 were allocated for the training set, with
4320 multiview units, and areas 4 and 5 were selected for the test set, with
1360 multiview units.

and the necessity for the LuoJia-MVS dataset. Finally, our
conclusions are given in Section VI.

II. LUOJIA-MVS DATASET

This section introduces the synthetic aerial image dataset
called the LuoJia-MVS dataset for large-scale aerial image
depth estimation, including the study area and data source,
the construction process, and the data organization. As a five-
view aerial image dataset, the LuoJia-MVS dataset follows the
settings used in the construction of the WHU dataset [13].

A. Study Area and Data Source

Baiyun, Guiyang, Guizhou, China, was selected as the study
area for the LuoJia-MVS dataset. As can be seen in Fig. 1, this
is a hilly basin area dominated by mountains and hills, with
an altitude of 1200–1600 m. The region contains a variety of
land-cover types, including cultivated land, forest, urban areas,
rural areas, industrial areas, mining areas, residential land, and
unused land. Compared with the WHU dataset [13], the land-
cover types are more diverse.

To construct the simulated multiview dataset, a 3-D
DSM with OpenSceneGraph binary (OSGB) format mesh
was built using a series of software tools, including Pho-
toscan,3 Smart3D, and Meshmixer,4 from 1430 pairs of
two-view aerial images. The size of each two-view image
was 5304 × 7952 pixels and the spatial resolution was 5 cm.
Manual editing was conducted to reduce the errors in the
DSM.

B. Dataset Construction

In order to construct the five-view data units, we first sim-
ulated single-lens virtual aerial imagery with a given forward
overlap and side overlap. The size, flight height, and spatial

3https://www.agisoft.com/
4https://www.autodesk.com/

Fig. 2. Five-view unit with the size of 768 × 384. (Top) The RGB images.
(Bottom) The corresponding depth maps. The three images tagged 0–2 make
up the three-view set.

resolution of each virtual image were 960 × 480, 500 m above
ground, and a 10-cm ground resolution, respectively, and both
the forward overlap and side overlap were 90%. By setting
the route, waypoint, and camera parameters, the metadata of
each virtual image could be acquired. Each virtual image was
then generated by the rendering engine, and the corresponding
depth record was obtained.

The overlapping regions between all the single-lens virtual
aerial images were then cropped and combined into units in
the format of a five-view image set. We manually checked
each unit and removed those with holes or deformation. In this
way, a total of 7972 five-view units were generated. Each view
consists of an RGB image with a size of 768 × 384 pixels and
a resolution of 10 cm, along with its pixel-wise depth map,
as shown in Fig. 2. The central image is the reference image,
the images tagged 0 and 2 are in the forward direction, and the
images tagged 3 and 4 in the side strips are the search images.
Each image is near-nadir, with a specific intrinsic parameter
matrix. In addition, a three-view subset with images tagged
0–2 was also collected.

Six representative sub-regions covering diverse landscapes
were selected as the training and test sets, for which the spatial
allocation is visually displayed in Fig. 1. Both the training and
test set contain cultivated land, forest, urban areas, rural areas,
industrial and mining areas, residential land, and unused land.
A total of 4320 and 1360 multiview units form the training
and test sets, respectively, in which the quantities are the same
as for the WHU dataset. The ratio between these two sets
is roughly 3:1. Thus, the LuoJia-MVS dataset complements
the existing WHU dataset in terms of the land-cover types
and dataset volume and further provides a new benchmark for
MVS aerial image depth estimation. This dataset will be made
publicly available for all research needs.

III. FUNDAMENTALS: THE MVSNET-CAS NETWORK

As with MVSNet, the basic idea of MVSNet-Cas is to
construct a plane sweep volume [23] on the reference image
and calculate the pixel-wise matching cost between the ref-
erence and the search images. Given a reference image and
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its corresponding search images as input, MVSNet-Cas infers
the depth of the reference image. The end-to-end MVSNet-Cas
network consists of the following modules.

A. Feature Pyramid Extraction

A weight-sharing FPN [37] is built to extract the deep
features of the input multiview images {Oi}N

i=1 (i.e., N views)
for the subsequent dense matching, where Oi ∈ R

H×W×3, and
H , W , and 3 are the height, width, and number of bands
(i.e., RGB) for the i th view image. In more detail, the
multiscale feature maps with a spatial resolution of {1/16,
1/4, 1} of the original reference image size are separately
employed to build three cost volumes with the corresponding
resolutions. Here, we refer to the feature maps with the finest
spatial resolution as those in the first stage, and the last
stage deals with the feature maps with the coarsest resolution.
In MVSNet-Cas, for the sake of efficiency, the outputs of
this module are N F-channel feature maps {Fi}N

i=1, where
Fi ∈ R

H×W×F .

B. Cascade Cost Volume Construction and Regularization

With the multiscale features from the FPN, the cascade cost
volume utilizes the depth estimation with a coarse resolution
to adaptively narrow the depth range. To maintain consistency
with the feature extraction approach, the cost volume at the
last stage is the coarsest, and the cost volume at the (k − 1)th
stage is built on the one at the kth stage. For the coarsest cost
volume, based on the camera geometric projection, the plane
sweep algorithm [23] is first utilized to warp the deep features
of the search views into the coordinate system of the reference
image

Hi(d) = Ki · Ri ·
(

I − (t1 − ti) · nT
1

d

)

· RT
1 · K−1

1 , i ∈ {2, . . . , N} (1)

where Hi(d) ∈ R
3×3 indicates the homography matrix

between the feature maps of the search image i and the
reference at depth d , and {Ki , Ri , ti } and {K1, R1, t1} are the
intrinsic parameter matrix, rotation matrix, and translation vec-
tor of the search image i and reference camera, respectively.
n1 denotes the principal axis of the reference camera, and I is
an identity matrix. For the sake of description, hereinafter, H1

is equal to I, and i ∈ {1, . . . , N}.
For the cascade cost volume construction, Fig. 3 illustrates

the range reduction from stage 3 to 2. Rk and Ik respectively
denote the depth range and hypothesis interval between the two
adjacent hypothesis depth planes of stage k, and Dk = Rk/Ik .
For stage 3, R3 is equal to the full range of the whole reference
image. The hypothesis depth interval I3 is applied to generate
a coarse depth estimation (the green lines in Fig. 3), which
is leveraged to narrow the following range: Rk = Rk+1 · vk ,
where vk ∈ {0, 1} is a hyperparameter at the kth stage. In this
way, the range is gradually narrowed, and the efficiency is
improved. Similarly, at the kth stage, another hyperparameter
uk ∈ {0, 1} is also applied to recover more detailed depth
variations by setting Ik = Ik+1 · uk .

Fig. 3. Illustration of the adaptive hypothesis plane generation for stage 2.
The blue lines are the hypothesis planes, and the green lines denote the
predicted depth from stage 3. As shown in this figure, both the depth range
and the interval can be narrowed, e.g., I2 = I3 × 0.5 and R2 = R3 × 0.3.

Then, as denoted by the green arrows in Fig. 4, except for
the coarsest stage (i.e., k ∈ {1, 2}), the depth of the hypothesis
planes at the kth stage is equal to the previous estimation at
the (k + 1)th stage (denoted as dk+1) plus the depth residual
of the current stage (denoted as �k). dk,min and dk,max are,
respectively, the minimum and maximum depth values of the
depth range at the current stage Rk

dk,min = −0.5Rk, dk,max = 0.5Rk . (2)

For the j th interval, �
j
k = dk,min + Ik × j. Thus, the plane

sweep algorithm-based cost volume construction [see (1)] in
a multiscale manner can be expanded as

Hi(dk+1 + �k) = Ki · Ri ·
(

I − (t1−ti)·nT
1

dk+1+�k

)
·RT

1 ·K−1
1 . (3)

Accordingly, the cost volume at the kth stage (denoted as
Ck with a size of Wk × Hk × Dk × Fk) can be calculated as
follows:

Ck =
∑N

i=1

(
Vk

i − V
k
i

)2

N
(4)

where Vk
i and Vk

i indicate the warped feature of the ith view
image at the kth stage and the average of the multiview warped
features, respectively.

A 3-D version of U-Net [10] is shared for each stage to
transfer the F-channel Ck ∈ R

H×W×D into the probability
of the hypothesis depth plane Pk ∈ R

H×W×D. The 3-D
U-Net model, which has the merit of aggregating neighboring
information from a large receptive field, can reduce the amount
of matching errors and keep the spatial smoothness. Finally,
an �1-norm difference loss is incorporated after the softmax
layer of the 3-D U-Net model. Finally, the weighted sum of the
losses in all the stages constitutes the final loss of MVSNet-
Cas, where each loss can be formulated as the �1-norm
difference between the reference and the estimation.

C. Depth Estimation

If we suppose that Pk(dk) is the estimated probability
at depth dk , then the depth estimation at stage 3dpt3 =∑d3,max

d3,min
d3 × P(d3) and dptk = ∑(dptk+1+�

j
k )×P

�
j
k

(dptk+1 + �
j
k)

when k ∈ {1, 2}. Dptk is the estimated depth at the kth stage.
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Fig. 4. Network architecture of the proposed HDC-MVSNet method. The proposed feature extraction module is shown in Figs. 5 and 6. The proposed
detailed hierarchical cost volume alignment module is illustrated in Fig. 7. The detailed structure of the deformable 3-D U-Net is presented in Table I.

Fig. 5. Structure of the proposed feature extraction module. The number on
the right side of each feature map indicates the feature channels.

IV. PROPOSED NETWORK

In the following, we describe how we extended the cascade
cost volume-based MVSNet and leveraged the multiscale and
multifeature information of the multiview images for depth
estimation (see Fig. 4). Specifically, the full-scale feature
pyramid extraction module and the hierarchical deformable
3-D U-Net-based cost volume optimization are the major
contributions.

A. Full-Scale Feature Pyramid Extraction Module

Inspired by the exchange unit aggregation of HRNet [38],
the pyramidal adjacency of the FPN [37], and the full-
scale connection of U-Net3+ [39], we propose a full-scale
feature pyramid extraction module (see Fig. 5). This module
is composed of an encoder, a temporary pyramid decoder, and
a final semantic feature decoder. The encoder is equipped with
three 2-D convolutional blocks, each of which consists of a
convolutional layer sized 3 × 3 with stride 1, a max-pooling
layer with stride 2, and a pool size of 2, and a rectified linear

unit (ReLU) layer for non-linearity. Both the temporary and
the final decoder have three stages, the features of which
all have the same spatial size as the counterpart encoded
features. The full-scale skip connection between the encoded
features at multiple scales (denoted as Xi

Ee for scale i) and
the temporary decoder feature (denoted as Xi

tmp for scale i)
is employed to fuse the fine-grained and the coarser semantic
information. In addition, the dense connection (formulated by
a 1 × 1 convolution) between the temporary and final decoded
feature (denoted as Xi

DE for scale i) is used to further aggregate
the semantic information and reduce the channels of the final
output. The numbers of channels for each feature are presented
in Fig. 5. For the sake of comparison, the numbers of feature
channels and the spatial size of both the encoder and final
decoder are in line with those of the FPN in MVSNet-Cas [26].
Furthermore, the temporary feature at each scale has the same
number of channels as in the decoder of U-Net3+ [39].

Fig. 6 illustrates the construction of the three representa-
tive skip connections, each of which incorporates the low-
level encoded features with a finer spatial resolution into the
decoded features. Specifically, the full-scale skip connection
can capture the coarser semantic information and the fine-
grained contextual variation at the same time, which is bene-
ficial for land-cover types with varying scales. It should also be
noted that, in contrast to the nested and dense connections in
U-Net++ [40], the full-scale connection directly connects the
encoded features with an equal or lower scale to the targeted
decoded features. In this way, the full-scale skip connection is
easier to train. The final decoded feature at each scale is then
applied to the corresponding stage of the cascade cost volume
optimization.

B. Hierarchical Deformable 3-D Convolution Module for
Cascade Cost Volume Regularization

1) Cost Volume Feature Dimension Adaptation: As shown
in Fig. 5, each decoder layer of the feature pyramid extraction
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Fig. 6. Skip connections at (a) stage 1, (b) stage 2, and (c) stage 3. In this figure, the high-level features with a coarser spatial resolution are represented
by rectangles with a shorter height.

Fig. 7. Structure of the hierarchical cost volume alignment. The number
below the blue cube indicates the feature dimension (i.e., the channels) of the
cost volume.

module (e.g., X1
De–X3

De) has different feature dimensions.
MVSNet-Cas utilizes a single 3-D convolutional block with
the kernel size of 3 × 3 × 3 and different strides in each stage
to transfer the hierarchical cost volumes (the dimensions for
the three stages are 8, 16, and 32, respectively) to the same size
(i.e., the dimension for each stage is 8). Thus, a considerable
amount of cost volume information is lost.

To address this problem, a hierarchical set of 3-D convolu-
tional blocks with a kernel size of 3 × 3 × 3 is used to leverage
the feature information and gradually unify the multistage cost
volumes with the same feature dimension number. The detailed
structure of this approach is shown in Fig. 7.

2) Deformable 3-D U-Net for Cost Volume Regularization:
The four-scale 3-D version of U-Net, which applies a 3-D
convolutional block as the basic unit, is a widely used module
for cost volume regularization [10], [20], [26]. However,
it should be noted that the modeling capability of the 3-D con-
volutional block is limited by the local perspective distortion in
multiview Earth observations. In this research, we followed the
architecture of the 3-D U-Net structure in MVSNet-Cas [26]
and designed a deformable 3-D convolutional block instead
of the standard 3-D convolutional block, to improve the cost
volume regularization process.

To the best of our knowledge, the previous attempts at
deformable 3-D convolution [41] still only learn the offsets
on height and width. In this study, considering that geometric
deformation can occur in each dimension of Euclidean space,
a deformable “true 3-D” convolutional block with the offset at
each dimension was designed. As shown in Fig. 8, the input

Fig. 8. Deformable “true 3-D” convolution. Please note that w, h, d, and f
may take different values, depending on the stage. This convolution is only
employed in the deformable 3-D U-Net module for cost volume regularization.

cost volume feature with the size w × h × d × f is first
fed into a plain 3-D convolution operator with the size of
3 × 3 × 3 to generate offsets with the size of 3n3 × w ×
h × d , with n = 3. These offsets have the same height-width-
depth resolution as the input, while the channel dimension
is set to 3n3 for the “true 3-D” deformable convolution.
Each offset cube has n3 channels, and its values indicate
the deformation of the convolution sampling grid in width,
height, and depth, i.e., �w, �h, and �d . Then, with the
guidance of these offsets, the plain 3-D convolution grid (i.e.,
the light green cubes in the input feature) can be moved to the
deformable sampling grid (i.e., the dark green cubes in the
input feature). In this way, the deformable 3-D convolution
operation can be summarized as

y(p0) =
T∑

t=1

w(pt) · x(p0 + pt + �pt) (5)

where p0, pt , and �pt respectively indicate location t in the
output feature, the 3 × 3 × 3 plain convolution sampling grid,
and the offsets at location t . y and x are the output feature
and input feature, respectively. In contrast to the previous
2-D works [41], [42], [43], trilinear interpolation is applied
to calculate the feature x.

A summary of the structure of the proposed deformable

3-D U-Net (i.e., the module in Fig. 4), is provided
in Table I.
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TABLE I

STRUCTURE OF THE PROPOSED DEFORMABLE 3-D U-NET
FOR COST VOLUME REGULARIZATION

TABLE II

CHARACTERISTICS OF THE SEVEN DEPTH MAP-BASED

MVS DEEP NEURAL NETWORKS

V. EXPERIMENTS AND DISCUSSION

A. Datasets

Both the WHU dataset [13] and the LuoJia-MVS dataset
built in this study were used in the experiments. Each dataset
is made up of 4320 pairs of five-view images with a spatial
resolution of 10 cm, each with a size of 768 × 384, and
the ratio of the training set to test set is roughly 3:1. The
major land-cover types of the WHU dataset are dense and tall
buildings, sparse factories, mountains covered with forest, bare
land, and rivers [13]. The land-cover types of the LuoJia-MVS
dataset are cultivated land, forest, urban areas, rural areas,
industrial and mining areas, residential land, and unused land.

B. Comparison Methods

To demonstrate the superiority of the proposed HDC-
MVSNet method, the following six state-of-the-art depth-
based MVS deep neural networks were employed in the
comparison. The characteristics of these methods and the
proposed method are listed in Table II. In this table, the first
column lists the algorithm name, the second column lists
the estimated GPU memory cost in a three-view scenario
with each image sized 768 × 384, the third column lists
the type of multistage technique, and the last column records
the key neural modules used in each algorithm. The desirable
depth estimation ability of MVSNet [10], MVSNet-Cas [26],

R-MVSNet [24], and RED-Net [13] has been validated in
recent studies [13], [28]. A detailed description of these
networks can be found in Section III. Moreover, two recent
high-efficiency multistage methods—PatchmatchNet [33] and
Fast-MVSNet [29]—which can achieve appealing accuracies
in close-range object reconstruction, were also considered.

PatchmatchNet is a cascaded deep neural network based on
the learnable PatchMatch [34], which leverages random sam-
pling to reduce the cost and spatial smoothness, to propagate
the depth. The learnable PatchMatch is composed of a cost-
matching step modeled by a 3-D CNN residual block with a
kernel size of 1 × 1 × 1 and adaptive spatial cost aggregation
modeled by a deformable 2-D convolutional block. Instead
of the cascade structure, Fast-MVSNet [29] first reconstructs
the depth of the coarse partial samples in the whole scene,
then fills the holes under the guidance of the local smoothness
prior, and finally refines the pixel-wise depth with an efficient
Gauss–Newton layer, instead of a gradient descent layer.

C. Implementation and Accuracy Assessment

All the networks were run on a desktop computer using
PyTorch 1.1.0 with an Intel Core i9-7980X CPU (2.60 GHz),
112-GB RAM, and an 11-GB GeForce RTX 2080Ti GPU.
For all the methods, both three- and five-view reconstruction
scenarios were tested to validate the robustness, while a batch
size of one unit and the Adam optimizer with β1 = 0.9 and
β2 = 0.999 were adopted. The number of epochs was set to
30, with an initial learning rate of 0.001 for all the deep neural
networks, and the learning rate was downscaled by a factor of
2 every two epochs after the number of epochs exceeded ten.
In this study, only the depth map for the reference image was
predicted.

For all the cascade structure networks, as suggested for the
existing cascade-based methods, from the first to the third
stage, the number of depth hypotheses D1–D3 was set to 48,
32, and 8, respectively; the depth intervals I1–I3 were set to 4,
2, and 1, respectively; the spatial resolution of the feature maps
was set to {1/16, 1/4, 1} of the original reference image size;
and the weight for each stage was set to be equal. The number
of feature channels for the proposed network is presented in
Figs. 6 and 8. In contrast, for a fair comparison, the depth
hypotheses, the depth intervals, and the spatial resolution of
the feature maps for the non-cascade structure networks were
192, 1, and the same as the original reference image size,
respectively. The other parameters used in the comparison
networks were in line with the original literature.

Three metrics are employed in this article to evaluate the
performance as follows:

1) The mean absolute error (MAE) is used to assess the
precision and is calculated as the average �1-norm dif-
ference between the true and estimated depths.

2) The <0.6 m (%) and <3-interval (%) indicators are used
to assess the completeness, i.e., the percentage of pixels
whose �1 error is less than 0.6 m and less than the three
depth intervals. As the spatial resolution of both datasets
in this study is 10 cm, the <3-interval here is equivalent
to <0.3 m.
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TABLE III

COMPARISON OF THE DIFFERENT DEPTH MAP-BASED
MVS METHODS ON THE WHU DATASET

TABLE IV

COMPARISON OF THE DIFFERENT DEPTH MAP-BASED
MVS METHODS ON THE LUOJIA-MVS DATASET

D. Benchmark Performance

Tables III and IV list the reconstruction accuracies of the
depth map-based MVS networks, with the best results in
each test scenario highlighted in bold. It is demonstrated that
the proposed HDC-MVSNet method achieves the best perfor-
mance in both the three-view and five-view scenarios. In terms
of the accuracy indicator, i.e., MAE, HDC-MVSNet outper-
forms all the other methods and obtains an improvement of at
least 9% (i.e., (11.1 − 10.1)/11.1 = 9%) on the WHU dataset
and 13% on the LuoJia-MVS dataset, compared to the second-
best MVSNet-Cas. In addition, the proposed HDC-MVSNet
shows better completeness in terms of the <3-interval indi-
cator. Although RED-Net shows desirable completeness in
terms of the <0.6 m and <3-interval indicators, its large
memory requirement (i.e., more than 20 GB in the three-
view scenario with each image sized 768 × 384, as shown
in Table II) indicates its limitation when applied to large-size
aerial images.

MVSNet-Cas and the proposed HDC-MVSNet obtain much
better accuracies than the other methods. Although the two
most memory-efficient methods—PatchmatchNet and Fast-
MVSNet—show competitive reconstruction accuracies when
compared to MVSNet on the WHU dataset, they obtain the
worst performances on the LuoJia-MVS dataset. It is noted that

Fig. 9. Visualization comparison on three examples from the WHU dataset:
(a) inferred depth maps and (b) corresponding relative depth residual maps for
MVSNet, MVSNet-Cas, and the proposed HDC-MVSNet in the three-view
scenario. Here, the relative residual is equal to the absolute difference between
the reference depth and the inferred depth, divided by the reference depth.
(Left) Tall building area, (middle) highway, and (right) unused land. Areas
with large errors are marked with red rectangles.

both PatchmatchNet and Fast-MVSNet are multistage-based
methods, while MVSNet is implemented in a single-stage
manner, without any residual refinement. This phenomenon
suggests that the spatial smoothness prior, which may be
useful in close-range object reconstruction, does not handle
the aerial image depth estimation task well, due to the coarser
spatial resolution and the larger number of small above-ground
objects. At the same time, the large gaps between R-MVSNet
and MVSNet-Cas/HDC-MVSNet demonstrate the superiority
of the cascade structure, which is an effective way of dealing
with objects of varying scales.

Figs. 9 and 10 present several examples of the performance
of HDC-MVSNet, MVSNet-Cas, and MVSNet on the
WHU and LuoJia-MVS datasets, respectively, for a visual
comparison. The typical land-cover types of the WHU
dataset, i.e., tall building area, highway, and unused land,
were selected, as shown in Fig. 9. The land-cover types
that are rare in the WHU dataset, i.e., forest land, cropland,
and rural residential area, were selected from the LuoJia-
MVS dataset (see Fig. 10). As can be seen from these
examples, all the networks show desirable performances for
the homogenous regions of objects with a certain height, such
as the tall buildings and the rural residential area. Objects
with surface non-uniformities, such as forest land, have lower
residuals than unused land. In addition, more residuals can
be seen at the edges of the above-ground objects.

E. Ablation Study With the HDC-MVSNet Dataset

To verify the validity of the proposed full-scale feature
pyramid extraction module and the hierarchical deformable
3-D U-Net, a series of ablation experiments were conducted
on the two datasets (see Tables V and VI). In the following,
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Fig. 10. Visualization comparison on three examples from the LuoJia-
MVS dataset: (a) inferred depth maps and (b) corresponding relative depth
residual maps for MVSNet, MVSNet-Cas, and the proposed HDC-MVSNet
in the three-view scenario. Here, the relative residual is equal to the absolute
difference between the reference depth and the inferred depth, divided by
the reference depth. (Left) forest land, (middle) cropland, and (right) rural
residential area. Areas with large errors are marked with red rectangles.

TABLE V

COMPARISON OF THE DIFFERENT DEPTH MAP-BASED MVS METHODS

ON THE WHU DATASET IN THE THREE-VIEW SCENARIO

TABLE VI

COMPARISON OF THE DIFFERENT DEPTH MAP-BASED MVS METHODS ON

THE LUOJIA-MVS DATASET IN THE THREE-VIEW SCENARIO

“baseline” denotes the basic model, i.e., MVSNet-Cas, which
uses the FPN as the feature extraction module and 3-D
U-Net as the cascade cost regularization module. The last
line of each table (in bold) denotes the proposed model, i.e.,
HDC-MVSNet, which uses the full-scale feature pyramid
as the feature extractor module and hierarchical deformable
3-D U-Net for the cascade cost volume regularization.
As can be seen in the last two rows in Tables V and VI,

TABLE VII

SENSITIVITY EXPERIMENTS WITH DIFFERENT DEPTH HYPOTHESIS
NUMBERS AND DEPTH INTERVALS. THE STATISTICS WERE

COLLECTED ON THE WHU AND LUOJIA-MVS DATASETS

IN THE THREE-VIEW SCENARIO

the cross-connections in the pyramid network can further
aggregate the semantic information to achieve a superior
MAE value.

As demonstrated in Tables V and VI, the incorporation of
both the full-scale feature pyramid extraction module and the
hierarchical deformable 3-D U-Net can improve the model
performance on both datasets. More specifically, the full-
scale feature pyramid extraction module and the hierarchical
deformable 3-D U-Net obtain 4% and 6% MAE improvements
on the WHU dataset, respectively, and the combination of
these two modules results in a 13% MAE gain on the WHU
dataset. For the LuoJia-MVS dataset, the incorporation of the
hierarchical 3-D CNN layers results in a 6% MAE improve-
ment, and a further 2.6% improvement is seen when replacing
the plain 3-D U-Net with the deformable “true 3-D” layers.
The further decomposition in the hierarchical deformable 3-D
U-Net module suggests that the hierarchical 3-D CNN layers,
which gradually aggregate the multifeature information, are
beneficial. As shown in Table VI, the gain from 3-D U-Net
to hierarchical 3-D U-Net is approximately equivalent to
the combined increments of 3-D U-Net to deformable 3-D
U-Net and FPN to full-scale feature pyramid. Moreover, when
replacing the hierarchical 3-D U-Net with the deformable 3-D
U-Net, there is even a drop in MAE (i.e., 9.31–9.6 cm).

F. Sensitivity Experiments for the Depth Hypothesis
Numbers and Depth Intervals

The quantitative results with different stage numbers and
depth intervals are summarized in Table VII. In this imple-
mentation, MVSNet with 48 depth hypotheses is employed as
the baseline model, and the other versions replace its cost
volume with the proposed hierarchical deformable cascade
design, which is also composed of 48 depth hypotheses.
In Table VII, the variants of the proposed HDC-MVSNet,
which have different cascade stages, are denoted as “i ,” where
i indicates the total stage number. Please note that the spatial
resolutions of the different stages of each variant are the same
as those of the baseline. It is demonstrated in Table VII that,
as the number of stages increases, the accuracy indicators
first increase greatly, then stabilize, and then slightly decrease
when the number of stages exceeds three. According to the
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Fig. 11. HDC-MVSNet inference comparison using different views of the
WHU dataset: (a) reference image, (b) reference depth, (c) depth estimation
with the three-view dataset, and (d) depth estimation with the five-view
dataset. Areas with large errors are marked with red boxes.

Fig. 12. HDC-MVSNet inference comparison using different views of
the LuoJia-MVS dataset: (a) reference image, (b) reference depth, (c) depth
estimation with the three-view dataset, and (d) depth estimation with the five-
view dataset. Areas with large errors are marked with red boxes.

consistent experimental results obtained on both the WHU and
LuoJia-MVS datasets, the suggested stage number is three.

G. Importance of the LUOJIA-MVS Dataset and Its
Relationship With the WHU Dataset

The experiments on the LuoJia-MVS dataset proved its
validity by means of a comprehensive comparison. However,
we note that the reconstruction results for the five-view
images are not as good as those for the three-view images,
which is inconsistent with the performance obtained on the
WHU dataset. From the perspective of the data sources, the
DSM model used to simulate the LuoJia-MVS dataset was
constructed based on 1430 pairs of two-view aerial images.
Therefore, these results are likely due to the larger side overlap
of the LuoJia-MVS dataset and the larger height-to-base ratio
across the flying direction.

Moreover, comparisons using different views of both
the LuoJia-MVS and WHU datasets are presented in
Figs. 11 and 12. According to these two figures, it is
apparent that:

1) In general, the aerial image depth estimation perfor-
mances for these two datasets are satisfactory in both the
three-view and five-view scenarios. It is also apparent
that the main errors are located in the object edges
[e.g., Figs. 9(b) and 10(b)] and the regions with large

Fig. 13. Visualization comparison on three examples of real aerial images.

TABLE VIII

PARAMETERS OF THE REAL DATASET AND THE SYNTHETIC DATASET

depth variations (e.g., the red boxes in the second row
of Fig. 12), which is the case in both datasets.

2) In terms of the land cover, from the red boxes in the third
row of Fig. 12, it can be seen that the reconstruction for
the region suffering from shadow shows more errors.
Therefore, it can be concluded that the LuoJia-MVS
dataset is more challenging than the WHU dataset.

In summary, despite the complicated scenes and multiple
land-cover types, relatively good depth estimation results can
be obtained on the LuoJia-MVS dataset. The LuoJia-MVS
dataset also contains several land-cover types that are not
found in the WHU dataset. Moreover, there is also an urgent
need to assess the reconstruction ability of complex regions,
such as rural residential areas. For these situations, the LuoJia-
MVS dataset can provide an effective benchmark.

H. Results Obtained on Real Aerial Imagery

In order to validate the effectiveness of HDC-MVSNet on
real aerial imagery, three representative land-cover types were
considered, i.e., forest land, factory, and rural residential area
(see Fig. 13). To ensure sample independence, these images
were also selected from the 1430 pairs of two-view aerial
images, but were outside the spatial coverage of the LuoJia-
MVS dataset. The parameters of these real images are listed
in Table VIII. For each selected aerial image, Smart3D was
used to correct the camera distortion, and Photoscan was
used to estimate the camera parameters. The estimated depth
of the real aerial images was then directly inferred by the
HDC-MVSNet network trained on the proposed LuoJia-MVS
simulated dataset, and the reference depth was estimated from
the 3-D DSM mentioned in Section II-A.

In the three-view scenario, three real aerial images with
certain forward overlaps were manually selected. In order to
show the results for a larger area, to give a better visual
impression, we down-sampled each aerial image by a factor
of 4 and then cropped it into sub-regions with the size of
384 × 768. The forward overlap of these sub-images was no
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less than 90%. In this way, the size of the real images was the
same as the size of the simulated images in the LuoJia-MVS
dataset. As can be seen in Fig. 13, the proposed HDC-MVSNet
method still performs well on real aerial images.

VI. CONCLUSION

In this article, a new depth map-based MVS deep
neural network named HDC-MVSNet has been pro-
posed for depth estimation with multiview aerial images.
We have also described a new benchmark dataset—
the LuoJia-MVS dataset (http://irsip.whu.edu.cn/resources/
resources_en_v2.php)—which complements the current aerial
image depth estimation datasets in terms of the land-cover
types, landscapes, and dataset volume. The first contribution
of the proposed HDC-MVSNet method is the full-scale fea-
ture pyramid extraction module used to incorporate low-level
details with high-level semantics from feature maps at different
scales, which is applicable for the objects in aerial images.
The second improvement refers to the hierarchical set of 3-
D convolutional blocks, which are used to take advantage of
the multifeature information, as the current algorithms do not
consider the feature channels. Finally, a deformable “true 3-D”
convolutional block was developed to deal with the deforma-
tion of the above-ground objects in multiview images. The
experimental results demonstrated that the proposed HDC-
MVSNet method outperformed the other state-of-the-art MVS
aerial image depth estimation methods on both the WHU and
LuoJia-MVS datasets. In the future, 3-D semantic detection,
which integrates semantic segmentation and aerial image depth
estimation as a uniform task, will be included in our agenda.
Moreover, with regard to the pleasing performance of the depth
map-based networks for aerial image depth estimation, it will
be of interest to further develop this technique and apply it to
the satellite image-based 3-D reconstruction task.
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