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DWin-HRFormer: A High-Resolution Transformer
Model With Directional Windows for Semantic

Segmentation of Urban Construction Land
Zhen Zhang , Xin Huang , Senior Member, IEEE, and Jiayi Li, Senior Member, IEEE

Abstract— In this article, a deep neural network for
semantic segmentation of high-resolution remote sensing images
is proposed for urban construction land classification. The
network follows a high-resolution network (HRNet) architecture.
Specifically, a directional self-attention on the paths of different
resolutions is proposed, aiming to correct the directional bias
caused by the attention of strip windows during the model
learning, while also reducing the computational complexity, and
allowing the model to improve both the accuracy and the
speed. At the end of the network, a distributed alignment
module with spatial information is constructed to train additional
learnable parameters, to adjust the biased decision boundaries
through a two-stage learning strategy, and alleviate the problem
of accuracy degradation due to the unbalanced training data.
We tested the proposed method and compared it with the
current state-of-the-art (SOTA) semantic segmentation methods
on the Luojia-fine-grained land cover (FGLC) dataset and the
Wuhan Dense Labeling Dataset (WHDLD), and the proposed
one obtained the best performance. We also verified the
effectiveness of each component of the network through
ablation experiments. The code and model will be available at
https://github.com/Zhzhyd/DWin-HRFormer.

Index Terms— Deep learning, remote sensing imagery,
semantic segmentation, transformer, urban construction land.

I. INTRODUCTION

WITH the development of aerospace and sensor
technology, researchers can now quickly obtain high-

quality and high-resolution remote sensing images over
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large areas [1], [2]. These images contain both ecological
information and the footprints of human activities, such as
building construction, farming, and so on. The potential infor-
mation from these images provides data support for numerous
applications, such as urban planning [3], [4], [5], [6],
agricultural production [7], [8], and so on, among which
urban construction land monitoring is a typical remote sensing
application, especially in rapidly urbanizing areas, e.g., many
Chinese cities [9], [10], [11].

It focuses on the intensity of the development and the use
of urban construction land, mainly including monitoring of
three land use categories within the urban construction sites,
i.e., “buildings,” “roads,” and “bare soil.” In the process of
urban construction in China, some cities and their suburban
areas have been designated by local governments as urban
construction areas. Some of the projects in these areas (or
parcels) are progressing well and can be completed on
time. However, some projects are on hold or proceeding
slowly due to a certain of complicated factors. Therefore,
to monitor the progress of these urban construction projects,
local governments began to implement project progress
monitoring regularly (e.g., quarterly), by detecting buildings,
roads, and bare soil in these designated urban construction
areas to determine their construction status. In terms of
this application requirement, this article aims to study the
semantic segmentation of urban construction land. Specifically,
according to the requirements of China’s natural resources
department, urban construction land should be classified into
three categories, i.e., “buildings,” “roads,” and “bare soil.”
Other categories are considered nonconstruction land.

It is noteworthy that there is usually a severe imbalance
between these four land-use types, as shown in Fig. 1. At the
same time, urban land monitoring requires high-frequency
and rapid observation of the land use, thus requiring high
monitoring efficiency. Semantic segmentation, at its core, is the
assignment of a semantic label to each pixel in an image. The
rapid development of semantic segmentation algorithms makes
it a possible solution for urban construction land monitoring.

In recent years, the deep convolutional neural networks
(CNNs) have broken the accuracy bottleneck of artificial object
detection. As a result, CNNs have now become the primary
method for semantic segmentation. Many powerful CNN-
based backbone networks, such as very deep convolutional
network (VGGNet) [12], ResNet [13], and so on, have
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Fig. 1. Land categories of interest in urban construction land monitoring.
The red boxes in the circles indicate buildings, the blue boxes indicate roads,
and the brown boxes indicate SUC. The bar chart at the bottom right shows
the imbalance in the proportion of the four land categories.

been designed. The subsequent development of networks,
such as fully convolutional networks (FCNs) [14], feature
pyramid networks (FPNs) [15], UNet [16], SegNet [17],
multi-spectral, multi-view, and multi-task deep network
(M3Net) [18], and DeepLab V3+ [19], has made the
encoder–decoder architecture a popular strategy for semantic
segmentation networks. Furthermore, the networks, such as
high-resolution network (HRNet) [20] and multiple attending
path neural network (MAP-Net) [21], also demonstrate the
great potential of HRNet architectures in dealing with
multiscale image scenes. In addition, a large number of
related studies, including the interaction of local and global
information [22], [23], attention mechanisms [24], [25], [26],
and multiscale feature representation [27], [28], have further
improved the performance of the networks. However, CNN-
based network structures have specific induction deviations,
such as localization and translational invariance, which limits
its ability to extract long-range spatial dependencies, leading
to a reduction in the model performance [29].

The transformer model proposed by Vaswani et al. [30]
can learn features through a self-attention mechanism, and it
has been effectively applied to natural language processing
(NLP), achieving excellent performances [31], [32]. Inspired
by the success of the transformer model in NLP, researchers
have applied the transformer structure to computer vision
tasks. For example, Chen et al. [33] trained a sequence
transformer with a comparable performance to CNNs in image
classification tasks. The vision transformer (ViT) model [34],
which is a pure transformer model, outperformed CNN-based
models in terms of accuracy after pretraining on large-scale
datasets. This demonstrates the great potential of transformer
for computer vision tasks. Subsequently, transformer models
have been used for various computer vision tasks, including
object detection [35], [36], semantic segmentation [37], image
processing [38], [39], and video understanding [40], [41].

The segmentation transformer (SETR) [37] and Seg-
menter [42] models were the first transformer model applied to
the semantic segmentation task. Despite the powerful feature
extraction capabilities of these models, they use the original
image as input, which leads to a computational complexity

that is proportional to the square of the image size, and
a lot of computational resources and memory consumption
are required. This issue can be addressed by restricting the
attention area of each token from a global to a local scale
(e.g., a window) and by moving windows for information
interaction between them [43], [44]. However, this approach
expands the receptive field slowly and requires the stacking of
more transformer blocks to achieve global attention. Notably,
a sufficiently large receptive field is crucial for semantic
segmentation. Ho et al. [45] and Dong et al. [46], respectively,
used an axial attention mechanism and a cross-shaped window
self-attention mechanism to achieve global attention and
effectively improved the efficiency. However, it should be
noted that ignoring the directional information of natural
images can lead to degradation of the model accuracy.

To fully extract the features of the ground objects in
all directions and make the model have a large receptive
field, we propose a directional window self-attention (DWSA)
mechanism, which is further embedded into an HRNet archi-
tecture, for urban construction land monitoring. Meanwhile,
a distribution alignment (DA) module with consideration of
spatial contextual information (DASCI) is proposed to cope
with the imbalance between the land categories. Compared
with the existing two-stage imbalance learning methods
[47], [48], [49], the proposed DASCI module can exploit the
spatial contextual information more effectively. In summary,
the main contributions of this article are as follows.

1) We propose a directional self-attention mechanism, which
uses a series of windows with different directions to perform
self-attention computation in parallel, in order to overcome the
problem that the network tends to ignore the feature orientation
bias during the feature representation. In addition, this method
can promote the computational efficiency and at the same time
improve the classification accuracy.

2) A DASCI is designed to deal with the problem
of classifying the imbalanced land categories (i.e., with a
significantly smaller sample size compared with other ones).

3) We propose a new network, namely DWin-HRFormer,
by synthesizing the DWSA mechanism and DASCI module
within an HRNet architecture for the semantic segmentation
of urban construction regions.

II. RELATED WORK

A. Deep High-Resolution Structure Networks

The semantic segmentation networks can be divided into
encoder–decoder structures, high-resolution structures, and
other ones. Since the transformer model demonstrated its
excellent performance, a lot of new models have been
developed. A natural strategy is to replace the convolutional
blocks with transformers or embed them into the existing
network structure. For example, Cao et al. [50] proposed a
U-shaped network based on the shifted window of the Swin
transformer [43]; Chen et al. [51] introduced a transformer
after the CNN-based encoder to extract global contextual
information; Wang et al. [52] used an attention mechanism
to refine the skip connection and eliminate the ambiguity
between the features in different stages of the encoder
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and decoder; He et al. [53] constructed a dual-encoder
U-shaped network using transformer-based and CNN-based
encoders in parallel. All these methods belong to the
encoder–decoder architecture. On the other hand, the
HRFormer [54] is based on a high-resolution structure and
uses a self-attention mechanism to replace the convolution
operation, in order to maintain a high-resolution representation
of the network and combine the advantages of the transformer
model and HRNet [20]. The high-resolution architecture has
achieved great success in both pose estimation [20], [54] and
semantic segmentation [20], [54] tasks. The high-resolution
representation has advantages in both semantic and spatial
feature expression and can cope well with the multiscale
problem of remote sensing imagery.

B. Efficient Self-Attention Mechanisms

In NLP, many effective attention mechanisms have been
devised to improve the efficiency of transformer processing
of long sequences [55], [56], [57], [58], [59], [60]. However,
these mechanisms are often difficult to apply to visual
tasks. The computational complexity of a model using the
original self-attention mechanism [37], [42], [61], [62], [63]
is quadratic to the image size, as shown in Fig. 2(a). The effi-
ciency of the self-attention mechanism is particularly impor-
tant for high-resolution remote sensing images. To improve
the efficiency of attention computation, it is reasonable to
apply attention to a local window and move the window in
a specific direction, so that the attention computation covers
the whole feature map. Some researchers [43], [44], [50], [53]
have used a local self-attention mechanism and performed
the information interaction of different local windows by
shifted local self-attention (SLSA), as shown in Fig. 2(b).
Ho et al. [45] achieved global attention by applying a local
window along the horizontal or vertical axis, as shown in
Fig. 2(c). Dong et al. [46] processed horizontal and vertical
windows in parallel, similar to grouped convolution, which
enhanced the performance of representation learning, as shown
in Fig. 2(d). However, the grouping approach tends to ignore
the directional bias of the ground objects in remote sensing
images.

C. Imbalance Learning

In urban construction land monitoring, construction land
typically has a smaller proportion than other land-cover
types, resulting in an imbalance in the foreground and
background [64]. Furthermore, due to the characteristics
of the urban construction land, the imbalance may exist
between the each category (e.g., building and soil under
construction (SUC), Fig. 1). In the field of computer vision,
much research has been devoted to the problem of how to
efficiently model long-tailed class distributions. In general,
previous studies have primarily used one-stage imbalance
learning or two-stage imbalance learning. One-stage imbalance
learning mainly includes sampling [65], [66], [67], [68],
loss function weighting [69], [70], [71], [72], and transfer
learning [73], [74], [75], [76]. The sampling methods include
upsampling the categories with a smaller size, downsampling

the categories with a larger size, or other strategies of
balancing the number of samples across categories. The
principle of the loss function weighting methods is to control
the loss weights for each category or sample. The transfer
learning methods aim to transfer the knowledge learned from
the head category to the tail to improve the classification
accuracy. However, these methods are usually task-related or
model-related and are difficult to apply to different tasks.
Two-stage imbalance learning can improve the prediction
performance mainly by decoupling the feature learning and
classification head [47], [48], [77], [78]. Unfortunately,
however, this approach requires tedious parameter tuning
and is not easily applied to the downstream tasks. Recently,
Zhang et al. [49] proposed a unified framework for long-
tail class prediction to accommodate various downstream
tasks. Nevertheless, the approach ignores spatial contextual
dependencies, which are critical for dense prediction tasks.
To alleviate this problem, we propose the DASCI module in
this article.

III. METHOD

A. Overall Architecture

The overall structure of the proposed DWin-HRFormer
architecture is illustrated in Fig. 3. We follow the network
structure design of HRNet [20] and HRFormer [54] and lever-
age two convolutional layers (3 × 3 convolutional layers with
stride 2) for token embedding (denoted as the convolutional
token embedding (CTE) module) to obtain (H/4) × (W/4)

patch tokens with dimension C for each. The main body
of the network consists of four stages. Each stage gradually
adds convolution streams from a high-to-low resolution, with
adjacent convolution streams differing in resolution by a factor
of 2, and multiple convolution streams of different resolutions
being performed in parallel at each stage. Specifically, the
x th stage contains x convolution streams corresponding to
x resolutions (the i th convolution stream corresponds to a
resolution of (H/2i+1) × (W/2i+1)). At each stage, the
convolution streams of different resolutions are updated by a
series of sequentially connected DWin transformer blocks, and
multiresolution fusion is performed by repeatedly exchanging
information between parallel streams. The DWin transformer
block replaces the self-attention of the standard transformer
block with the proposed DWSA mechanism. Finally, the
learning of each category is balanced by the DASCI module
and restored to the original resolution size.

B. Directional Window Self-Attention

Even though the standard full self-attention mechanism has
a strong contextual modeling capability, its computational
complexity is quadratic to the size of the feature map.
In this study, the urban construction land monitoring mainly
uses high-resolution images at the meter or submeter
level. In this situation, the dense prediction tasks (e.g.,
semantic segmentation and target detection) require enormous
computational cost [79], [80], [81]. To alleviate this problem,
some researchers [43], [44] suggested executing self-attention
in a local window and applying a moving window to expand
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Fig. 2. (a) Full self-attention. (b) SLSA. (c) Sequential axial self-attention. (d) Cross-shaped window self-attention. (e) DWSA. Please notice that all the
attention windows are divided to cover the whole picture, and the example shown in the figure is one of the windows.

Fig. 3. Overall structure of the DWin-HRFormer architecture. The blue areas mark the different stages. The first stage uses convolutional blocks, and the
other stages use DWin transformer blocks.

the receptive field. Nevertheless, in this way, the token within
each transformer block still has a limited receptive field, and
more blocks should be stacked to achieve global self-attention.
Dong et al. [46] utilized cross-shaped windows to alleviate
the problems of the limited attention area and computational
complexity, but cross-shaped windows tend to ignore the
directional characteristics of certain terrestrial objects (e.g.,
roads).

In this research, we propose a DWSA mechanism to
solve this problem, as shown in Fig. 2(e). This attention
mechanism divides the feature map by using strip windows
in n different directions, performs self-attention in parallel
within the windows in different directions, and finally merges
the results of all the directional calculations. The larger the
value of n is, the more complete the feature extraction in
different directions is, but the computational complexity is
also enlarged. Considering the balance of model performance
and complexity, and the fact that the CTE module reduces
the resolution of the raw images, four different orientations of
strips at 0◦, 45◦, 90◦, and 135◦ were adopted in this study. The
structure of the DWSA mechanism is shown in Fig. 4, where,
when parameter n is 4, it adequately focuses on the features
of the ground objects in various directions. It can be observed
that the horizontal and vertical strips focus on the interclass
attention computation of the roads in the image. In contrast,
the inclined strips focus on the intraclass attention computation
of the roads. sw denotes the strip width, which can balance the
learning ability and computational complexity. Smaller values
are used for higher resolution feature maps while larger ones

Fig. 4. DWSA mechanism.

for lower resolution maps, to speed up the model. The detailed
procedure for the DWSA mechanism (with n = 4) is given
below.

The feature map X ∈ R(H×W )×C is linearly projected to K
heads, each of which performs a local self-attention calculation
in one of the four windows.

Taking the horizontal strip window as an example, X is
partitioned into P horizontal strips [X1, . . . , X P

], each with
the same width sw, and each containing sw × W tokens. The

Authorized licensed use limited to: Wuhan University. Downloaded on February 22,2023 at 11:48:19 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DWin-HRFormer: A HIGH-RESOLUTION TRANSFORMER MODEL WITH DIRECTIONAL WINDOWS 5400714

Fig. 5. (a) Horizontal strip window partitioning. (b1)–(b3) Illustration of an
efficient batch computation approach for self-attention in 45◦ strip window
partitioning.

window width can be adjusted to fit the size of the feature
or to balance the computational overhead with the receptive
field. The self-attention calculation is performed independently
within each window. The self-attention algorithm for the kth
head can be defined as follows:

X =
[
X1, X2, . . . , X P]

(1)

where X i
∈ R(sw×W )×C and P = (H/sw)

Y i
k = Softmax


(

X i W Q
k

)(
X i W K

k

)T√
dk
P

X i W V
k (2)

where i = 1, . . . , P

H − Attentionk(X) =
[
Y 1

k , Y 2
k , . . . , Y P

k

]
(3)

where W Q
k ∈ RC×dk ,W K

k ∈ RC×dk , and W V
k ∈ RC×dk denote

the projection matrix of the kth head queries, keys, and values,
respectively, where dk is C/K . Similarly, the output of the
self-attention calculation for the vertical strip of the kth head
is denoted as V −Attentionk(X). Furthermore, for the skewed
strip window, we propose a more efficient batch calculation
method: moving the upper triangular data before the strip
division and performing the mask self-attention calculation in
the continuous region of the data, as shown in Fig. 5. The
output of the self-attention calculation for the kth head of the
tilted strip window is then denoted as 45 − Attentionk(X) and
135 − Attentionk(X), respectively.

The K heads are divided into four groups, each containing
K /4 heads. These four groups correspond to four different
self-attention calculations, and the final result is obtained by
combining the outputs of the four groups

DWin − Attention(X)

= Concat(head1, . . . , headK)W O (4)

headk =


H − Attentionk(X)k = 1, . . . , K

4

V − Attentionk(X)k =
K
4 + 1, . . . , K

2

45 − Attentionk(X)k =
K
2 + 1, . . . , 3K

4

135 − Attentionk(X)k =
3K
4 + 1, . . . , K

(5)

where W O
∈ RC×C denotes the general projection matrix

that projects the output dimension to the target dimension.
In summary, the proposed DWSA mechanism expands the
receptive field of the token within a transformer block by
different head groupings. Its different directions also extend
the self-attention computation within and between classes. The
computational complexity of DWSA is

�(DWSA) = HWC ∗ (2C + sw ∗ H + sw ∗ W ) (6)

Fig. 6. (a) Structure of the standard transformer block. (b) Structure of the
DWin transformer block. Layer normalization is denoted as LN. Multihead
self-attention is denoted as MSA. Multilayer perceptron is denoted as MLP.
Our proposed DWSA is denoted as DWSA.

where H , W , and C denote the length, the width, and the
number of channels of the feature map, respectively, and sw
denotes the window width. In the experimental section, we will
verify the accuracy improvement brought by the different
stages of the tilted strip window.

C. DWin Transformer Block

The overall structure of the DWin transformer block is
shown in Fig. 6(b), which differs from the standard transformer
block [Fig. 6(a)] in two aspects: 1) our proposed module
uses DWSA for feature extraction and 2) it uses the locally
enhanced positional encoding (LePE) method [46]. LePE uses
DWConv for the position encoding, which can be efficiently
applied to downstream tasks, with an arbitrary resolution
as input. The LePE encoding [46] has demonstrated its
superiority over absolute positional encoding (APE) [30],
conditional positional encoding (CPE) [82], and relative
position representation (RPE) [83]. The DWin transformer
block can be expressed as follows:

X̂ l
= DWin − Attention

(
LN

(
X l−1))

+ X l−1 (7)

X l
= MLP

(
LN

(
X̂ l))

+ X̂ l (8)

where X l represents the output of the transformer block at
layer l.

D. DA With Spatial Contextual Information

The proposed DASCI module belongs to the two-stage
imbalance learning method and can flexibly adjust the
correction magnitude while introducing spatial contextual
information. The structure of the DASCI module is shown
in Fig. 7. The Classifier Head includes only upsampling, and
it can be replaced by any classification head that can improve
the accuracy of the model. The black arrow indicates the first
stage of the training process, the red arrow indicates the second
one, and the blue arrow indicates that both stages need to be
performed.

The problem with the existing long-tail methods is the
biased decision boundaries [49]. Therefore, in the first stage,
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Fig. 7. Structure of the DASCI.

the network is trained using the original dataset to achieve
its feature extraction ability. In this stage, the feature maps of
each resolution are upsampled to the same size and combined.
The prediction results at the original resolution are obtained
after the classification head.

In the second stage, the focus is on correcting the
classifier’s output. Specifically, the training parameters of each
module trained in the first stage are frozen, and the original
classification predictions are obtained by inference under
these parameters. We denote the category prediction after the
classification head as z = [z1, . . . , zH W ], where H and W are
the length and the width of the feature map, respectively. zi is
a vector of length C , representing the predicted probability of
each category. The original classification predictions can then
be linearly mapped by α and β

si = αi · zi + βi (9)

where α and β are trainable parameters with the same size
as the original image and are subsequently fed into the
convolutional layer (3 × 3 convolutional layer with stride 1).
In this way, the spatial contextual information is considered;
i.e., each class at different spatial locations has different tuning
parameters and can be influenced by their surrounding pixels.

Finally, the original and adjusted classification predictions
are fed into the confidence score function σ(x), which is
adaptively adjusted to control the magnitude of the correction

ẑi = σ(x) · si + (1 − σ(x)) · zi . (10)

The confidence score function is obtained by linearly
mapping the feature map and then passing through the softmax
layer.

IV. RESULTS AND DISCUSSION

A. Datasets

1) Luojia-FGLC Dataset: The Luojia-fine-grained land
cover (FGLC) dataset covers six provinces in China: Anhui,
Shanxi, Hainan, Xinjiang, Gansu, and Qinghai. The detailed
geographical distribution of the Luojia-FGLC dataset is
provided in Table I. The images were acquired by China’s
high-resolution series of satellites (i.e., GF-1, GF-2, ZY-3,
and so on), containing red, green, and blue bands, with a
resolution ranging from 0.8 and 1 to 2 m. We merged the
original categories to the categories of background as well as
the three land cover classes in the urban construction regions,
i.e., building, road, and bare soil, and cropped the images to
512 × 512, of which 41 973 images were randomly selected
for the training and 4418 for the testing.

TABLE I
GEOGRAPHICAL DISTRIBUTION OF THE LUOJIA-FGLC DATASET

Fig. 8. Sample images and corresponding labels for the Luojia-FGLC
dataset and the WHDLD. (The first and second rows are sampled from the
Luojia-FGLC dataset, and the third and fourth rows are sampled from the
WHDLD.)

2) Wuhan Dense Labeling Dataset [84]: The pixels of each
image in this dataset are manually labeled into the following
six categories: building, road, pavement, vegetation, bare soil,
and water. The Wuhan Dense Labeling Dataset (WHDLD)
contains 4940 red-green-blue (RGB) images with a spatial size
of 256 × 256 and a resolution of 2 m. Similarly, we merged the
original categories to the categories of background, building,
road, and bare soil and randomly selected 4446 images for
training and 494 for testing.

Fig. 8 shows the sample images of the two datasets.

B. Implementation Details

1) Training Settings: We used the PyTorch framework
to construct the network model proposed in this article.
An AdamW optimizer with a weight decay of 1e−4 was
applied to optimize the model. A cross-entropy loss function
was employed, the initial learning rate was set to 1e−4, and
a cosine annealing decay strategy was adopted. The batch
size was set to 6, and the maximum epoch number was 120.
At the same time, the images were normalized, regularized,
and enhanced using horizontal flip, vertical flip, random angle
rotation, color dithering, and so on. All the experiments were
completed on NVIDIA GeForce RTX 3090 GPUs × 3.

2) Evaluation Indices: In this article, the intersection-over-
union (IoU), the mean IoU (mIoU), and the average F1-score
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TABLE II
ABLATION EXPERIMENTS IN DIRECTION WINDOW SELF-ATTENTION ON THE WHDLD. ALL RESULTS IN THE TABLE ARE AVERAGED OVER MULTIPLE

EXPERIMENTS. PARENTHESES IN THE MIOU COLUMN INDICATE THE STANDARD DEVIATIONS OF MULTIPLE EXPERIMENTS. THE AVERAGE
ACCURACY GAINS OF THE SPECIFIC CLASSES RELATIVE TO THE BASELINE ARE ALSO PROVIDED IN THE BRACKETS

TABLE III
ABLATION EXPERIMENTS WITH THE DASCI MODULE ON THE LUOJIA-FGLC DATASET AND THE WHDLD. THE BASELINE HERE REFERS TO THE

HRNET USING DWSA. DA INDICATES THE DISTRIBUTION ALIGNMENT MODULE, AND DASCI INDICATES THE PROPOSED DA MODULE.
ALL RESULTS IN THE TABLE ARE AVERAGED OVER MULTIPLE EXPERIMENTS. PARENTHESES IN THE MIOU COLUMN INDICATE THE

STANDARD DEVIATIONS OF MULTIPLE EXPERIMENTS. THE AVERAGE ACCURACY GAINS OF THE SPECIFIC CLASSES RELATIVE TO
THE BASELINE ARE ALSO PROVIDED IN THE BRACKETS

are used to evaluate the model performance

IoU =
TP

TP + FP + FN
(11)

mIoU =
1

k + 1

k∑
i=0

TP
TP + FP + FN

(12)

AverageF1 =
1

k + 1

k∑
i=0

2 ×
precision × recall
precision + recall

. (13)

For each category, TP denotes true prediction on a positive
sample, FP denotes false prediction on a positive sample, and
FN denotes false prediction on a negative sample. Precision
indicates the proportion of TP in the total positive prediction,
and recall indicates the proportion of TP in the total positive
samples.

We evaluated the model speed in terms of the number of
images processed per second, measured in frames per second
(FPS). All the FPS values in this article are model inference
speed.

C. Ablation Study

To evaluate the performance of the DWSA mechanism
and DASCI module in urban construction land monitoring,
we used HRFormer [54] as a baseline to perform ablation
experiments on the WHDLD [84].

1) Effect of DWSA: The DWSA mechanism can capture
the features of ground objects in different directions.
In the proposed network structure, the different paths have
different resolutions. We applied the DWSA mechanism to
varying combinations of paths and analyzed its effect on the

classification accuracy of each category. The results are listed
in Table II.

First, we replaced the original attention mechanism with
the DWSA mechanism on each path. Note that without
using the DWSA mechanism on all the paths, the network
degenerates to the original HRFormer. Results show that
when the DWSA mechanism is used for Path2, the most
significant gain is obtained for bare soil, with a 2.46%
increment in IoU compared with the baseline. The DWSA
mechanism used for Path3 exhibits the largest gains for
buildings and roads, with the IoU increasing by 2.38% and
3.94%, respectively, compared with the baseline. It is apparent
that the performances of the DWSA mechanism in the higher
resolution paths (Path1) and lower resolution paths (Path4) are
not as significant as its use in the medium-resolution paths
(Path2 and Path3), in terms of the classification accuracy.
In the case of lower resolution paths, a possible reason for
this phenomenon is the small size of the feature maps on the
lower resolution paths; e.g., the size of the feature map for
Path4 in the proposed network is 16 × 16. At this size, the
attention window (7 × 7 in HRFormer and 8 × 16 in the
proposed network) is close to one-half of the global attention,
resulting in the features’ orientation bias being insignificant
within each window. Hence, the improvement in the network
performance is limited. On the other hand, the features in
the higher resolution paths contain rich spatial information,
and the model focuses on the edges of the features and the
information about the smaller objects. Moreover, the smaller
window in this path makes the features more fragmented
by each window, so that some land cover classes cannot be
entirely included in one window. Hence, in this case, the
improvement in the classification effect is also limited.
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Fig. 9. Difference between DWSA and SLSA in feature extraction. The
orange boxes indicate the windows of SLSA, and the green boxes indicate
the windows of DWSA. Baseline refers to HRformer. Baseline (w/ DWSA)
refers to the HRformer with the DWSA module.

Second, we adopted the proposed DWSA mechanism in all
the paths. In this situation, the mIoU and the IoU for buildings,
roads, and bare soil increased by 2.17%, 1.94%, 3.10%, and
1.46%, respectively, compared with the baseline network.
However, this is less effective than just performing attention
mechanism in a certain path. A possible reason is that multiple
paths with different resolutions are parallel in the HRNet
architecture, and the different paths process simultaneously
and interact with the information after different stages. This
mechanism makes the output of multiple paths have similar
information, hence leading to information redundancy, and
affects the final result of the network. Therefore, performing
a directional self-attention calculation on every parallel path
may be unnecessary and redundant. Our results show that,
actually, it is more reasonable to correct the directional bias
of the network feature extraction on one or two paths, and then,
the effects can be applied to other paths during the multipath
information fusion. To verify this conclusion, we adopted the
DWSA mechanism in Path2 and Path3, resulting in the highest
mIoU, and class-specific IoU than other paths.

To better illustrate the orientation information of the
features and the prediction bias of the model as well as
the motivation for proposing DWSA, we take the roads
as the examples of SLSA and DWSA. As shown in Fig. 9,
the orange boxes indicate the windows of SLSA, and the
green boxes indicate the windows of DWSA. Note that all
the windows of SLSA and DWSA cover the whole image,
but here we only draw the windows that cover the roads
in the image. It can be observed that SLSA requires more
windows to cover the roads in the image, thus leading to
the segmentation fragmentation of the roads. Notably, the
attention computation is performed independently between
different windows. Therefore, in this way, it is difficult to
capture the complete road information (including directional
information) within a window or through the information
interaction between multiple windows. In contrast, DWSA
can contain and describe a complete road within one or
two windows, thus enabling more effective road feature
extraction. In addition, the overlapping area of the windows
in different directions (e.g., the windows of four directions
in this article) of DWSA is larger than that of SLSA, which

is more conducive to the information interaction between the
windows with different directions. In this way, DWSA is more
effective in extracting directional features of ground objects
(e.g., roads). Fig. 9 shows the difference in feature extraction
between DWSA and SLSA, where the second and third rows
demonstrate the intermediate feature maps of the models with
SLSA and DWSA, respectively.

In addition, we evaluated the influence of model speed when
replacing the original attention mechanism by the proposed
DWSA in different paths. The results (see Table II) show
that from the high-resolution path to the low-resolution one,
the feature map size decreases, the attention window size
increases, and the model speed slows down. This phenomenon
is in line with our expectations. The model is fastest when
replacing the attention mechanism by our proposed DWSA in
all the paths.

2) Effect of the DASCI Module: As shown in Table III,
DW-Baseline (w/ DA) and Baseline (w/ DASCI) indicate
the DA module [49], and the proposed DA module DASCI
is embedded to the proposed DW-HRFormer network,
respectively. When tested on the Luojia-FGLC dataset, the
Baseline (w/ DASCI) achieves an increment of 0.46, 1.38,
0.61, and 0.31 over the Baseline in building IoU, bare soil
IoU, mIoU, and average F1-score, respectively. It gives the
best accuracy for the bare soil that has the smallest sample
size, suggesting that the proposed DASCI module can correct
the biased decision boundaries in the second training stage.
Furthermore, compared with the DA module, the DASCI
module shows an increase of 0.19, 0.16, 0.47, and 0.05 in
building IoU, bare soil IoU, mIoU, and average F1-score,
respectively, verifying the importance of spatial information
for dense prediction tasks.

In the experiment on the WHDLD, similar results were
obtained. On this dataset, Baseline (w/ DASCI) shows the
increases of 0.54, 1.12, 1.46, 1.04, and 0.83 over Baseline
for building IoU, road IoU, bare soil IoU, mIoU, and average
F1-score, respectively. Compared with the DA module,
it shows an increase of 0.09, 0.41, 1.36, 0.63, and 0.53 in
building IoU, road IoU, bare soil IoU, mIoU, and average
F1-score, respectively.

3) Visualization of Ablation Experiment Results: As
mentioned before, the DWSA and DASCI modules can
improve the accuracy of the semantic segmentation. To better
demonstrate their gains on the results, a visual comparison
is provided (Fig. 10). The baseline refers to HRformer.
Baseline (w/ DWSA) refers to the HRformer with the DWSA
module. Baseline (w/ DWSA and DASCI) is the proposed
network, which uses both DWSA and DASCI modules. The
DWSA module effectively takes the directional information of
the features into account, and significant gains are obtained
for the objects with obvious directional information, e.g.,
roads, as shown in the red circles in Fig. 10(b). The
DASCI module can alleviate the accuracy degradation caused
by the unbalanced number of the land categories, and its
segmentation results for the categories with smaller numbers
(e.g., bare soil) are significantly improved, while the results
for other categories (e.g., buildings) can also be improved to
varying degrees, as shown in the red circles in Fig. 10(c).
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Fig. 10. Visual comparison of the results of ablation experiments on the
Luojia-FGLC dataset. (a) Baseline. (b) Baseline (w/ DWSA). (c) Baseline (w/
DWSA and DASCI). Baseline refers to HRformer. Baseline (w/ DWSA) refers
to the HRformer with the DWSA module. Baseline (w/ DWSA and DASCI)
is the proposed network, which uses both DWSA and DASCI modules.

Fig. 11. Performance of DWin-HRFormer with different values of n. The
horizontal axis indicates the number of strip directions, and the vertical axis
indicates the mIoU. The size of the circle indicates FPS during inference.
A larger FPS value represents faster model inference.

D. Discussion of the Hyperparameter n

We have discussed the number of directions of the window.
As shown in Fig. 11, the increase in the number of directions
can improve the prediction accuracy of the model. However,
after n is greater than 4, the gain becomes marginal. A possible
reason is that when the number of directions increases, the
overlap of windows in different directions becomes larger,
resulting in a decrease of the individual contribution from each
direction. At the same time, the increase in strip types causes
the model to be slower, since the dimensionality of the feature
map has to be changed frequently when computing attention
at different directions. Therefore, balancing the accuracy and
efficiency of the model, in this article, n is set to 4.

E. Comparison With SOTA Methods

To validate the performance of the proposed network,
we performed comparison experiments with the existing
state-of-the-art (SOTA) networks, e.g., UNet [16], HRNetV2-
W48 [20], MAP-Net [21], swin transformer embedded in a

TABLE IV
COMPARISON OF THE SEGMENTATION RESULTS OBTAINED ON THE

LUOJIA-FGLCDATASET AND MCNEMAR’S TEST BETWEEN THE
PROPOSED METHOD AND OTHER ONES. THE SIGNIFICANTLY

DIFFERENT METHODS ARE INDICATED AS ∗∗ WITH
γ > 3.84 AT 95% CONFIDENCE LEVEL AND

∗ FOR γ > 2.71 AT 90% LEVEL, RESPECTIVELY

U-shaped network (ST-UNet) [53], HRFormer [54], UNet-
like fully transformer-based network (FT-UNetFormer) [85],
and densely connected swin transformer (DC-Swin) [86].
Among these networks, UNet [16], HRNetV2-W48 [20], and
MAP-Net [21] are CNN-based methods, while ST-UNet [53],
HRFormer [54], FT-UNetFormer [85], DC-Swin [86], and the
proposed network are transformer-based methods. UNet [16],
ST-UNet [53], FT-UNetFormer [85], and DC-Swin [86] are
encoder–decoder structures, and all the other networks belong
to high-resolution structures.

1) Results on the Luojia-FGLC Dataset: The experimental
results of each method obtained on the Luojia-FGLC dataset
are listed in Table IV. In general, the proposed network shows
the highest accuracy compared with the other ones. Building
IoU, road IoU, bare soil IoU, mIoU, and the average F1-score
are increased by 0.62, 0.16, 2.04, 1.32, and 1.16, respectively,
compared with the best results of the other methods.

HRNetV2-W48 and MAP-Net show an improvement of
2.58 and 2.35 over the mIoU of UNet, respectively, indicating
that the HRNet architecture can better deal with the multiscale
issues. It can be seen that the mIoU of UNet is 2.20 higher
than that of ST-UNet, and the mIoU of HRNetV2-W48
is 6.33 higher than that of HRFormer. The transformer-
based models can model long-range dependencies effectively,
but they rely on a considerable amount of data. Moreover,
transformer-based models tend to require more computation
and memory resources to maintain a high batch size, due to
the numerous parameters. Notably, in this study, we used the
same hardware and software configurations to fairly compare
all the networks. In this way, however, transformer-based
models were implemented with smaller batch sizes, leading
to their performance degradation to some extent. Therefore,
the performance of the proposed network can potentially be
further improved with a larger batch size.

Fig. 12 shows the visualization results of the related
semantic segmentation methods. From the first row, it can be
seen that some parts of the road are obscured by buildings or
vegetation in the crowded building areas, which increases the
difficulty of the road extraction. Compared with the other ones,
the proposed method can more accurately distinguish between
roads and buildings. The situation is similar in the second
row. Our classification results are more accurate in identifying
the roads whose features are not apparent (see the red circle
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Fig. 12. Examples of semantic segmentation results obtained on the Luojia-FGLC dataset. (a) UNet. (b) HRNetV2-W48. (c) MAP-Net. (d) ST-UNet.
(e) HRFormer. (f) FT-UNetFormer. (g) DC-Swin. (h) DWin-HRFormer.

in the second row), which can be attributed to the fact that
the attention computation from different directions is more
capable of describing the road spatial contextual information.
In the third row, the proposed method correctly distinguishes
different styles of buildings, also benefiting from the proposed
attention mechanism. Specifically, in the proposed method, the
window width increases with the decreasing feature map size
on different paths, which not only improves the extraction of
elongated and directional features, but also the extraction of
buildings. The main challenge at the fourth and fifth rows
lies in the identification of bare soil, as marked by the red
circles. It can be clearly seen that the proposed method is more
effective in extracting the bare soil from the urban scenes.
The DASCI module introduces contextual information around
the ground objects, making its classification results not only
dependent on the features of the ground objects themselves,
but also influenced by their surroundings.

2) Results on the WHDLD: Table V lists the experimental
results of different semantic segmentation methods on the
WHDLD. The proposed method achieves an mIoU of 58.0%
and an average F1-score of 73.0%, outperforming the
other ones in all the metrics. This further demonstrates
the superiority of the proposed network for the semantic
segmentation task of urban construction land. The accuracies
obtained on the WHDLD are generally higher than those
obtained on the Luojia-FGLC dataset, due to the differences
between the datasets. However, their trend and conclusions are
similar.

Fig. 13 shows the prediction results of the different semantic
segmentation methods. Similarly, at the first and second rows,
the effectiveness of the proposed model in identifying roads
from the dense buildings is again demonstrated. At the third

TABLE V
COMPARISON OF THE SEGMENTATION RESULTS OBTAINED ON THE

WHDLD AND MCNEMAR’S TEST BETWEEN THE PROPOSED METHOD
AND OTHER ONES. THE SIGNIFICANTLY DIFFERENT METHODS
ARE INDICATED AS ∗∗ WITH γ > 3.84 AT 95% CONFIDENCE
LEVEL AND ∗ FOR γ > 2.71 AT 90% LEVEL, RESPECTIVELY

row, the integrity of the single building extracted by the
proposed method is better. The extraction results for the
building areas are more precise at the fourth row. At the last
row, the proposed model identifies a small piece of bare
soil, which is missed by other methods. The proposed
model performs consistently on different datasets, further
demonstrating the model’s robustness.

F. Efficiency Analysis

Table VI compares the speed and volume of model
parameters for all the models in the same implementation
environment. A larger FPS indicates that the model has
a faster processing speed. Although the transformer-based
models outperform the CNN structure in capturing long-range
dependencies, the computational efficiency of the transformer-
based models is generally lower than that of the CNN-based
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Fig. 13. Examples of semantic segmentation results obtained on the WHDLD. (a) UNet. (b) HRNetV2-W48. (c) MAP-Net. (d) ST-UNet. (e) HRFormer.
(f) FT-UNetFormer. (g) DC-Swin. (h) DWin-HRFormer.

TABLE VI
COMPARISON OF THE MODEL PARAMETERS, SPEED, AND ACCURACY. FPSIS THE SPEED

OF INFERENCE. TIME REFERS TO THE TIME CONSUMED FOR TRAINING

models. HRNetV2-W48 maintains the high resolution of the
feature map, and therefore, its parameters are more than
those of the other CNN methods. MAP-Net benefits from
some of its lightweight structure [21]. ST-UNet has a larger
volume of parameters, since it uses both the Swin transformer
and UNet encoder. The proposed model simultaneously
parallels multiple directional attention windows and includes
the DASCI module, so its parameters are greater than those
of HRFormer. However, its unique attention mechanism makes
its speed competitive among the transformer-based models.

V. CONCLUSION

In practical use, urban construction land monitoring involves
the detection of buildings, bare soil, roads, and urban
background. It represents an actual application of urban remote
sensing and is of great significance for urban planning and
illegal land-use monitoring in rapidly urbanizing areas, such
as in many Chinese cities. In the existing literature, the

relevant studies concerning the urban construction land are
lacking. In order to meet the demand of urban construction
land monitoring in terms of efficiency and accuracy, and to
cope with the problem caused by the imbalance between
the categories in the urban construction land, the DWin-
HRFormer neural network has been proposed in this article.
Specifically, the proposed directional attention mechanism can
effectively extract the features of the geographical objects
in each direction, depict road information more completely,
reduce road breakage, and detect building information more
effectively. Meanwhile, the proposed DASCI module can
effectively cope with the data imbalance problem in semantic
segmentation of urban construction land and improves the
extraction accuracy for the categories with a small sample size.

We verified the effectiveness of the various network modules
through extensive ablation experiments and explored the
effect of the directional attention mechanism on the network
at different resolutions. Experiments on two benchmark
datasets showed that the proposed DWin-HRFormer network
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outperformed the other semantic segmentation algorithms,
with a higher accuracy and lower complexity.

Overall, this research provides a new approach for accurate
and effective extraction of construction land information.
In our future work, we plan to further advance the urban
construction land monitoring algorithms by improving the
algorithm speed and the accuracy of the boundary extraction.
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