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ABSTRACT
Though many new remote sensing technologies have been introduced to analyze forests, regional- 
scale species-level mapping products are still rare, especially in large mountainous areas. Tree 
species abundance, low spectral separability among species and huge computing demand are 
hindrances for obtaining an accurate stand tree species map. This study addressed these problems 
by synergizing regionalization, multiple feature fusion, and model fusion and proposed a new 
machine learning workflow. The whole area, i.e. Yunnan province in China (approximately 390,000  
km2), was firstly divided into 8 distinct floristic regions according to the distributions and phylo
genetic relationships of native tree species. Thereafter, with Google Earth Engine (GEE) platform, 
multiple data sets, including Sentinel-2 imagery, SRTM DEM, and WorldClim bioclimatic, were 
collected to construct a high-dimensional feature pool for each region. Thirdly, the maximum 
entropy model （MaxEnt）, generally used for predicting ecological niche, and three classifiers, i.e. 
Random Forest (RF), Support Vector Machines (SVM), and Extreme Gradient Boosting (XGBoost), 
were used to pre-classify environmental and remote sensing data, respectively. After that, two 
types of decision fusion strategies, parallel and serial ensembles, were applied to fuse pre- 
classification probability maps for each sub-region. Finally, the spatial distribution of 19 forest 
stand species over the whole Yunnan Province was obtained by mosaicking the best classification 
results from 8 sub-regions. Our method achieves an overall accuracy of 72.18% on the entire 
validation dataset. The decision fusion models significantly improve the classification accuracy, 
with the eight partitioned best fusion models improving the accuracy by 7.33%–25.39% on 
average compared to base classifiers. This study demonstrates that the spatial partitioning strategy 
and the decision fusion integrating a proper machine learning algorithm and ecological niche 
model can significantly improve the classification accuracy of forest stand species in montane 
forests.
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1. Introduction

Information on the distribution of forest stand species 
is essential for the development of forest management 
policies and the sustainable use of forest resources 
(Fassnacht et al. 2014; Guo et al. 2020) as well as the 
assessment of biodiversity, habitat quality, carbon 
cycling, and biomass (Kollert et al. 2021; Ørka et al.  
2013; Waser et al. 2011).

The spatial distribution of tree species is traditionally 
obtained through labor-intensive field surveys. Thus, 
inventory data are expensive and time-consuming to 
create, especially in a large mountainous region. 
Remote sensing brings opportunities for cost- 
efficiently and time-efficiently obtaining vegetation- 

related information (Grabska, Frantz, and Ostapowicz  
2020). However, unlike other land cover types, the 
extremely low separability among tree species in spec
tral signature makes mapping tree species is still a big 
challenge. In this context, various data and advanced 
processing techniques are often needed, to meet the 
corresponding requirements with the desired accuracy 
and details of forest stand tree species mapping.

Multimodal remote sensing sensors provide key 
information for describing tree species. High spatial 
resolution multispectral images have rich spectral and 
textural information, and hyperspectral images with 
nano-scale spectral resolution are rich in spectral 
information (Wan et al. 2021); LiDAR data provide 
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geometric information related to tree vertical struc
ture, such as tree height, canopy diameter, and leaf 
area (Feng et al. 2020; Ke, Quackenbush, and Im 2010; 
Michaowska and Rapiński 2021). Current tree species 
classification research focuses on algorithm-driven or 
data-driven methods (Fassnacht et al. 2016). Machine 
learning algorithms have potent capabilities to map 
non-normally distributed feature into classes (Bhatt 
et al. 2022). Typical models including Random Forest 
(RF), Support Vector Machines (SVM), and Extreme 
Gradient Boosting (XGBoost) have been widely 
applied to classification. To date, with the increasing 
availability of earth observation data, Deep Learning 
(DL) models have drawn more attention. DL models 
can learn discriminant features from data through 
multi-layer neural networks, accurately capture non
linear relationship between data and classes, and thus 
achieving end-to-end image classification (LeCun, 
Bengio, and Hinton 2015).

These data and classification models have been 
widely used to map tree species with high accuracies. 
For instance, very-high-resolution (VHR) Worldview-2 
images and RF were used to identify the three most 
abundant Pine species in Galicia, with a classification 
accuracy of 91% (Alonso, Picos, and Armesto 2021). 
Feng et al. collaborated aerial hyperspectral with 
LiDAR data and used RF to identify 10 tree species in 
a forest farm with an OA of 96.10% (Feng et al. 2020). 
Zhang et al. applied 3DCNN to tree species classifica
tion, achieving a high accuracy of 93.14% while 
improving computational efficiency (Zhang, Zhao, 
and Zhang 2020). Unfortunately, these studies cannot 
be extended to large regions or globally due to high 
data collection costs.

Free-accessible images acquired by low- and med
ium-resolution satellites, like MODIS, Landsat, and 
Sentinel serials, are often used for mapping forest 
ecosystem over a large area. Many forest-related pro
ducts, such as GLAD Forest (Hansen et al. 2013), 
FROM_GLC (Gong et al. 2013), and iMap World 1.0 
(Liu et al. 2021), have been produced. However, these 
products treat forests as a single class or divide forests 
into several forest types. These researches focus on 
analyzing forest distribution and dynamic changes 
but cannot provide the spatial distribution of tree 
species. How to obtain spatial distribution informa
tion of large-scale tree species economically, effi
ciently, and accurately is still an important and 
urgent problem. Currently, Sentinel-2 (S2) satellite 

constellation may be the best choice for tree species 
classification in large regions. Several studies have 
demonstrated the high potential of unique red-edge 
band and high-density time series of S2 images for 
vegetation mapping in large regions (Grabska, Frantz, 
and Ostapowicz 2020; Welle et al. 2022). However, 
new challenges arise when classifying 
a geographically heterogeneous region such as the 
Yunnan Province.

The Yunnan province is in southwest China 
(Figure 1), which covers an area about the size of 
Germany. Mapping such a large area firstly implies 
processing massive amounts of data, and with its 
cloudy and rainy climate, more images need to be 
processed to synthesize high-quality images. 
Secondly, the horizontally and vertically natural 
conditions are highly variable, and the increased 
geospatial heterogeneity of tree species’ spectra 
and phenology in a large area challenge the map
ping process (Shirazinejad, Zoej, and Latifi 2022). 
Thirdly, Yunnan is the central part of the Indo- 
Burma biodiversity hotspot (Myers et al. 2000), 
the composition of tree species in this area is 
highly complex, and the local distribution of spe
cies is also highly variable. These factors men
tioned above increase the difficulty of tree 
species mapping.

When studies focus on developing and optimizing 
the classification process of tree species in large areas, 
one aspect that deserves significant attention is the 
influence of environment on the distribution of tree 
species. Environmental factors, such as rainfall, tem
perature, geomorphology, and soil, have essential 
effects on the distribution of tree species (Yu et al.  
2020). However, the spatial resolution of current 
environmental data is mostly lower than 1 km. For 
example, the TerraClimate dataset provides 4 km of 
temperature data (Abatzoglou et al. 2018), and the 
WorldClim dataset provides 1 km of bioclimatic vari
ables (Hijmans et al. 2005). Owing to the resolution 
gap with remotely sensed images, environmental 
data are rarely incorporated in classification processes 
based on remotely sensed data and machine learning. 
Environmental data are more often used for species 
distribution modeling, using sample points of species 
associated with environmental variables to map the 
potential distribution areas of target species. For 
example, Zhou et al. used the MaxEnt model to pre
dict the potential distribution of Cunninghamia 
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lanceolata in China (Zhou et al. 2021). Although 
machine learning classification and ecological niche 
model prediction have been extensively studied, the 
combination of the two has rarely been explored. 
Researchers are therefore missing the opportunity to 
synergize the two domains to obtain more accurate 
tree species distributions (Mouta et al. 2021). 
Therefore, a rising question is how to effectively inte
grate ecological niche models and machine learning 
to do classification over such a large area.

The development of remote sensing cloud 
computing technology and the emergence of 
platforms have brought new solutions to these 
problems. Google Earth Engine (GEE) is a cloud 
computing platform, whose powerful computing 
capabilities have changed the traditional para
digm of remote sensing data processing and ana
lysis (Tamiminia et al. 2020). Operations such as 
cloud masking, image composition within time 
windows and time series analysis are easily imple
mented on GEE. Meanwhile, the GEE platform also 
is convenient for users to employ multiple 
machine learning classifiers and ecological niche 

models to form a processing chain. In addition, 
spatial partitioning has been proved to improve 
classification accuracy for large areas with high 
environmental heterogeneity (Costa et al. 2022). 
It is more precise and reasonable to introduce 
eco-geographical regionalization strategy into 
classification process (Moraes et al. 2021).

The blooming development of multimodal sen
sors and technical revolution of processing plat
forms and methods open the door for classifying 
tree species over a large area. However, analyzing 
the data at the desired accuracy raises new chal
lenges. In this context, we aim to build 
a classification chain for accurately mapping forest 
stand species in the whole Yunnan province by 
exploring floristic regionalization, possible feature- 
level and decision-level fusion strategies, and com
binations. The objectives of this study were (ⅰ) to 
evaluate the effectiveness of using the floristic 
regionalization for forest stand tree species classi
fication, (ⅱ) to explore the significant features for 
separating tree species, and (ⅲ) to develop an 
effective method for forest stand species 

Figure 1. (a) Yunnan, a global biodiversity hotspot region, located in southwestern China. (b) The elevation map of the Yunnan. 
(c) Eight distinct floristic sub-regions of Yunnan as basic unit for classification (Li et al. 2015).
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classification by integrating ecological niche model 
and machine learning.

2. Materials

2.1. Study area

Yunnan is the most southwestern province of China 
(Figure 1(a)) and situated in a mountainous area. It has 
significant environmental heterogeneity, with diverse 
topography, landforms, and climate. As shown in 
Figure 1(b), the topography of Yunnan Province exhi
bits a high northwest and low southeast, with 
a stepped slope in the terrain, ranging in elevation 
from the highest mountain top 6740 m in the north
west to the lowest valley bottom 76.4 m in the south
east (Yang et al. 2004). The territory contains a variety 
of landform types including high mountains, hills, 
intermountain basins, river valleys, and karsts. 
Yunnan has the characteristics of low latitude, mon
soon, and mountain plain climates and crosses seven 
climate zones: northern tropical, southern subtropical, 
middle subtropical, northern subtropical, southern 
temperate, middle temperate, and highland climate.

As shown in Figure 1(c), Yunnan is bordered by the 
southeastern edge of the Tibetan Plateau in 
the northwestern part of the country and by the 
Southeast Asian countries in the western and south
ern parts, a huge meeting place of floras and forma
tions (Li and D 1986). Its northwestern part is 
introduced by the Himalayan vegetation zone and 
the ancient southern continental flora, while the east
ern part has numerous central and southern Chinese 

flora, and the northern part has the Emei, Qinling, and 
northwestern flora (Li and Pei 1991). The flora of 
southern Yunnan part is more closely related to the 
Indo-Malaysian flora, while the flora of southeastern 
Yunnan is more closely associated with the East Asian 
flora (Hua and Heil 2017). Geological activity and 
diverse topography and climate have not only forged 
Yunnan’s unique phytogeographic divergence and 
vegetation geography but also made it a well- 
known global biodiversity hotspot (Liu et al. 2021).

2.2. Multi-source data

This study used four types of data, Sentinel-2 images, 
WorldClim data, Digital Elevation Model (DEM) data 
and Forest Management Inventory data (FMI), to per
form tree species classification.

2.2.1. Sentinel-2 data
High-quality images with low cloud ratio in Yunnan are 
often difficult to obtain due to persistent cloud cover. We 
counted the number of cloud-free images in three per
iods. As shown in Figure 2, there were no valid observa
tions for some pixels throughout 2016. In contrast, the 
qualified observations exceed 10 over the most tiles 
from 7/2015 to 12/2017 and exceed 50 from 2016 to 
2020. Therefore, to obtain high-quality images and 
extract dense time-series related features, we used 
31,440 top-of-atmosphere (TOA) images from 72 MGRS 
tiles between 7/2015 and 12/2020 as input data. The 
images from 7/2015 to 12/2017 were used to extract 
spectral and texture features, and the images from 
2016 to 2020 were used to construct the time series 

Figure 2. Valid observations of Sentinel-2 images in different periods. (a) 2016.1 to 2016.12; (b) 2015.7 to 2017.12; (c) 2016.1 to 
2020.12.
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data. The temporal mismatch between the extracted 
features and FMI data year may affect the reliability of 
the classification. For this problem, the details were dis
cussed in section 5.

2.2.2. Bioclimatic and topographic data
The distribution of tree species on the earth’s surface 
is neither random nor uniform, but geographically 
specific and characterized by specific environmental 
and climatic factors (Zeb et al. 2021). Topographic and 
climatic heterogeneity has an important impact on 
tree species distribution. Therefore, bioclimatic and 
topographic-related factors are considered to be 
introduced for classification.

Bioclimatic data with a spatial resolution of 1 km were 
obtained from the WorldClim website (https://www. 
worldclim.org/data/worldclim21). These data consist of 
19-dimensional bioclimatic variables with biological sig
nificance, such as mean annual temperature, annual 
precipitation, annual temperature difference, and preci
pitation during the rainy and dry (Hijmans et al. 2005). 
Moreover, topographic data were obtained from the 
Platform Space Shuttle Radar Topography Mission 
(SRTM) Digital Elevation Model (DEM).

2.2.3. Forest Management Inventory data
The Forest Management Inventory (FMI) data 2016 in 
China was employed as the reference data for our 
study. FMI aims to determine the attributes including 
location, natural condition, tree species composition, 
and distribution of each forest stand. FMI data is 
officially produced by local forestry and grassland 
administrations, under the conduction of the national 
administration of China. As the data has been cali
brated with forest sample plots to control the error 
components of inventory, the data can provide 
a reliable reference for the different tree species.

Yunnan has about 18,000 plant species (Liu and 
Peng 2016), and it is impossible to identify all of 
them by using remote sensing imagery. We counted 
each forest stand’s distribution area in each sub- 
region based on FMI and selected the top 9 species 
in each sub-region, which resulted in 19 species in 
total (Table 1).

3. Methodology

This paper proposes a classification framework com
bining machine learning and ecological niche models 

to determine the spatial distribution of the major 
forest stand species in Yunnan Province. Figure 3 
illustrates the whole workflow, including seven 
steps: (1) Spatial division; (2) Data pre-processing; (3) 
Feature extraction; (4) Feature reduction; (5) 
Classification with component classifiers; (6) 
Classifier fusion ensemble; and (7) Accuracy evalua
tion and mapping.

3.1. Floristic regionalization

We divided Yunnan Province into eight sub-regions 
based on the Yunnan flora system (Li et al. 2015). 
This system is produced by combining the distribu
tion and phylogenetic relationships of seed plants 
of the genus 1983 in Yunnan. As shown in 
Figure 1(c), the eight sub-regions were used as 
the basic units for independent species mapping. 
Feature screening, model training, and classifica
tion were performed independently for each sub- 
region. The goal is to make the classification and 
post-classification analysis applicable to local con
ditions and tree species, avoiding the usage of 
consistent feature sets for classification across the 
study area.

3.2. Data pre-processing

3.2.1. Sentinel-2 and topographic variables
We conducted the following steps on the acquired 
Sentinel-2 images to obtain cloud-free, seamless 
image composite. Firstly, pixels obscured and 

Table 1. Observed class and its acronym.
Target legend Abbreviation

Level 1 Non-forest land /
Forest land /

Level 2 Pinus yunnanensis PY
Cunninghamia lanceolata CL
Quercus L. QL
Other broadleaves OB
Eucalyptus L.Herit EL
Pinus armandii Franch. PAF
Alnus cremastogyne Burk. ACB
Betula L. BL
Cupressus funebris Endl. CFE
PopulusL. PL
Pinus kesiya var. langbianensis PKV
Abies fabri AF
Pinus densata Mast. PDM
Sassafras tsumu ST
Hevea brasiliensis HB
Acacia dealbata Link. ADL
Juglans regia JR
Picea asperata Mast. PAM
Larix gmelinii LG
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covered by clouds were removed based on the 
adjusted cloud score algorithm (Oreopoulos, 
Wilson, and Várnai 2011). Secondly, post-cloud 
masking image data from 7/2015 to 12/2017 were 
composed by median reducer in GEE. The compo
site image was used to extract spectral, vegetation 
index, and texture features. Thirdly, we constructed 
the NDVI and Red-Edge Position Index (REP) time 
series at 5-day period, using Sentinel-2 images from 
1/2016 to 12/2020. We adopted the median of all 
high-quality observations available within the 5-day 
time window to represent the observation value. 
When no good quality observations were available 
within the 5-day period, we used linear interpolation 
to fill the data gaps. Although these methods 
address the issue of missing pixel values, there is 

still a significant amount of noise in the data pro
duct, which hinders further analysis and utilization 
of the data. To mitigate noise, we applied 
a Savitzky-Golay (SG) filter to smooth the NDVI and 
REP time series, using a moving window of size 9 
and a polynomial filter order of 2.

3.2.2. Reference data. The quality and quantity of the 
training samples are critical for training models. FMI data 
were filtered to obtain accurate and representative sam
ples. To obtain samples for forest and non-forest classi
fication, we conducted the following three steps. Firstly, 
the plots of forest (pure forest, shrub economic forest, 
mixed forest, other shrub woodlands, other special 
shrubs, economic forest, open woodland, bamboo for
est) and non-forest (construction land, watershed, 

Figure 3. Technique workflow of research.
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cropland grassland, and other non-forest lands) were 
selected from FMI data. Secondly, the selected candi
dates were further purified according to the NDVI stan
dard deviation calculated from pixels in each plot 
candidate. Candidates with high standard deviation 
value were removed, and centroids of the rest plot 
were selected as sample points. Finally, the rest samples 
were further purified through visually inspecting the 
overlaying of sample points and Sentinel-2 median com
posite image.

Similar steps were also employed for producing 
tree species samples. Firstly, plots, where the first 
dominant species accounts for more than 65% of 
the total stock volume, were seemed as pure and 
preserved. Secondly, the top 9 tree species in terms 
of coverage in each sub-region were counted from 
FMI, respectively, and corresponding plots were 
selected from the pure plots of each sub-region. 
Thirdly, with each plot as a basic unit, the standard 
deviations of Blue, NIR, SWIR, NDVI, and Greenness 
bands and the area were calculated, and plots with 
low standard deviations and large areas were pre
served. Fourthly, centroids of the preserved sub- 
compartments were selected as candidate sample 
points and finally purified by visually inspecting the 
overlaying of sample points and image composite.

The samples of each category were divided into 
a training sample set (75%) and a validation sample set 
(25%), and Figure 4 shows the numbers of training and 
validation data.

3.3. Feature pools and feature reduction

3.3.1. Mining features from multiple data
Tree species differ in canopy shape, phenology, and 
habitat. To fully understand and accurately distin
guish forest from non-forest and identify species, 
based on comprehensively reviewing the literature, 
this paper extracts various features, including spectral 
bands, texture features, vegetation indices, and other 
environmental features.

Ten bands (Blue, Green, Red, RedEdge1, RedEdge2, 
RedEdge3, NIR, Narrow NIR, SWIR1, SWIR2) were 
selected from the S2 image compositing data. Based 
on the 10 bands, the Greenness and Wetness compo
nents of Tasseled Cap Transform were also calculated 
as well as 16 vegetation indices, including Triangular 
Vegetation Index (TVI), MERIS Terrestrial Chlorophyll 
Index (MTCI), Normalized Burn Ratio (NBR), 
Normalized Difference Built-up Index (NDBI), Inverted 
Red-Edge Chlorophyll Index (IRECI), Modified 
Chlorophyll Absorption Ratio Index (MCARI), Land 
Surface Water Index (LSWI), Normalized Difference 
750/705 Chl NDI (Chl NDI), Normalized Difference Red- 
Edge Index (NDRE), Red-Edge Position Index (REP), 
Normalized Difference Vegetation Index (NDVI), 
Normalized Difference Senescent Vegetation Index 
(NDSVI), Normalized Difference Tillage Index (NDTI), 
Normalized Difference Water Index (NDWI), and Red 
Edge Chlorophyll Index (CIrededge). The formulas for 
vegetation indices are shown in Table 2.

Figure 4. The number of samples for each observed class.
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In addition, we computed six texture features (Sum 
Average, Correlation, Variance, Dissimilarity, Contrast, 
and Cluster shade) for each of the 10 spectral bands 
and the NDVI, so there are 66 texture features in total. 
Five-day interval time series data indices were computed 
from both NDVI and REP indices, resulting in a feature set 
with 146 bands (73 × 2). We also obtained 19 dimensions 
of bioclimatic variables from the WorldClim data and 3 
topographic factors, namely Elevation, Slope, and 
Aspect, from the SRTM data using the GEE built-in 
functions.

Based on the basic features mentioned above, two 
feature pools were constructed. As shown in Table 3, the 
first feature pool consists of 37-dimensional features, for 
forest and non-forest classification. The second feature 
pool consists of 257-dimensional features (Table 4) for 

forest stand species classification. Among them, 22- 
dimensional environmental features, including 19- 
dimensional bioclimatic features and 3-dimensional 
topographic features, were used as input features for 
MaxEnt; 237-dimensional feature sets, named the ALL 
Feature Set, were selected as inputs to three machine 
learning models, SVM, RF, and XGBoost.

3.3.2. Feature selection
The number and quality of features largely determine 
the algorithm’s efficiency. Selecting features with 
optimal separability is crucial for computational effi
ciency and classification performance. Thus, we opti
mized features before classification.

For the MaxEnt model, the factors were evaluated and 
selected by the following three steps. (1) Spearman 

Table 2. The vegetation indices and corresponding formulas used in this study.
Indices Formulation Reference

TVI 0:5� ð120� ðρRedEdge1 � ρGreenÞ � ð200� ðρRed � ρGreenÞÞÞ (Main et al. 2011)
MTCI ðρRedEdge2� ρRedEdge1Þ=ðρRedEdge1� ρNIRÞ (Dash and Curran 2004)
NBR ðρNIR� ρSWIR2Þ=ðρNIRþρSWIR2Þ (Long et al. 2019)
IRECI ðρRedEdge3� ρRed1Þ=ðρRedEdge1=ρRedEdge2Þ (Rozenstein et al. 2019)
MCARI2 ððρRedEdge2� ρRedEdge1Þ � 0:2� ðρRedEdge2� ρGreenÞÞ � ðρRedEdge2=ρRedEdge1Þ (Wu et al. 2008)
LSWI ðρNIR� ρSWIR1Þ=ðρNIRþρSWIR1Þ (Chandrasekar et al. 2010)
NDRE ðρNIR� ρRedEdge1Þ=ðρNIRþρRedEdge1Þ (Ahamed et al. 2011)
Chl NDI ðρRedEdge2� ρRedEdge1Þ=ðρRedEdge2þρRedEdge1Þ (Richardson, Duigan, and Berlyn 2002)
REP 705þ 35� ð0:5� ðρRedþρRedEdge3Þ� ρRedEdge1Þ=ðρRedEdge2� ρRedEdge1Þ (Schlerf, Atzberger, and Hill 2005)
NDVI ðρNIR� ρRedÞ=ðρNIRþρRedÞ (Carlson and Ripley 1997)
NDSVI ðρSWIR1� ρRedÞ=ðρSWIR1þρRedÞ (Zheng et al. 2019)
NDTI ðρSWIR1� ρRedEdge2Þ=ðρSWIR1þρRedEdge2Þ (Zhong, Hu, and Zhou 2019)
NDSI ðρSWIR1� ρSWIR2Þ=ðρSWIR1þρSWIR2Þ (Richardson, Duigan, and Berlyn 2002)
NDBI ðρSWIR1� ρNIRÞ=ðρSWIR1þρNIRÞ (Zhang, Odeh, and Han 2009)
NDWI ðρGreen� ρNIRÞ=ðρGreenþρNIRÞ (Gao 1996)
CIrededge ρNIR=ρRedEdge1� 1 (Duan et al. 2021)

Table 3. The feature candidates for the forest mask generation.

Type Proxies
Number of 

features

Spectral Bands Blue, Green, Red, RedEdge1, RedEdge2, RedEdge3, NIR, Narrow NIR, SWIR1, SWIR2 10
Vegetation Index TVI, LSWI, NDWI, NDBI, NBR, CIrededge, NDSI, NDTI, Chl NDI, REP, NDRE, MCARI2, MTCI, IRECI, NDVI, NDSVI 16
Texture Sum Average, Correlation, Variance, Dissimilarity, Contrast, Cluster shade (Calculated for NDVI) 6=1×6
Tasseled Cap 

Transformation
Wetness, Greenness 2

Topographic Elevation, Aspect, Slope 3

Table 4. The feature candidates for forest stand species classification.

Type Proxies
Number of 

features

Spectral Bands Blue, Green, Red, RedEdge1, RedEdge2, RedEdge3, NIR, Narrow NIR, SWIR1, SWIR2 10
Vegetation Index TVI, LSWI, NDWI, NDBI, NBR, CRE, NDSI, NDTI, Chl NDI, REP, NDRE, MCARI2, MTCI, IRECI, NDVI, NDSVI 16
Texture Sum Average, Correlation, Variance, Dissimilarity, Contrast, Cluster shade (Calculated for Blue, Green, Red, RedEdge1, 

RedEdge2, RedEdge3, NIR, Narrow NIR, SWIR1, SWIR2)
60=10×6

Tasseled Cap 
Transformation

Wetness, Greenness 2

Topographic Elevation, Aspect, Slope 3
Time Series NDVI, REP 146=73×2
WorldClim Bio01, Bio02, Bio03, Bio04, Bio05, Bio06, Bio07, Bio08, Bio09, Bio10, Bio11, Bio12, Bio13, Bio14, Bio15, Bio16, Bio17, 

Bio18, Bio19
19
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correlation analysis was first performed on the variables. 
(2) Pre-training was performed using all environmental 
variables, and the importance of each dimensional vari
able was evaluated using Jackknife test. (3) The variable 
most significant in the Jackknife test was selected 
among the highly correlated variables (absolute value 
of correlation ≥0.8) (i.e. the model generated from all 
variables except this variable and the model generated 
using only this variable had the smallest difference in 
regularized training gain). Highly correlated and redun
dant variables were removed, and each environmental 
factor that dominates the prediction was finally identi
fied. The selected features consist of an optimal feature 
set for the MaxEnt predicting model and called Feature 
Set 1 in the following section.

For SVM, RF, and XGBoost classifier, the relevance 
hierarchical clustering method (You et al. 2021) was 
used to select the best input features. This feature 
selection process is performed in four steps. The nor
malization method is firstly used to map all features to 
a distribution with mean value of 0 and standard devia
tion value of 1. Pre-training is secondly performed to 
determine the number of feature dimensions when the 
accuracy reaches saturation point. The feature impor
tance of the features is evaluated by the Gini impor
tance or mean reduction impurity calculated by the RF 
classifier and ranked by feature importance score. 
Spearman correlation analysis is performed on the 
most important features. The most important features 
are clustered into several clusters by the maximum 
depth threshold, and finally the features with the high
est feature importance score in each cluster are 
retained. In this study, the maximum depth threshold 
is set to 0.5 to preserve the important features with 
high separability and low correlation among the 
selected features. The optimal features are selected 
for stand tree species classification, referred to as 
Feature set 2 in the following sections, and the set of 
best features for classification and non-forest classifica
tion, hereinafter referred to as Feature set 3.

It is worth noting that, as the above-mentioned above 
selection process independently operated in each flor
istic region, Feature Set 1, Feature Set 2, and the Feature 
Set 3 may be different from region to region.

3.4. Classification with component classifiers

MaxEnt derives the constraints on species distribution, 
then seeks the possible distribution with maximum 

entropy. When the entropy achieves maximum, the 
species occurrence probability distribution is closest to 
the true distribution of species (Phillips, Anderson, and 
Schapire 2006). The prediction results of MaxEnt are 
reflected by the probability of species occurrence. And 
the larger the value, the more suitable environmental 
conditions for species survival. Due to their superior and 
stable classification performance, three machine learn
ing classifiers, including RF, SVM, and XGBoost, are the 
most popular and widely used in various applications 
(Abdi 2020; Grabska, Frantz, and Ostapowicz 2020).

The four component models are trained and vali
dated using the same samples, and empirically adjust
ment method was used to obtain the hyperparameters 
for each classifier. The MaxEnt model classification was 
implemented on local computer using the maxent soft
ware (version 3.4.1), while the three machine learning 
classifiers were implemented on the GEE platform.

3.5. Classification by multi-classifier fusion

After the classification results of the four component 
classifiers are obtained, we construct two paradigms 
to fuse MaxEnt and the three machine learning classi
fiers parallelly (Figure 5(a)) and serially (Figure 5(b)), 
respectively. The integration schematic of the two 
paradigms is shown in Figure 5.

The first paradigm is called the parallel ensemble 
model. Classification is performed by four component 
classifiers parallelly and followed by decision fusion 
based on a weighted voting strategy. The final fusion 
objective function is defined as (1). 

Y� ¼ argmax
Y

X

i2S

X4

j¼1
log wjl

Mdj
i;yi

� �� �
(1) 

where S is the set of pixel locations, lMdj
i;yi 

denotes 
a probability predicted by the model j, that a pixel 
i belongs to a given class yi, and wj is a weight mea
suring confidence of the model j. Intuitively, the set
ting of wj is related to the training performance of 
models. Therefore, weights for each component clas
sifier are calculated based on the training accuracies 

with wi ¼
Acc Cið ÞP4

1
Acc Cjð Þ

and 
P

j wj ¼ 1.
The second integration paradigm is a serial mode, 

where the output of the MaxEnt classifier, in the form 
of class-specific possibilities, is stacked together with 
Feature set 2 and fed into the three machine learning 
classifiers, respectively. In this process, the possibility 
of each class is seemed as a feature.
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4. Results

We implemented the proposed classification scheme 
in Yunnan province. First, we divided Yunnan 
Province into eight sub-regions. Then, the best classi
fication features were selected for each subzone from 
the candidate features. Finally, two levels of classifica
tion, forest cover and tree species, were executed in 
each sub-region. In this section, experimental setting, 
the mapping results of forest cover and species are 
described.

4.1. Experimental setting and accuracy assessment

Many studies proved that forest-type classification 
could often be achieved with high accuracy 

(Grabska et al. 2019; Li et al. 2022). Therefore, the 
experiments focus on analyzing the performance 
of species-level classifications. As shown in Table 5, 
totally 11 feature-classifier combinations are com
pared to analyze the importance of features and 
the effectiveness of the proposed fusing strategies. 
Moreover, visual inspection and quantitative 
metrics, including confusion matrix and derived 
Overall Accuracy （OA） and Kappa, are employed 
for assessing classification performance.

4.2. Forests cover mapping

Figure 6 shows the number of features selected and 
the classification accuracy for each sub-region for 
both levels of forest cover and tree species 

Figure 5. Schematic diagram of two decision fusion strategies.

Table 5. Feature-classifier combinations explored in this study.
Type Feature setting Classifier/fusion rule Abbreviation

Component Feature Set 1 MaxEnt M
All Feature Set XGBoost XALL
All Feature Set SVM SALL
All Feature Set RF RALL
Feature Set 2 XGBoost XOPT
Feature Set 2 SVM SOPT
Feature Set 2 RF ROPT

Ensemble The probability outputs of M, XOPT, SOPT, ROPT Weighted voting MXSR
The probability output of M and Feature Set 2 XGBoost MX
The probability output of M, SOPT and Feature Set 2 SVM MS
The probability output of M, ROPT and Feature Set 2 RF MR
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classification. Depending on the spatial location, the 
number of features used for forest classification ran
ged from 8 to 11 dimensions, and the number of 
features for tree species classification ranged from 
26 to 41 dimensions. The OA ranged from 93.91% to 
98.06% at the forest level, and from 70.12% to 75.24% 
at the tree species level.

The forest and non-forest classification was firstly 
performed. Since the classification error in this level 
will transfer to the species-level classification, the 
classification accuracy is expected as high as possible. 
In this study, the OA is 96.88%, and the Kappa coeffi
cient is 0.96, according to 27,296 reference samples. 
The classification results are shown in Figure 7. The 

classification results are highly consistent with the 
forest distribution in the field. Therefore, this result 
can be used for producing forest mask.

4.3. Result at species level

In each sub-region, the accuracy of the 11 classifica
tion schemes was evaluated based on the validation 
samples. The OAs of each partition are shown in 
Table 6 and Figure 6.

The accuracies of the seven component classifiers do 
not exceed 67.40% in all eight partitions, and these 
accuracies may be insufficient to support further analysis 
and decision-making. In contrast, the integrated model 

Figure 6. The numbers of optimal features and overall accuracies in the 8 sub-regions. Darker red tones mean higher accuracy for 
species classification.
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significantly improves the classification accuracy. 
Among the integration models, the average accuracy 
of MXSR over eight regions is 69.51%, and the average 
accuracy of the three serial integration models, MS, MX, 
and MR, is higher than 71.2%. Overall, the classification 
performance of the integrated classifier is much higher 
than that of the component classifier. Among the 
ensemble models, three serial integrated ensembles 
are superior to the parallel integrated model.

By mosaicking the MR classification results of the 
eight sub-regions, we obtained the spatial distribution 
map of 19 target forest species in Yunnan Province at 
10 m resolution (Figure 8). The inset details the spatial 
distribution of tree species in the selected sites. The 
accuracy was evaluated by 53,934 validation sample 
points, and the overall accuracy was 72.18% with 

a kappa coefficient of 0.69. The heat map of confusion 
matrix is given in Figure 9, from which the four classes 
of Larix gmelinii, Hevea brasiliensis, Abies fabri, and 
Juglans regia achieved high accuracies, while Alnus 
cremastogyne Burk., Quercus L., and Sassafras tsumu 
were classified with low accuracies.

5. Discussion

We have divided the Yunnan region into eight sub- 
regions, with features extracted from S2, SRTM, and 
WorldClim data, and used four component classifiers 
to map the spatial distribution of forest stand species. 
This section discusses the impacts of floristic regionali
zation, multiple data and the component classifiers and 
integrated models on the classification performance.

Figure 7. Forest/non-forest classification result of Yunnan province.

Table 6. Accuracy assessment for different classification scenarios in each sub- 
region. The highest accuracies over all sub-regions are in bold.

Classifier

I II III Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Mean

Overall accuracy (%)

M 53.44 49.11 49.58 42.59 42.59 41.33 51.68 48.68 47.38
XALL 67.76 65.70 67.92 67.35 68.39 65.17 67.20 64.28 66.72
SALL 68.95 66.61 69.42 65.39 68.31 65.37 68.74 66.39 67.40
RALL 68.57 66.57 68.25 65.39 66.79 65.21 66.56 64.80 66.52
XOPT 67.30 65.07 66.35 64.14 66.08 63.20 65.39 59.63 64.65
SOPT 67.58 66.63 65.30 66.23 66.56 63.60 67.74 60.35 65.50
ROPT 67.83 65.53 66.92 64.87 66.41 64.30 66.14 60.35 65.29
MXSR 71.89 72.22 71.55 66.46 70.99 67.70 71.07 64.19 69.51
MX 73.76 71.15 72.88 69.49 71.37 68.79 74.02 68.43 71.24
MS 72.93 71.65 72.31 70.16 70.79 68.13 75.16 70.47 71.45
MR 74.44 72.21 74.12 70.34 72.52 70.12 75.24 71.98 72.62
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5.1. The necessity of floristic regionalization

Yunnan Province contains a variety of landform types 
including high mountains, hills, intermountain basins, 
river valleys, and karsts, as well as seven climate types 
and seven vegetation types. The corresponding phy
sical differences in climate and biota between the 
North and South are equivalent to the differences 
from Hainan Island, China to Changchun, Northeast 
China (Yang et al. 2004). Spatial zoning is a practical 
solution for large areas with different growth condi
tions and complex tree species composition.

In summary, the floristic regionalization can bring 
four obvious strengths. First, zoning according to 
vegetation zones creates zonation with uniform eco
logical and spectral characteristics. Compared to the 
whole area, a sub-region has a higher consistency of 
geological history, geomorphology, climate, and 
vegetation composition, reducing spatial and tem
poral variability in the tree species’ spectral and 

phenological response (Cano et al. 2017). Second, 
each partition has a different species composition, 
and feature selection was independently performed 
for each partition to avoid classification with a set of 
feature combinations over a very large area. Third, the 
partitioning increases the proportion of the number 
of samples and alleviates the spatial and quantitative 
imbalance of samples to some extent. Fourth, by 
classifying the eight regions sequentially over the 
GEE platform, the computational burden and demand 
on storage are also reduced.

5.2. Variable importance assessment

5.2.1. The importance of Sentinel-2 data in stand 
species classification
The mean spectral reflectance of the 19 tree species 
extracted from July 2015 to December 2017 median 
composite images are shown below in Figure 10. 

Figure 8. The spatial details of the forest stand species map in Yunnan Province in 2016. Site a (103.279°E, 26.851°N); Site b (103.626°E, 
25.910°N); Site c (103.031°E, 25.434°N); Site d (104.568°E, 23.026°N); Site e (101.347°E, 21.946°N); Site f (99.173°E, 25.318°N); Site 
g (99.688°E, 27.743°N).
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Although S2 can provide more detailed spectral and 
spatial information than Landsat images, it is still 
insufficient to distinguish between tree species. This 
conclusion is also confirmed by the OA shown in 
Table 6, where the classification accuracy using the 
features from S2 failed to reach 70%.

The reflectance differences among the species in the 
Red-Edge to SWIR1 bands are higher than in other 
spectral bands, and in this spectral band, the reflec
tance of broadleaf trees was higher than that of con
ifers, with higher values for Betula L. and Hevea 
brasiliensis, while Picea asperata Mast., Abies fabri, and 
Larix gmelinii had lower reflectance, and in this spectral 
range Sassafras tsumu and Larix gmelinii in reflectance 
differed significantly from the other species, indicating 

the usefulness of the three bands in distinguishing tree 
species. However, as expected, the reflectance differ
ences between coniferous and broadleaf trees are 
much smaller in other bands, and there is a large over
lap between the different tree species.

To evaluate the contribution of texture and 
time-series features to classification, based on 
three feature combinations, we assessed the separ
ability between tree species. Three feature combi
nations include (a) raw bands and vegetation 
indices, (b) spectral features and texture features, 
and (c) spectral features and time series features.

The Jeffries-Matusita (JM) (Ma et al. 2021) distance 
between tree species is calculated and shown in 
Figure 11. Higher JM values indicate greater 

Figure 9. Confusion matrix heatmap of tree species classification.
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separability of the two classes. In this study, the JM 
distances are classified into four classes: strongly separ
able (1.9–2.0), better separable (1.8–1.9), weakly separ
able (1.7–1.8), and poorly separable (<1.7). The JM 
distance between two different categories is expected 
to be greater than 1.8 to obtain a satisfactory classifica
tion. Several species do not co-exist in the same sub- 
region, so the JM distances were not calculated.

In Scheme a, the separability of most tree species 
pairs is poor due to the high similarity in spectral 
reflectance of the tree species. In Scheme b, separ
ability between species improved significantly with 
the inclusion of textural features, but sassafras was 
still difficult to discriminate from Sassafras tsumu, 
Pinus yunnanensis, and Alnus cremastogyne Burk.. In 
Scheme c, the JM distances between species all 
reached over 1.9, suggesting that the time series 
feature can increase the separability of species.

5.2.2. The importance of environmental data in 
stand species classification
Regional arboreal species composition can be largely 
explained in terms of a long history of biogeographic 
and evolutionary events. Remote sensing-based tree 
species classification usually concentrates on data 
and methods, often ignoring the rich context that 
environmental data can provide.

In our study, the most important variable for stand 
species classification is Elevation, ranked highest in eva
luation quantitative importance scores in all eight sub- 
regions. By overlaying the classification results with the 
elevation maps, the elevation percentage map of each 

tree species was obtained (Figure 12), which also reflected 
the differences in elevation distribution of each tree spe
cies. For example, Larix gmelinii and Abies fabri are distrib
uted above 3200 m, while Hevea brasiliensis and Sassafras 
tsumu occur at lower elevations below 1500 m. 
Numerous studies confirm that topographic features 
facilitate tree species classification, especially for species 
that follow a natural height gradient (Grabska, Frantz, and 
Ostapowicz 2020).

Each species has its own preferred temperature 
range, acceptable temperature extremes, and rainfall. 
A large amount of literature indicates that climate con
ditions are the key factor determining the large-scale 
distribution patterns of organisms (Datta, Schweiger, 
and Kühn 2020). Our study uses environmental factors 
and the MaxEnt model to assign the probability of tree 
species occurrence for each geographical location. As 
shown in Table 7, adding these probability layers in 
two forms to the process based on remote sensing 
image classification can improve classification accuracy. 
The constraint of environmental factors on species dis
tribution increases classification performance. Figure 9 
shows that the classification accuracy of the categories 
with higher environmental constraints is also higher, 
such as Hevea brasiliensis, Abies fabri, and Larix gmelinii. 
Other species may be excluded due to lower environ
mental tolerance in the growing areas of these species, 
making these species have higher homogeneity. 
However, in our study, the range of some tree species 
was over-predicted. The climate variables used indicate 
that these tree species should have a wider geographical 
range than in reality, which may be because the climate 

Figure 10. The mean spectral reflectance of 19 tree species, calculated from the Sentinel-2 bands.
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factors we used are not the main limiting factors for the 
geographical range of tree species (Wiens and Graham  
2005). In addition, the characteristics of the environmen
tal factors used have a resolution of 1 km, and the low 
resolution ignores the micro-scale processes of local 
effects of tree species. Many tree species require specific 
small-scale habitat attributes (Sinclair, White, and Newell  
2010). We believe that future research needs to consider 
more ecological and geographical factors, such as the 
CHELSA dataset, which contains explicit indices for many 
ecological and physiological processes. Our test results 
in local areas show that this data can provide more 
accurate distribution ranges. Of course, to generate 
high-precision spatiotemporal microclimate, it may be 
necessary to combine global climate datasets with in situ 
microclimate measurements, long-term meteorological 

station data, and high-resolution remote sensing data 
(Bobrowski, Weidinger, and Schickhoff 2021).

5.3. Species mapping performance by fusion 
multiple models

To evaluate the mapping performance of the MR 
serial model, we compare the classification perfor
mance of the M, ROPT, and MR models in this 
section. The MR method achieves the best accuracy 
in the vast majority of sub-regions (7 out of 8). 
Table 7 visually demonstrates the advantages of 
the MR integrated model. The accuracy difference 
between MR and M for the eight sub-regions 
is from 21.00% to 31.06% with an average differ
ence of 25.39%. The difference in accuracy with 

Figure 11. JM distances between species with (a) spectral bands and vegetation indices shown in Table 4, (b) spectral features and 
texture features, and (c) spectral features and time series features.
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ROPT is 11.63% at the maximum and 5.47% at the 
minimum. Although the M classifier obtained the 
lowest OA in each partition, adding the classifica
tion results of the M classifier as features to ROPT 
resulted in a better classifier than the component 
classifier MR. The great advantage in classification 
accuracy proves the effectiveness and potential of 
the MR-integrated model for mapping tree species 
in forest stands. In addition, the classification accu
racy of the MR serial integration method was higher 
than 70% in 8 partitions with different ecological 
conditions, which proved that the method can be 
used for tree stand species mapping under diverse 
ecological conditions with good stability.

Figure 13 shows the S2 false color images (the 
combination of bands 3, 4, and 8), the FMI data, and 
the classification results of the three methods, from 
four selected regions for visual evaluation. We can 
find that the classification results of different classi
fiers differed greatly. The M classifier with low resolu
tion environmental data for classification predicted 
poorly that the geographically expressed area of 
each tree species was larger than its actual distribu
tion area, which is consistent with the conclusions 
reached in previous studies (Chandra et al. 2021; 
Pshegusov et al. 2022). The RF model, which uses 
higher resolution remote sensing data for classifica
tion, provides finer details than the M model. 
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Figure 12. Distribution map of forest stand species in the altitude range.

Table 7. Comparison of classification accuracies of different methods in each sub-region.
Region M ROPT MR MR-M MR-ROPT

I 53.44% 67.83% 74.44% 21.00% 6.61%
II 49.11% 65.53% 72.20% 23.09% 6.67%
III 49.58% 66.92% 74.12% 24.54% 7.20%
Ⅳ 42.59% 64.87% 70.34% 27.75% 5.47%
Ⅴ 41.46% 66.41% 72.52% 31.06% 6.11%
Ⅵ 41.33% 64.30% 70.12% 28.79% 5.47%
Ⅶ 51.68% 66.14% 75.24% 23.56% 9.10%
Ⅷ 48.68% 60.35% 71.98% 23.30% 11.63%
Mean 47.23% 65.29% 72.62% 25.39% 7.33%
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Figure 13. The spatial details of classification results in forest stand species. (a) Original image, (b) the Forest Management Inventory 
data, (c) M classification, (d) ROPT classification, and (e) MR classification.
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However, there are still a lot of misclassifications and 
noise due to the low separability of tree species. The 
MR integrated by both can alleviate the problems of 
both, the integrated classifier MR achieves the best 
classification result, and its classification results are 
more consistent with the FMI data. MR by taking 
advantage of different data and classifiers. 
Environmental data provide a geographical represen
tation of the ecological niche of tree species, and 
remote sensing images provide macroscopic and 
fine scale spectral, textural, and phenological differ
ences of tree species. Orchestrating the interplay of 
various data and theories with modeling has been 
identified as a promising approach to obtaining spe
cies information (Maréchaux et al. 2021). Studies on 
species distribution and invasions (Engler et al. 2013; 
Kattenborn et al. 2019) also confirm that using inte
grated datasets and combining ecological niche mod
els and machine learning algorithms can benefit 
improve classification accuracy.

In addition, we collected typical tree species classi
fication cases in recent years and compared the 
results of the cases with ours. A brief overview is 
shown in Figure 14, and more detailed information 
can be found in the literature to read the original 
content (Bjerreskov, Nord-Larsen, and Fensholt 2021; 
Boschetti et al. 2007; Engler et al. 2013; Fang et al.  

2020; Grabska, Frantz, and Ostapowicz 2020; Grabska 
et al. 2019; Hościło and Lewandowska 2019; Immitzer, 
Atzberger, and Koukal 2012; Ke, Quackenbush, and Im  
2010; Li, Hu, and Noland 2013; Ma et al. 2021; Plakman 
et al. 2020; Shirazinejad, Zoej, and Latifi 2022; Sun 
et al. 2019; Wang and Ren 2021; Wessel, Brandmeier, 
and Tiede 2018).

Because these cases tested different area sizes, 
classification methods and tree species, it is not rea
sonable to directly compare precision. However, we 
can still compare individual study cases in terms of 
the following aspects. The species number, reported 
in listed study cases ranged from 3 to 19 species, the 
area tested ranged from 5.23 km2 to 43,000 km2, the 
resolution of the data used ranged from a maximum 
of 0.1 m to a minimum of 16 m, and the overall 
accuracies ranged from 61.3% to 97%. Compared 
with the listed cases, the number of tree species (19) 
and the size of the study area (394100 km2) in our 
study have a definite advantage. The overall accuracy 
of our study was 72.18%, which is low compared to 
some study cases. However, we did not use ultra-high 
resolution or additional input data (e.g. LiDAR). This 
accuracy is acceptable given the scope and class 
numbers of the study. This precision is significantly 
better than the results reported for the 19 tree species 
study (61.3%) (Fang et al. 2020) and comparable to 

Figure 14. Brief review on research cases in tree species classification.
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the reported for the 18 tree species cases (73.25%) 
(Sun et al. 2019), but the area of the two cases is 8.6  
km2 and 177 km2, respectively, which is much smaller 
than our study. In contrast, the proposed method can 
achieve accurate and stable mapping of tree species 
distribution in large areas under different ecological 
conditions.

5.4. Limitations and future work

The variety of multiple data in terms of spatial resolu
tion, acquisition date and times may affect the classi
fication performance and the spatial distribution 
patterns of the categories.

In the GEE platform, based on the geographical 
reference, multiple features extracted from datasets, 
including S2, SRTM DEM, and WorldClim bioclimatic, 
can be easily resampled to the same pixel size and 
stacked together. However, the up-sampling process 
of low-resolution data sets cannot provide extra infor
mation than the original data set. The resolution is 
usually coarse, and they often do not really describe 
the spatial distribution of tree species but rather to 
predict habitat suitability conditions at a given site 
(Engler et al. 2013). This is also the main reason that 
the probabilistic output of MaxEnt model was seen as 
an extra feature set, rather than directly assigned as 
a component classifier like RF or SVM. As we can see 
through Figure 13, when the low spatial resolution 
probability map output from the MaxEnt model is 
integrated with the machine learning model, it sig
nificantly changes the spatial pattern of the output 
map, and species with fewer samples may be 
smoothed out by the dominant category. While this 
improves classification accuracy overall, we believe 
that the effect of this integration is not always posi
tive, and that the introduction of the low spatial 
resolution probability maps output by the MaxEnt 
model may reduce the classification accuracy of cer
tain spatial locations and specific categories, and 
reduce the distribution area of small sample 
categories.

Expected for spatial mismatch, the temporal mis
match among multiple data is another factor that may 
increase uncertainties of classification. To avoid miss
ing some key tree species phenology, we decided to 
construct 5-day intensive time series data. However, 
in most areas of the study area, data from both S2A/B 
satellites still do not allow for 5-day repeat 

observations, and until March 2017, a single satellite 
required 10 days, which combined with the cloudy 
and rainy climate, resulting in fewer pixels available 
for image acquisition. To construct High- 
Spatiotemporal-Resolution time series data, we used 
S2 data for 5 years from 2016 to 2020, which were 
synthesized according to the time of image acquisi
tion in the year (DOY, Day of Year) to construct a 5-day 
dense NDVI and REP time series. In this study, we used 
sample data from the 2016 FMI. This operation led to 
the mismatch in acquisition time between the sample 
data and the imagery used. This mismatch may intro
duce uncertainties.

In this study, we predicted the distribution of 19 
tree species in Yunnan by integrating machine 
learning classifiers and ecological niche models 
and further experiments and validations can be 
conducted in other types of forests in the future. 
We used only four models in this experiment, and 
more models can be introduced in the future to 
increase the diversity and complementarity of 
models. In addition, with growing data availability, 
more eco-physiological and remote sensing data 
can be integrated into the models. This process 
will benefit species classification by a better under
standing of the species physiological limits and 
selecting features more sensitive to species range 
limits.

6. Conclusions

Detailed and accurate mapping of forest stand spe
cies has an important practical need. To achieve 
effective mapping of the mountain vegetation, it 
is necessary to fully consider the ecological charac
teristics of tree species and the displayed remote 
sensing characteristics and to use multiple data and 
classification methods for integrated discrimination. 
In this study, the spatial distribution of 19 stand 
tree species in Yunnan Province was mapped based 
on the GEE platform, in collaboration with remote 
sensing image machine learning algorithm classifi
cation and ecological niche modeling, with an over
all accuracy of 72.18% assessed through 53,934 
validation sample points. Higher classification accu
racy was obtained by integrating decision fusion 
models from both domains compared to supervised 
classification or ecological niche modeling of envir
onmental data. The study shows that integrating 
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machine learning algorithms and ecological niche 
models is effective in regions with high environ
mental heterogeneity. Spectral, spatial, and tem
poral extracted from remote sensing data and 
various environmental variables contribute to tree 
species classification.
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