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Abstract— Change detection (CD) is an important Earth obser-
vation task that can monitor change areas at two times from
the view of space. However, fully supervised CD has a heavy
dependence on numerous manually labeled data, limiting their
applications in practice. Beyond the fully supervised setting, semi-
supervised CD (SSCD), which uses a few labeled data to guide the
unsupervised learning of dominant unlabeled data, has attracted
increasing attention for its significant advantage in alleviating
the demand for annotations. To this end, in this article we
propose a joint self-training and rebalanced consistency learning
(ST-RCL) framework for SSCD, which consists of a basic
supervised branch for the labeled data and a novel unsupervised
branch for the unlabeled data. To make full use of the unlabeled
data, the unsupervised branch generates pseudolabels from
weakly augmented unlabeled remote sensing image (RSI) pairs to
supervise the CD of two strongly augmented counterparts, includ-
ing an unrotated version and a rotated version. On one hand,
the unrotated unlabeled RSI pairs are pseudosupervised with
the pseudolabels by confidence-based self-training (ST). On the
other hand, to further enhance model robustness to rotation
nonequivariance and imbalanced distribution, the predictions
of rotated unlabeled RSI pairs are aligned to the pseudola-
bels by a well-designed rebalanced consistency learning (RCL)
strategy based on uncertainty-based class weighting. Extensive
experiments are performed on four widely used CD datasets,
and the proposed ST-RCL yields new state-of-the-art results on
all these datasets in comparison to some other SSCD methods,
demonstrating its effectiveness and generalization. Our code will
be available at https://github.com/zxt9/STRCL-SSCD.

Index Terms— Change detection (CD), rebalanced consistency
learning (RCL), remote sensing, self-training (ST), semi-
supervised learning.

I. INTRODUCTION

CHANGE detection (CD) is an important Earth observa-
tion task of quantitatively analyzing and identifying the

change areas within the same land surface at two different
times between a pair of bitemporal remote sensing images
(RSIs). CD can further support a wide range of downstream
tasks, such as urban development analysis [1], [2], [3], disaster
detection [4], [5], [6], and environment monitoring [7], [8], [9].
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Fig. 1. CD inconsistency between unrotated and rotated RSI pairs.

The state-of-the-art CD methods are based on fully super-
vised deep neural networks, especially convolutional neural
networks (CNNs), which have a huge demand for manu-
ally labeled change annotations at the pixel level between
bitemporal images. However, it is hard and even impossible
to obtain numerous change labels in practice, limiting its
fast applications in real scenarios. To mitigate the demand
for annotations, a promising task of semi-supervised change
detection (SSCD) has attracted increasing attention, which can
make full use of abundant unlabeled data for model training
under the guidance of only a few labeled data.

The current SSCD methods attempt to leverage the
unlabeled data for training roughly from: 1) adversarial
training [10] that reduces the difference in change feature
representation between the labeled and unlabeled data, which
focuses on image-level alignment in an implicit manner and
2) self-training (ST)/consistency learning of the unlabeled
data on model optimization that makes consistent predictions
between clean unlabeled data and a perturbed version in an
explicit manner [11], [12], [13].

Although the existing SSCD methods have achieved signifi-
cant progress, some problems still exist with the unsupervised
learning of the unlabeled data. In this article, we identify two
underlying problems of SSCD: 1) rotation nonequivariance
between the unrotated bitemporal RSI pair and its rotated ver-
sion as shown in Fig. 1, which inherits from the characteristics
of deep neural networks, especially CNNs [14], [15], [16].
The nonequivariance between unrotated and rotated bitemporal
RSI pairs is harmful to model stability in angle-unfixed
change predictions and 2) imbalanced distribution of change
and nonchange, which generates imbalanced pseudolabels and
their pseudosupervised training on the CD model exacer-
bates the imbalanced distribution in return. Unfortunately,
such progress is normally irreversible because of a common
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phenomenon in semi-supervised learning, i.e., confirmation
bias [17].

Aiming at these two problems, we propose a joint ST
and rebalanced consistency learning (ST-RCL) framework
for SSCD. The proposed ST-RCL generally consists of two
branches, one basic supervised branch and one novel unsu-
pervised branch, which share an encoder–decoder-based CD
model. The supervised branch pays attention to the prediction
of labeled RSI pairs, which can help the model learn the
preliminary CD ability. Furthermore, built upon a strong-to-
weak paradigm of FixMatch [18], the unsupervised branch
contains an effective unsupervised dual-path workflow of
unlabeled data on the CD model. In detail, the pseudolabels are
generated from a weakly augmented unlabeled RSI pair, and
then they are used to supervise the change prediction of two
strongly augmented counterparts of the same unlabeled RSI
pair, including an unrotated RSI pair and a rotated RSI pair.
On one hand, the unrotated RSI pair is pseudosupervised with
the pseudolabel-based confidence-based ST, which only selects
the high-confidence pixels for training. As a result, ST can
prompt the model to learn augmentation-invariant feature
representation and change prediction, which are beneficial for
model generalization. On the other hand, to enhance model
robustness to the above-mentioned first problem of rotation
nonequivariance, the predictions of the rotated RSI pair are
kept consistent with the pseudolabels from the unrotated
weakly augmented RSI, which can reduce rotation inconsis-
tency of the CD model. Taking into consideration the second
problem of imbalanced distribution, we design a corresponding
rebalanced consistency learning (RCL) strategy to assign adap-
tive classwise weights to the consistency learning loss between
the unrotated and rotated unlabeled RSI pairs, which are
calculated based on class-aware uncertainty during training.

To evaluate the effectiveness and robustness of the pro-
posed ST-RCL framework to SSCD, extensive ablation studies,
comparison experiments, and visualization experiments are
performed on four commonly used CD datasets in the semi-
supervised setting, including CDD, WHU-CD, LEVIR-CD,
and GZ-CD under a wide range of labeled ratios of 5%,
10%, 20%, and 40%. The proposed ST-RCL outperforms other
SSCD methods and yields most of the state-of-the-art results
on all the datasets.

Overall, our contributions can be summarized as follows.
1) We identify two underlying problems of SSCD, rota-

tion nonequivariance and imbalanced distribution, which
limit the further performance improvement of this field.
To solve the two problems, we propose a novel joint
ST-RCL framework for SSCD.

2) The proposed ST-RCL consists of one supervised branch
for labeled data and one unsupervised branch for
unlabeled data. In particular, the unsupervised branch
simultaneously involves consistency learning of rotated
unlabeled data for reducing the rotation inconsistency
and uncertainty-based classwise weighting for alleviat-
ing the imbalanced distribution.

3) In comparison to other SSCD methods, the proposed
ST-RCL method achieves most of the new state-of-the-
art results in four commonly used CD datasets under

various labeled ratios, demonstrating its effectiveness
and robustness.

II. RELATED WORK

A. Semi-Supervised Change Detection

Fully supervised CD [19], [20], [21] typically requires
numerous labeled data for model training, which is laborious
and time-consuming. To alleviate this high dependence on
annotations, recently some semi-supervised work has been
developed [11], [22], [23], [24]. For example, by integrating
extreme learning machine (ELM), [25] presented a deep
nonsmooth nonnegative matrix factorization (nsNMF) network
for synthetic aperture radar (SAR) image CD in the semi-
supervised setting. The learning process of nsNMF model
contains two stages, i.e., pretraining and fine-tuning, where
the labeled and unlabeled data can be used for training.
Peng et al. [10] proposed a semi-supervised CD network
(SemiCDNet) based on a UNet++ segmentation network.
By adopting entropy adversarial learning (EAL) and segmen-
tation adversarial learning, two discriminators are designed
to decrease uncertain predictions of the change maps of
the unlabeled samples and encourage the consistency of
the segmentation-predicted feature distribution, respectively.
Bandara and Patel [11] developed a consistency-based reg-
ularization CD model. In this method, different random
perturbations are added to the feature difference map, and
then the corresponding predicted change probability maps are
constrained to be consistent with the one without any pertur-
bation. In [12], a Siamese nested UNet with graph attention
mechanism (SANet) was designed for SSCD, where strong
augmentation and consistency regularization are introduced
to achieve the consistency between predictions of distorted
images and the generated pseudolabels with high confidence.
Shu et al. [26] devised a multitask consistency network (MTC-
Net) for building SSCD, where the building segmentation
information is introduced for features constraint in the encoder.
Using extra T1 labels, MTCNet is able to keep the consistency
of the predictions between the original T1 branch and the Diff-
T1 branch, and thus improving the generalization ability of
the whole framework. Wang et al. [13] proposed a reliable
contrastive learning-based method for SSCD. In their case,
the uncertainty of unlabeled data is used for the selection of
reliable pseudolabels to train the model. Then a contrastive
loss is designed for feature identification ability of the model,
where the positive and negative samples are selected for the
changed and unchanged regions. It is worth noting that most
SSCD methods pay more attention to the design of the training
optimization strategy instead of the architecture of the model,
which allows flexible embedding into various segmentation
models.

B. Rotation Nonequivariance

Rotation nonequivariance of CNNs is a challenging issue
in the image process field, especially in the era of deep
learning [27], [28], [29]. Recent advanced studies mainly
focus on devising rotation-invariant CNNs to acquire the
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ability of rotation-equivariant learning, such as group equiv-
ariant CNNs (G-CNNs) [14], [30], [31], steerable CNNs [15],
[32], [33], and harmonic CNNs [34], [35]. For instance,
Dieleman et al. [36] introduced four operations of layers into
neural network models to build up an architecture of build-
ing rotation equivariance. At the same time, Cohen and
Welling [14] first proposed G-CNNs to achieve equivariant
representations for large groups of symmetries, the functions
of which are feature maps obtained from the transformed fil-
ters. Worrall et al. [34] designed harmonic networks (H-Nets)
for CNN equivariance to rotation and patchwise translation.
Particularly, regular CNN filters are replaced by circular
harmonics, and thus, a maximal response and orientation can
be acquired for receptive field patches. In [15], a general
architecture of steerable CNNs termed as E(2)-equivariant
convolutions was provided to build up a general theory of
equivariance. On the basis of Geodesic ICOsahedral Pixela-
tion (GICOPix), Yang et al. [37] developed a spherical graph
convolutional network (SGCN) containing the transition layer
and hierarchical pooling operator. Then, a rotation-invariant
aerial object detection network (RINet) was presented by [16]
in a weakly supervised manner. This method aims to solve
the problems of instance missing and rotation sensitivity from
the perspective of multi-instance mining and rotation-invariant
learning.

C. Imbalanced Distribution in Remote Sensing

In the past several decades, various remote sensing algo-
rithms have been designed to acquire the ability of the
feature representation from the data samples on an even
distribution assumption [38], [39], [40], [41]. Nevertheless,
in a real-world setting, a small number of classes typically
have numerous samples while there is only a small portion
of samples belonging to the other classes [42], [43], [44].
Consequently, this class-imbalanced phenomenon would in
return exacerbate model bias to the majority classes during
training [45], [46], which is known as imbalanced distribution.
As a common yet practical problem, imbalanced distribution
can be easily observed in different remote sensing fields, such
as scene classification [47], [48], [49], CD [50], [51], [52],
semantic segmentation [53], [54], and object detection [55],
[56]. Recently, some attempts have been made to mitigate
this problem. For example, a multigranularity decoupling
network called MGDNet is presented by Miao et al. [48] for
the class-imbalanced scene classification of RSI. In this work,
a Gaussian mixture model (GMM) is fit by the per-sample
loss distribution of imbalanced data for the high confidence
pseudolabels’ selection. Normally, the change area in the real
scene is rarely and sparsely distributed between bitemporal
image pairs. Chen et al. [52] aim to mitigate this phenomenon
by generating new synthesized CD samples using genera-
tive adversarial network (GAN)-based and image blending
techniques. According to the number of effective samples,
Zhou et al. [54] propose a dynamic effective class-balance
(DECB) weighting method for the class-imbalance problem
in remote sensing semantic segmentation. In [55], an adaptive
balanced network (ABNet) is developed for remote sensing

object detection by introducing some additional components
on the basis of Faster RCNN [57].

In this study, we concentrate on alleviating the imbalanced
distribution problem of the CD task in the semi-supervised
setting from the perspective of optimization without model
parameter increase at the test phase.

III. METHODOLOGY

This section starts with the introduction of some notations
and settings of SSCD, then describes the encoder–decoder
model shared among all kinds of RSI pairs, and finally
formulates the supervised branch and unsupervised branch of
the proposed ST-RCL architecture with the summary of the
whole training procedure. The overall ST-RCL workflow is
depicted in Fig. 2.

A. SSCD Settings

To better describe SSCD, some definitions and notations
are first given in this section. At the training stage, the whole
training set is made up of two subsets, including a labeled
training set and an unlabeled training set. Here, the labeled
trained set is represented as Sl = {xl

a, xl
b, yl

i }
M
i=1, where {xl

a, xl
b}

is the i th labeled RSI pair consisting of a pretemporal image xl
a

and a posttemporal image xl
b, and yl

i is their change/nonchange
labels at the pixel level. M denotes the total number of labeled
RSI pairs. Besides, the unlabeled data are represented as Su =

{xu
a, xu

b}
N
i=1, where {xu

a, xu
b} represents the i th unlabeled RSI

pair with no labels of the unlabeled training set and N denotes
the number of the RSI pairs of this set. In the SSCD setting,
M is smaller than N .

B. Shared Encoder–Decoder Model

The widely used encoder–decoder architecture is used as
the CD model. In this study, it consists of a shared encoder
denoted as E , a pyramid pooling module (PPM in abbrevi-
ation), and a decoder denoted as G. The encoder extracts
a cross-temporal change feature map from an RSI pair, the
PPM fuses the multiscale bitemporal features, and the decoder
generates a corresponding pixelwise change prediction map.

First, a bitemporal RSI pair {xa, xb} in the same dimension
of RH×W×3 (H and W are, respectively, spatial height and
width) is sent into the encoder E . The Siamese architecture
([11], [58]) (i.e., a shared CNN backbone) is used as the
encoder to obtain the respective feature maps from {xa , xb}
as

fa = E(xa), fb = E(xb) (1)

where fa ∈ RH/s×W/s×C and fb ∈ RH/s×W/s×C are the
prechange feature map from xa and the postchange feature
map from xb, respectively. Here, C denotes the feature dimen-
sion, and s is the spatial scaling ratio, which depends on the
used backbones.

Next, the absolute difference map of fa and fb is calculated
for avoiding the interference of the time order of xa and xb.
On top of it, PPM further transfers the absolute difference map
into a corresponding change feature map f, which contains
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Fig. 2. Illustration of the proposed ST-RCL for SSCD. All the types of RSI data share the same encoder–decoder-based CD model.

both high-level semantic features and low-level texture/color
features. The above operations are formulated as

f = PPM(|fa − fb|). (2)

Finally, a convolutional upsampling module [59] is used as
the decoder G to decode and upsample the bitemporal feature
map f into a pixel-level change probability map, which is
denoted as p ∈ RH×W×2. Here, 2 means the two classes of
“change” and “nonchange.” It is formulated as

p = G(f). (3)

The probability sum of the prediction at location [i, j], pi j ,
is scaled to 1 by the softmax function as

pi j =
epi jk∑2

k=1 epi jk
(4)

where k represents the class index.
At the test stage, the prediction results are obtained from (1)

to (4) sequentially.

C. Supervised Branch

In ST-RCL, as shown in the “Supervised Branch” part of
Fig. 2, the labeled RSI pairs are directly used for supervised
training that can help the shared encoder–decoder model
acquire the preliminary CD ability. For an RSI pair of the
labeled training set {xl

a , xl
b, yl}, the weakly augmented bitem-

poral RSI pair {xl
a , xl

b} is fed into the encoder–decoder-based
CD model, which generates a pixelwise change prediction
map pl as (1)–(3). The cross-entropy (CE) loss serves as the

supervision loss Ll to reduce the gap of the prediction map pl

and the associated label map yl as

Ll =
1

H W

H∑
i=1

W∑
j=1

ℓce
(
pl

i j , yl
i j

)
. (5)

D. Unsupervised Branch

As shown in the middle-down part of Fig. 2, the “Unsu-
pervised Branch” further achieves two kinds of unsupervised
learning of unlabeled RSI pairs, including the ST of unrotated
RSI pairs and uncertainty-based RCL of rotated RSI pairs.

1) ST of Unrotated RSI Pairs: In the unlabeled branch, first,
an unlabeled RSI pair is randomly sampled from the unlabeled
training set and weakly augmented by weak augmentations
given in Section IV-C, which is denoted as {xuw

a , xuw
b }. It is

worth noting that {xuw
a , xuw

b } share the same weak augmenta-
tions to ensure their spatial and semantic consistency. On top
of the weak augmentations, the RSI pair is further augmented
to a strongly augmented pair {xus

a , xus
b }, formulated as

xus
a = A

(
xuw

a

)
, xus

b = A
(
xuw

b

)
(6)

where A represents two connected spatial-irrelevant strong
augmentations randomly selected from a predefined augmen-
tation list of RandAugment [60]. Unlike weak augmentations,
each of {xus

a , xus
b } is individually strongly-augmented to

increase their diversity.
The weakly augmented prediction map puw is extracted

from {xa
uw, xb

uw} by (1)–(4). Similarly, the corresponding
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strongly augmented prediction map pus is obtained from
{xus

a , xus
b } also by (1)–(4).

To promote the encoder–decoder-based CD model to learn
effective feature representation from the unlabeled data, the
weakly augmented unlabeled RSI pairs are used to supervise
the change prediction of the strongly augmented counterparts,
i.e., ST. A pseudolabel map ỹuw

∈ RH×W is generated from
the weakly augmented prediction map pwu as

ỹuw
i j = arg max

k={0,1}
puw

i jk (7)

where ỹuw denotes the maximum-activated class index (i.e.,
pseudolabel) at the location [i, j].

The ST loss between the weakly augmented unlabeled RSI
pair and the (unrotated) strongly augmented unlabeled RSI pair
is calculated by confidence-based CE loss, which is formulated
as

LST
u =

1
H W

H∑
i=1

W∑
j=1

ℓce
(
pus

i j , ỹuw
i j

)
· 1

(
max

(
puw

i j

)
> τ

)
(8)

where 1(·) is an indicator function that only allows the
high-confidence pixels for ST to reduce the impact of noisy
pseudolabels. For the pixel of the position [i, j], the value of
1(max(puw

i j ) > τ) is equal to 1 when the probability of the
max-activated class at this position is bigger than a threshold τ ,
otherwise, it would be 0.

2) Uncertainty-Based RCL of Rotated RSI Pairs: Then a
rotated strongly augmented RSI pair {xrs

a , xrs
b } is obtained

from the unrotated strongly augmented RSI pair {xus
a , xus

b } as

xrs
a = R

(
xus

a

)
, xrs

b = R
(
xus

b

)
(9)

where R is the random rotation operation with an angle r
randomly selected from a list of [90◦, 180◦, 270◦, and 360◦].
Here, 360◦ equals 0◦, that is, no rotation. Furthermore,
by (1)–(4), the rotated prediction map prs can be obtained
from {xrs

a , xrs
b }.

To keep consistent predictions of unrotated and rotated
RSI pairs, inspired by the idea of consistency learning and
strong-to-weak alignment, we design the first version of
the consistency learning loss between the rotated strongly
augmented prediction map prs and the unrotated weakly
augmented prediction map pwu as

LCL
u =

H∑
i=1

W∑
j=1

2∑
k=1

∣∣puw
i jk − R̂

(
prs

i jk

)∣∣ (10)

where R̂ is the reversed rotation of R, which applies the
rotation operation with a reverse angle, 360−r . Here, L1 loss
is used to measure the pixelwise distance. It is worth noting
that there is no gradient backward for puw, which means puw

serves as the pseudo-ground-truth of prs .
To further take into consideration the imbalanced

distribution between “change” and “non-change,” an
uncertainty-based classwise weighting strategy is devised to
rebalance the training process. We assume that the uncertainty
of a class during training indicates its convergence difficulty,
and the higher the uncertainty, the harder the convergence
difficulty. Based on this assumption, the principle of RCL is

Algorithm 1 Training Procedure of ST-RCL
Input: labeled set Sl = {xl

a, xl
b, yl

i }
M
i=1, unlabeled set Su =

{xu
a, xu

b}
N
i=1, shared encoder–decoder E − G, epoch

number NE , iteration number NI and batch size B,
class uncertainty u and class weight w

for epoch ← 1 to NE do
for i teration← 1 to NI do

Data Processing: sample and transform four RSI
pairs {xl

a, xl
b, yl

i }
B
i=1, {xuw

a , xuw
b }

B
i=1, {xus

a , xus
b }

B
i=1, and

{xrs
a , xrs

b }
B
i=1, via (6) and (9);

Supervised Learning: optimize E-G by the supervised
loss L l calculated from {xl

a, xl
b, yl

i }
B
i=1 via (1)–(5);

Self-Training: optimize E-G by the ST loss L ST
u

calculated between {xuw
a , xuw

b }
B
i=1 and {xus

a , xus
b }

B
i=1 via

(1)–(4) and (7)–(8);
Rebalanced Consistency Learning: optimize E-G by

the RCL loss L RC L
u calculated between {xuw

a , xuw
b }

B
i=1

and {xrs
a , xrs

b }
B
i=1 with the class weight w, via (1)–(4)

and (11)–(13);
Accumulation of u: accumulate the numerator and

denominator terms of (11) for u.
end
Calculating u and w: calculate u and w via (11) and (12)

end
Output: optimized E-G

to give a higher weight to the class with higher uncertainty
during the training stage, which probably is “change.”

The classwise uncertainty is denoted as u ∈ R2, and it is
calculated every epoch to get the dataset-level value that is
more robust. The class-k uncertainty is calculated as

uk =

∑N
l=1

∑H
i=1

∑W
j=1

∣∣puw
li jk − pus

li jk

∣∣ · 1(
ỹu

li j = k
)∑N

l=1
∑H

i=1
∑W

j=1 1
(
ỹu

li j = k
) (11)

which means the class-k uncertainty is the dataset-level
average value of the absolute difference between weakly
augmented predictions puw and unrotated strongly augmented
predictions pus when their pseudolabels are k. For the first
epoch, the initial value of u would be set to 0. Besides,
it is worth mentioning that there could be other uncertainty
calculation methods as long as they can reasonably measure
the class convergence difficulty.

Then, the uncertainty-based class weight, denoted as
w ∈ R2, can be calculated as

wk = 1+ λuk (12)

where λ is the weight coefficient of w. Corresponding to u,
w is calculated every epoch.

Finally, given puw, prs , and w, the RCL loss is formulated
as

LRCL
u =

H∑
i=1

W∑
j=1

2∑
k=1

∣∣puw
i jk − R̂

(
prs

i jk

)∣∣ · wk . (13)

E. Overall Loss and Procedure of ST-RCL

The overall loss of the ST-RCL framework, denoted as L,
consists of the supervised loss Ll , the ST loss LST

u , and the
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Fig. 3. Some samples of the LEVIR-CD, WHU-CD, CDD, and GZ-CD datasets. The pretemporal images, the posttemporal images, and their ground truths
are, respectively, shown in the first row, the second row, and the third row.

RCL loss LRCL
u . It is formulated as

L = Ll + LST
u + LRCL

u . (14)

For a clear understanding of the workflow of ST-RCL, its
training procedure is summarized in Algorithm 1.

IV. EXPERIMENTS

This section begins with the experimental settings, including
datasets and implementation details. Then, several ablation
studies are conducted to verify the necessity and effectiveness
of each part of the proposed ST-RCL framework. Finally,
comparison experiments on ST-RCL and other state-of-the-art
methods are performed with some visualization samples for
intuitive comparison.

A. Datasets

We perform the experiments on four widely used CD
datasets, i.e., the Learning, Vision, and Remote Sensing
Laboratory (LEVIR-CD), Wuhan University building CD
(WHU-CD), CDD, and Guangzhou (GZ-CD).

1) LEVIR-CD: The LEVIR-CD dataset [51] is made up
of 637 bitemporal image pairs obtained from Google Earth
of different cities in Texas of USA between 2002 and 2018.
These images have a spatial resolution of 0.5 m measuring
1024 × 1024 pixels, containing over 31 000 independently
labeled change instances. Following [11], they are cropped into
256 × 256 patches without overlapping with a total number
of 10 192 for the experiments, and 7120, 1024, and 2048 pairs
of RSI patches are, respectively, used for training, validation,
and testing.

2) Wuhan University Building CD: There are a pair of
bitemporal RSIs with a spatial resolution of 0.075 m mea-
suring 32 507 × 15 354 pixels in the WHU-CD dataset [61],
which were, respectively, captured in Christchurch of
New Zealand in 2012 and 2016. Similar to the LEVIR-CD
dataset, these RSIs are also cropped into patches of 256 ×
256 without overlapping. Following the common splitting,

80%, 10%, and 10% RSI pairs are, respectively, adopted as
the training, validation, and test sets. Accordingly, there are
5947, 743, and 744 patches for training, validation, and testing,
respectively.

3) CDD: The CDD dataset [62] is cropped from Google
Earth (DigitalGlobe) of seven pairs of images with sea-
son variation measuring 4725 × 2700 pixels. It comprises
16 000 images with a spatial resolution from 0.03 to 1 m of
256 × 256 pixels. Specifically, 10 000, 3000, and 3000 pairs
of RSI patches are, respectively, used for training, validation,
and testing.

4) GZ-CD: This dataset [10] consists of 19 pairs of
season-varying images captured in Guangzhou City, China,
between 2006 and 2019. All the images measure from 1006 ×
1168 pixels to 4936 × 5224 pixels with a pixel resolution
of 0.55 m. For the convenience of comparison, they are simi-
larly cropped into 256 × 256 RSI patches without overlapping.
Consequently, there are, respectively, 2882, 360, and 361 pairs
of RSI patches for training, validation, and testing.

Fig. 3 shows some examples of the above-mentioned
datasets.

B. Evaluation Metrics

We evaluate our approach using five common CD evaluation
metrics, including recall (Rec.), precision (Pre.), intersec-
tion over union (IoU), F1-score (F1), and Kappa coefficient
(Kappa). The values of IoU, F1, recall, and precision are
in the scope from 0 to 100%, and that of Kappa is
from −1 to 1. They are formulated as

Recall =
TP

TP+ FN
(15)

Precision =
TP

TP+ FP
(16)

IoU =
TP

TP+ FP+ FN
(17)

F1 =
2× Recall× Precision

Recall+ Precision
(18)
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TABLE I
ABLATION STUDY RESULTS OF ST-RCL ON THE LEVIR-CD DATASET. THE BEST SCORES ARE MARKED IN BOLD

OA =
TN+ TP

TN+ FP+ TP+ FN
(19)

PRE =
(FP+ TP)× (FN+ TP)

(TN+ FP+ TP+ FN)2

+
(TN+ FP)× (FN+ TN)

(TN+ FP+ TP+ FN)2 (20)

Kappa =
OA− PRE
1− PRE

(21)

where TN and TP stand for the number of unchanged pixels
and changed pixels that are correctly classified, respectively.
In contrast, FN is the number of changed pixels that are
wrongly classified as unchanged pixels, and FP is the total
number of unchanged pixels that are wrongly identified as
changed pixels. It is worth noting that as the focus is more on
the area of change, in this work only the change class of all
the used metrics is calculated and given.

C. Experimental Settings

To make a fair comparison among different methods, all the
training settings are set the same as RCR [11]. In detail, the
optimizer of stochastic gradient descent (SGD) is adopted for
the optimization of the supervised and unsupervised losses,
with its initial learning rate set to 0.01 under a weight
decay of 1e−4 and a momentum of 0.9; The models of
all kinds of methods are trained for 80 epochs, with the
mini-batch size set to 8 for both the labeled and the unla-
beled training sets; all the methods use Dilated ResNet50
+ PPM as the encoder–decoder CD model; some univer-
sal weak data augmentations, including random rescaling
between [0.5, 2.0], random vertical flipping, random hori-
zontal flipping, and random cropping, are applied to each
RSI pair of both labeled data for supervised learning and
unlabeled data for unsupervised learning. For FixMatch [18],
UniMatch [63], and the proposed ST-RCL, a strong augmen-
tation list derived from RandAugment [60] is further used to
perturb the weakly augmented unlabeled RSI pairs, contain-
ing Identity, Contrast, Autocontrast, Equalize,
Brightness, Color, Posterize, Sharpness, and
Solarize; for each weakly augmented RSI pair, only two
strong augmentations randomly selected from the list are
applied to avoid excessive damage to its semantic content. For
ST-RCL, the rebalancing weight coefficient λ in (12) is set
to 10 for LEVIR-CD, GZ-CD, and CDD, and 1 for WHU-CD
because of their different degrees of imbalanced distribution;
in (8), for all the four datasets the confidence threshold τ is
set to 0.95 by default. All the experiments are implemented
on PyTorch 1.9.0 on two GeForce RTX 2080Ti.

D. Ablation Study of ST-RCL

To evaluate the individual role of each component of the
proposed ST-RCL framework on SSCD, its ablation study is
conducted on LEVIR-CD under all the labeled ratios of 5%,
10%, 20%, and 40%. Table I shows the ablation experimental
results. Here, Ll stands for the “Only-sup” approach that only
the labeled data of the supervised branch are used for model
training, Ll + LST

u represents the method involving both the
supervised training of the labeled data and the ST of the
unrotated strongly augmented unlabeled data, Ll +LST

u +LCL
u

denotes the method further using the consistency learning of
rotated strongly labeled data based on Ll + LST

u , and Ll +

LST
u + LRCL

u is the method further applying uncertainty-based
weighting to the consistency learning of rotated strongly
labeled data.

Compared with the baseline method of Ll , Ll+LST
u obtains

overall improvement of all the metrics, verifying the signifi-
cant value of the ST of unlabeled data in SSCD. Based on
Ll + LST

u , the introduction of rotation consistency learning,
i.e., Ll + LST

u + LCL
u , boosts the model performance with a

considerable gain, such as the IoUc increase from 75.10 to
76.88 by 1.78 at the labeled ratio of 5%. It demonstrates
the effectiveness of cross-view prediction alignment. After
performing the uncertainty-based classwise weighting, LRCL

u
increases the recall rate of “change” at all the ratios, especially
the small ratios, compared with Ll + LST

u + LCL
u . It indicates

the positive influence of the RCL module on rebalancing the
imbalanced distribution between “change” and “nonchange.”
As a result, taking IoUc as an example, the complete Ll +

LST
u + LRCL

u achieves notable and robust improvements of
SSCD at various ratios with the performance advantage of
more than 4.1 over the baseline method of OnlySup and
0.69–2.99 over Ll + LST

u .
Overall, the ablation results indicate that each component of

ST-RCL can contribute to performance improvement, verifying
their respective effectiveness.

E. Rotation Nonequivariance and Necessity of Rotation
Consistency Learning

Some prediction examples of unrotated RSI pairs and
rotated RSI pairs are given and compared in Fig. 4. These
examples intuitively show the existence of rotation nonequiv-
ariance in SSCD, leading to unstable CD performance at
unfixed rotation angles. Based on the fact that the angles of
RSIs are highly variable because of the uncertainty of overhead
shooting, it is necessary to make the alignment between the
unrotated and rotated RSI pairs to achieve rotation-invariant
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TABLE II
ABLATION STUDY RESULTS ON THE LEVIR-CD DATASET IN DIFFERENT ROTATION SETTINGS. BASE1: ROTATING LABELED + UNLABELED RSI PAIRS,

BASE2: ONLY ROTATING LABELED RSI PAIRS, BASE3: ONLY ROTATING UNLABELED RSI PAIRS, AND BASE4: NO ROTATING.
THE BEST AND SECOND SCORES ARE, RESPECTIVELY, MARKED IN BOLD AND IN UNDERLINE

Fig. 4. Some prediction examples of unrotated RSI pairs and 90◦ clockwise
rotated RSI pairs.

and stable CD, especially in the situation that there is not
enough labeled data for supervised training in the semi-
supervised setting.

To further demonstrate the importance and necessity of
consistency learning among unrotated and rotated RSI pairs,
as shown in Table II, we make the ablation study of four
types of rotation augmentation on input data of the LEVIR-
CD dataset. They are: Base1 that applies the random rotation
within the angles of [90◦, 180◦, 270◦, 360◦] to both the labeled
and unlabeled RSI pairs, Base2 that only applies random rota-
tion to the labeled RSI pairs, Base3 that only applies to random
rotation to the unlabeled RSI pairs, and Base4 that applies
random rotation to neither labeled nor unlabeled RSI pairs. All
of them are performed based on Ll + LST

u . It could be found
that Base4 achieves the best performance without any rotation
augmentation operation. Such results indicate that applying
random rotation directly to input data, including both labeled
and unlabeled data, does not always improve performance
and is even harmful in some cases. There are three possible
reasons for it. First, the random flipping operation can achieve
partial functions of random rotation from the aspect of spatial
augmentation, and the further use of random rotation increases
the difficulty of model training. Second, in the semi-supervised
setting, stable ST of unlabeled data is very important. When
there are limited labeled data, the rotation operation may

Fig. 5. Uncertainty-based class-wise weight of nonchange/change of 5%
labeled (a) LEVIR-CD and (b) GZ-CD.

reduce the prediction stability of rotated data and degrade
the performance. Third, some datasets have some dominant
shooting angles for both labeled and unlabeled data, while
the random rotation operation may increase the prediction
difficulty at the dominant angles. In contrast, the proposed
rotation consistency learning optimized by LST

u can effectively
boost the CD performance as shown in Table I, demonstrating
its effectiveness and necessity.

F. Effect of Uncertainty-Based Class Weighting of RCL

To clearly show the ability of the uncertainty-based class-
wise weighting operation to adapt to convergence difficulty,
the weights of “change” and “nonchange” during training are
plotted in Fig. 5 except the initial weight [1, 1]. The higher
the weight is, the greater importance its corresponding class
is given. It can be found that the weights of both “change”
and “nonchange” decrease with epochs, which reveals the
two classes converge as training. The reason is that both the
classes’ uncertainties, uk in (11), shrink with training, resulting
in the decrease in the corresponding weights, wk in (12).
It can be seen that the minority class of “change” has a
higher weight than the majority class of “nonchange” at all
times, which verifies RCL’s rebalancing effect of assigning
more weight to “change.” On the flip side, as a result of
greater weight, “change” has a faster convergence speed than
“nonchange,” which means “change” receives higher attention
during training.

To further verify the effectiveness of the uncertainty-based
weighting on CL, i.e., RCL, we make a comparison between
CL (Ll + LST

u + LCL
u ) and RCL (Ll + LST

u + LRCL
u ) based

on 5% labeled LEVIR-CD and 5% labeled GZ-CD. Here,
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TABLE III
COMPARISON EXPERIMENTAL RESULTS ON THE LEVIR-CD DATASET. THE BEST AND

SECOND SCORES ARE, RESPECTIVELY, MARKED IN BOLD AND IN UNDERLINE

Fig. 6. Pixel ratio of nonchange/change of 5% labeled (a) LEVIR-CD and
(b) GZ-CD.

we use the ratio of the pixels predicted as nonchange to the
pixels predicted as “change” to evaluate the imbalanced degree
during training as given in Fig. 6. It is worth noting that
the dashed lines are the real ratios of “nonchange” to change
used as a reference. The results show that RCL has a faster
convergence speed of the change class for LEVIR-CD and GZ-
CD and a higher percentage of it for GZ-CD. It reveals that the
uncertainty-based weighting can make the consistency learning
more stable and relieve the imbalanced distribution biased to
the majority class of the nonchange. For LEVIR-CD, although
RCL does not increase the relative ratio of “nonchange” to
“change,” it gives more weight to “change” and increases
its absolute recall as given in Table I, contributing to the
improvement of IoUc as well.

Overall, the uncertainty-based weighting operation of RCL
can speed up the convergence of the minority class of change
and improve its precision, alleviating the negative impact of
the imbalanced distribution.

G. Comparison Experiments

To verify the effectiveness and robustness of the proposed
ST-RCL approach, the comparison experiments are performed
among it, two baseline methods, and six state-of-the-art semi-
supervised methods reproduced for CD. The baseline methods
include the following. 1) Only-sup that only uses the limited
labeled RSI pairs for model training. It can evaluate the per-
formance gains obtained from SSCD methods. 2) The Oracle
fully supervised method (Fully-sup) that uses all the labeled

RSI pairs for model training. It can serve as a reference
to evaluate the gap between SSCD methods and provide
the upper bound of performance in the fully supervised
setting.

The reproduced SSCD methods consist of AdvEnt [64],
s4GAN [65], CPS [66], RCR [11], FixMatch [18], and Uni-
Match [63]. As adversarial-learning-based approaches, s4GAN
and AdvEnt are transferred from the field of semi-supervised
semantic segmentation (SSS). RCR and CPS are based on
consistency learning, and RCR was especially proposed for
SSCD while CPS is transferred from SSS. FixMatch orig-
inally proposed for semi-supervised classification uses the
high-confidence pseudolabels of weakly augmented RSI pairs
to supervise the change prediction of strongly augmented RSI
pairs, and UniMatch further introduced the dual strongly aug-
mented branches and a feature perturbation branch. For SSCD
methods, four types of ratios of labeled training data, 5%, 10%,
20%, and 40%, are used for supervised training; accordingly,
the remaining 95%, 90%, 80%, and 60% unlabeled training
data are used for unsupervised training. To compare these
methods fairly, all the methods have the same encoder–decoder
model of Dilated ResNet50 + PPM.

The comparison experimental results on LEVIR-CD,
WHU-CD, CDD, and GZ-CD are, respectively, listed in
Tables III–VI. When it comes to datasets, the four datasets
have a wide variety of image styles, building types, spatial res-
olutions, and sensor types, as well as universal cross-temporal
noise of the background. The proposed ST-RCL gets most
of the best performance on all the four datasets at different
ratios with a considerable and robust advantage when com-
pared with other approaches. The advantage of our approach
shows its robustness of CD ability when facing various real
factors.

In terms of SSCD methods, it could be found that FixMatch
and UniMatch are in the first tile except for our ST-RCL.
It verifies the stability of ST-based strategies in SSCD. RCR
falling behind FixMatch and UniMatch is in the second group,
which is mainly because its progressive consistency learning
has a lower convergence speed than the pseudolabel-based ST.
AdvEnt and s4GAN have the worst performance with unstable
metrics from small to large labeled ratios, which reveals the
relative instability of adversarial training in SSCD.
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TABLE IV
COMPARISON EXPERIMENTAL RESULTS ON THE WHU-CD DATASET. THE BEST AND

SECOND SCORES ARE, RESPECTIVELY, MARKED IN BOLD AND IN UNDERLINE

TABLE V
COMPARISON EXPERIMENTAL RESULTS ON THE CDD DATASET. THE BEST AND SECOND

SCORES ARE, RESPECTIVELY, MARKED IN BOLD AND IN UNDERLINE

TABLE VI
COMPARISON EXPERIMENTAL RESULTS ON THE GZ-CD DATASET. THE BEST AND SECOND SCORES ARE,

RESPECTIVELY, MARKED IN BOLD AND IN UNDERLINE

As for the labeled training ratios, our ST-RCL achieves
superior results with all the four labeled training ratios,
especially with a few labeled training samples like 5%.
When referring to the metric of IoUc, there are, respectively,
increases of 12.54, 11.74, 9.48, and 13.74 compared with the
basic method of “Only-sup” on LEVIR-CD, WHU-CD, CDD,
and GZ-CD. Our method gets improvements of IoUc from
75.75, 76.57, 67.06, and 56.42 to 78.09, 78.25, 68.76, and
62.51 when comparing with the suboptimal methods, with
absolute gains of 2.34, 1.68, 1.7, and 6.09 on LEVIR-CD,
WHU-CD, CDD, and GZ-CD, respectively.

From the aspect of evaluation metrics, recall can describe
the model’s capacity to catch the real change pixels, while

precision can evaluate the model’s ability to make accurate
predictions. They are usually conflicted with each other and
there is a tradeoff between recall and precision, that is,
the increase in the one leads to the decrease in the other.
Fortunately, IoU, F1, and Kappa are able to evaluate the
detection performance of all the approaches on change regions
comprehensively from both recall and precision, and they have
a similar tendency. The proposed ST-RCL achieves most of the
best results of IoU, F1, and Kappa across datasets, especially
at the small labeled training ratios.

Furthermore, to intuitively show the effectiveness and gen-
eralization of our ST-RCL, some visualization examples are
illustrated in Fig. 7 compared with other SSCD methods.
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Fig. 7. Some sample visualizations obtained from different comparison methods including our ST-RCL. The 1 and 2 rows, 3 and 4 rows, 5 and 6 rows, and
7 and 8 rows, respectively, show the RSI pairs of LEVIR-CD, WHU-CD, CDD, and GZ-CD at the 5% labeled ratio.

As shown in the figure, the proposed ST-RCL is able to infer
the change regions with more accurate and clearer boundaries,
indicating that it can effectively and accurately detect the
structures and shapes of the change regions.

In general, the proposed ST-RCL outperforms all the
comparison SSCD approaches and sets new state-of-the-art
performance in most of the scenes across different commonly
used CD datasets in the SSL setting. It demonstrates the
robustness of the superiority of our approach.

V. CONCLUSION

In this article, we identify two problems of rotation
non-equivariance and imbalanced distribution in SSCD.
Accordingly, a novel ST-RCL framework is proposed for
SSCD. The proposed ST-RCL consists of a supervised branch
that directly uses the labeled data for training and a novel
unsupervised branch that uses the unlabeled data for training.
The unlabeled branch involves the ST of unrotated RSI pairs
and uncertainty-based RCL of rotated RSI pairs. As a result,
our ST-RCL can effectively reduce the rotation nonequivari-
ance and relieve the imbalanced distribution in SSCD during
unsupervised learning of unlabeled RSI pairs. Compared with
other latest SSCD methods, the proposed ST-RCL sets the new
state-of-the-art results on four commonly used CD datasets,

including LEVIR-CD, WHU-CD, CDD, and GZ-CD in the
semi-supervised setting.

In future work, the proposed ST-RCL could be improved
from the following two sides: 1) more accurate pseudolabels
could be fused from the unrotated unlabeled RSI pairs and
rotated unlabeled RSI pairs, which is better for the ST module
and 2) a more fine-grained weighting at the pixel level could
be designed for the RCL module.
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