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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• The 30-m impervious surface areas (ISA) 
dataset for the Arctic Circle 

• We proposed a sample generation strat
egy for sparse ISA coverage. 

• Omission error, commission error and F- 
score is 8.70 %, 4.31 % and 0.93, 
respectively 

• Arctic ISA reached 2115.49 km2 by 
2021, more than 1.46 times that of 
1985. 

• The tundra represents the primary 
source (over one-third) of ISA 
expansion.  
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A B S T R A C T   

Accurate and timely impervious surface mapping is essential for assessing land cover change, urban heat island, 
and monitoring human activity intensity and ecological change. While various global impervious surface datasets 
become available, these datasets exhibit significant omissions in Arctic regions. Hence, in this study, we present a 
30-m impervious surface area (ISA) dataset of Arctic from 1985 to 2021 (GISA_Arcitc). To this aim, we proposed 
to combine visually interpreted ISA samples and automatically generated NonISA samples for Arctic ISA map
ping. Then, adaptive random forest (RF) classifiers were used for long time-series ISA mapping and the result was 
post-processed to improve the spatial-temporal consistency. Finally, the accuracy of GISA_Arcitc was assessed 
using the 37,800 independent test samples. GISA_Arctic possessed an overall accuracy of 93.59 % and a F-score of 
0.934. It is found that the Arctic ISA increased from 857.83 km2 to 2115.49 km2 during the past 37 years. More 
than 84 % of the Arctic ISA increment is embraced by three countries: Russia, Finland, and Norway. Courtesy of 
the long time-series GISA_Arctic, the sources of Arctic ISA expansion were further analyzed. It was found that the 
top three land covers transformed to ISA are tundra, forest and grassland. The GISA_Arctic could contribute to 
further understanding of human activities and Arctic ecological changes, which can be accessed from http://irsi 
p.whu.edu.cn/resources/resources_v2.php.   
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1. Introduction 

Since the 1970s, rapid economic and population growth has led to 
increased human activities and ISA dynamics, exacerbating the deteri
oration of the hydrological cycle, biodiversity, agricultural production 
and livelihood, and other ecosystem issues (Weng, 2012) (Seto et al., 
2012). ISA refers to artificial structures that prevent water permeation 
into the soil, including asphalts, concrete, sand and stone, mines etc. 
(Chen et al., 2015). Over the past half-century, global ISA has expanded 
rapidly by approximately 0.62 million km2 from 1972 to 2019 (Huang 
et al., 2021b). Meanwhile, human activities such as energy exploitation, 
construction of shipping and air transport facilities, and expansion of 
residential areas have significantly increased ISA in the Arctic (Usman 
et al., 2022) (Nguyen et al., 2021) (Lifshits et al., 2021). The Arctic is 
undergoing significant ecosystem changes, such as permafrost degra
dation, sea ice melting, and northward forest expansion, due to the 
climate change and human activities (Chen et al., 2022) (Guo et al., 
2018) (Hermosilla et al., 2019) (Overland et al., 2014). Given the 
importance of Arctic ecosystems for global energy exchange and carbon 
cycling, the impacts of rapid changes in Arctic ecology extend from the 
regional ecosystem to the global scale (McGuire et al., 2009) (Schuur 
et al., 2015) (Assessment, 2005). Therefore, timely monitoring of Arctic 
ISA dynamic is crucial for understanding water‑carbon cycle, biodi
versity, global climate and environmental changes. 

Remote sensing is an essential tool for ecosystem monitoring that has 
the capability of scanning Earth surface over long time-series and wide 
coverage(Beamish et al., 2020). There have been many studies focusing 
on ISA mapping using coarse-resolution imagery. For instance, Liu et al. 
(2012) obtained 1000-m urban information for China from 1992 to 2008 
by calibrated Defense Meteorological Satellite Program's Operational 
Line-scan System (DMSP-OLS) nighttime lighting data (NTL). Similarly, 
Zhou et al. (2018) proposed an adaptive thresholding method using 
DMSP-OLS NTL data to obtain global long time-series urban extent. 
Moreover, Schneider et al. (2010) used 500-m Moderate Resolution 
Imaging Spectroradiometer (MODIS) data to map annual global urban 
dynamic based on ecological zone layers. Huang et al. (2021a) also 
mapped global urban area using MODIS data based on an automated 
sampling strategy. However, coarse-resolution imagery makes it diffi
cult to delineate detailed urban environment. Therefore, ISA mapping 
with the fine spatial resolution data (e.g., 30-m Landsat) has drawn more 
attention in the literature. For example, Sexton et al. (2013) used 
Landsat archives to delineate annual ISA dynamics over metropolitan 
regions, while Zhang et al. (2017) used a fuzzy clustering method to 
depict ISA dynamic from monthly Landsat composites. 

The limitations of storage and computation capacity have led many 
studies to rely on single-source remote sensing datasets or to focus on 
limited spatial extent. However recent advancements in cloud 
computing platform, such as Google Earth Engine (GEE), have enabled 
time-series ISA mapping over large scales by providing access to peta
bytes of remote sensing data and high-performance parallel computing 
services (Gorelick et al., 2017). For instance, Liu et al. (2020) used 
Landsat images on the GEE platform to unveil Global Annual Urban 
Dynamics (GAUD) (1985–2015) utilizing the Normalized Urban Areas 
Composite Index (NUACI) and a temporal segmentation method. Simi
larly, Gong et al. (2020) developed Global Artificial Impervious Area 
(GAIA) using Landsat archives on the GEE to document annual global 
ISA dynamics. Meanwhile, Huang et al. (2021b) generated the first 30-m 
Global Impervious Surface Area (GISA) from 1972 to 2019 using a 
distributed processing framework, with its successor (i.e., GISA 2.0) 
improving upon the inconsistent regions using a semi-automated sample 
strategy (Huang et al., 2022a). Therefore, it is practical to use the GEE 
platform for large-scale and time-series Arctic ISA mapping. 

In addition to long time-series ISA datasets, recent studies also focus 
on global ISA mapping at 10 m. For instance, Marconcini et al. (2020) 
produced a global 10-m residential layer (World Settlement Footprint, 
WSF) based on support vector machine using Landsat and Sentinel data. 

Besides, Corbane et al. (2021) generated a new Global Human Settle
ment Layer (GHSL2018) using a convolutional neural network based on 
Sentinel-2 multispectral data. Meanwhile, Huang et al. (2022b) et al. 
developed a 10 m global ISA dataset (GISA-10m) using automated 
samples based on multi-source geospatial data. Although there have 
been many large-scale and time-series ISA mapping studies, ISA map
ping over Arctic region remains challenging due to issues such as short 
summer sunlight duration and small viewing zenith angle. In addition, 
Arctic ISA is scattered, making it difficult to collect training samples. 
Moreover, the existing global time-series ISA datasets show relatively 
more omissions over the Arctic region. Therefore, new and accurate 
time-series ISA mapping is required to address the aforementioned 
issues. 

In order to address the aforementioned deficiencies, we developed a 
new 30-m ISA dataset for Arctic Circle (i.e., areas with latitude greater 
than 66◦34′N) for 1985–2021 using 337,799 Landsat images, namely 
GISA_Arctic. To this end, the ISA and non-impervious surface (NonISA) 
training samples were first collected based on satellite images (e.g., 
Landsat, Google Earth) and crowdsourcing data (OpenStreetMap, Geo
names) through visual interpretation. The Arctic Circle was further 
subdivided into 412 hexagons, where adaptive RF classification and 
post-processing were performed to ensure spatiotemporal consistency of 
the results. The performance of GISA_Arcitc was assessed using 37,800 
independent samples and compared with three existing datasets (i.e., 
GAIA, GAUD, GISA). Finally, the sources of Arctic ISA expansion were 
further analyzed. In conclusion, this manuscript endeavors to introduce 
a novel approach for generating ISA training sample sets, establish a 
comprehensive long time-series ISA dataset for the Arctic, and shed light 
on the drivers of ISA expansion in this unique and ecologically fragile 
region. Through addressing data gaps and offering essential temporal 
insights, this research provides a valuable understanding of long-term 
ISA dynamics. This, in turn, facilitates the exploration of human activ
ity intensity within the Arctic domain and its far-reaching implications 
for ecosystem evolution. 

2. Data 

2.1. Landsat 

All available 30-m Landsat 5, 7, and 8 images covering the Arctic 
region from 1985 to 2021 were used in GISA_Arctic mapping. Landsat 5 
was processed using the Landsat Ecosystem Disturbance Adaptive Pro
cessing System (LEDAPS) algorithm (Schmidt et al., 2013), while 
Landsat 8 was corrected by the Land Surface Reflectance Code (LaSRC) 
method (Vermote et al., 2016). Clouds, shadows, water and snow in the 
Landsat data were removed by CFMASK algorithm (Zhu et al., 2015). 

2.2. Auxiliary data 

2.2.1. Digital elevation data 
Topographic variables such as elevation, slope and aspect are 

frequently employed to describe terrain changes in ISA mapping (Huang 
et al., 2021b). In this study, we used topographic features derived from 
the 250-m Global Multi-Resolution Terrain Elevation Data 2010 
(GMTED2010) to describe the ISA distribution across various topo
graphic characteristics. The GMTED2010 data is based on Shuttle Radar 
Topographic Mission Terrain (SRTM), incorporating a variety of other 
data sources to improve coverage. 

2.2.2. Night light data 
NTL data, which captures surface light intensity, is commonly used 

as a proxy for human activity and economic development in ISA map
ping (Zhou et al., 2018) (Gong et al., 2020). In this study, we used the 
annual median from NTL data provided by the Visible Infrared Imaging 
Radiometer Suite (VIIRS) with a spatial resolution of 15 arc sec (~ 500 
m) in 2020 to address the issue of overestimation resulting from spectral 
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confusion between bare soils and ISA (Elvidge et al., 2017) (Mills et al., 
2013). 

2.2.3. MODIS data 
To improve the saturation of NTL, we utilized the MYD13Q1 in 2020 

on GEE. The MYD13Q1 V6 product provides a 16-day compositing 
Enhanced Vegetation Index (EVI) with a spatial resolution of 250 m. 
This product has undergone atmospheric correction to minimize the 
impacts of water, clouds, heavy aerosols, and shadows (Clinton and 
Gong, 2013). 

2.2.4. OpenStreetMap 
The OpenStreetMap (OSM) project was developed to provide the 

general public with free, editable, and open-source internet maps that 
can be used for driving directions, three-dimensional (3D) city models, 
and landcover classification (Fonte et al., 2020; Goetz, 2013; Haklay and 
Weber, 2008; Tian et al., 2019). Millions of contributors worldwide have 
compiled this emerging crowd-sourced map (Haklay and Weber, 2008). 
Furthermore, numerous building and road labels in ISA mapping have 
been derived from OSM after cleaning (Lin et al., 2020). In this study, 
OSM in 2021 was used to filter out errors in the potentially NonISA 
samples. 

2.2.5. GeoNames 
GeoNames stands as an accessible and open-source global database 

of place names, encompassing 2.8 million residences and 5 million 
alternative names. This comprehensive dataset provides an array of at
tributes for each place name, including longitude and latitude co
ordinates, administrative divisions, population statistics, and other 
pertinent features. The geographical coverage of GeoNames is extensive, 
encompassing numerous urban and rural settlements. In this study, 
21,827 points sourced from GeoNames in 2021 within the Arctic Circle 
were employed to identify potential ISA training samples. 

2.2.6. GlobeLand30 
This study leveraged the 30-m GlobeLand30 land cover data in 2000 

and 2020. The GlobeLand30 was developed through the integration of 
pixel, object, and expert knowledge methods, incorporating substantial 
manual interpretation to refine the mapping results (Chen et al., 2015). 
The dataset encompasses ten distinct land cover categories, specifically 
arable land, forest land, grassland, shrubs, wetlands, water bodies, 
tundra, ISA, bare land, glaciers, and permanent snow cover. Notably, the 
GlobeLand30 dataset has been reported to exhibit an overall accuracy of 
80.3 %. 

2.3. Existing ISA data 

In this study, the performance of GISA_Arctic was compared with 
existing 30-m ISA products (i.e., GAIA, GAUD, and GISA) and 10-m ISA 
products (i.e., WSF2015, GHSL2018, GISA-10m). GAIA is a global 30-m 
annual ISA product covering the period from 1985 to 2018. It was 
produced using the “Exclusion-Inclusion” algorithm (Gong et al., 2020) 
(Li and Gong, 2016), which employed Sentinel-1 and NTL data to 
mitigate the overestimation of ISA in arid regions. The average overall 
accuracy of GAIA was reported over 89 %. 

GAUD used automatically collected training samples from high- 
confidence urban areas and RF classification method to obtain global 
urban extent in 1985 and 2015. Then, the year of urban expansion or 
shrink was identified using a regression-based temporal segmentation 
method. Based on 12,000 visually-interpreted test samples, the overall 
accuracy for GAUD was 76 % (1985–2000) and 82 % (2000–2015), 
respectively (Liu et al., 2020). 

GISA is a 30-m global ISA dataset from 1972 to 2019 that performed 
temporal post-processing to improve spatial-temporal consistence. The 
GISA was validated based on 120,777 samples, with omission error, 
commission error and F-score of 5.16 %, 0.82 % and 0.954, respectively 

(Huang et al., 2021b). 
WSF2015 used automated training samples and temporal and texture 

features to obtain global human settlements map. And a series of post- 
processing steps were conducted based on multi-source data to auto
matically identify and delete false alarms. According to the evaluation of 
the test set obtained from crowdsourcing data, the average accuracy of 
WSF2015 is 89.33 % (Marconcini et al., 2020). 

GHSL2018 is a global 10-m residential layer generated through deep 
learning methods using Sentinel-2 annual multispectral data. Employing 
multi-source training samples and transfer learning strategies, 
GHSL2018 comprehensively delineates the distribution of ISA within 
residential settings. According to independent validation samples from 
277 regions of interest, the overall accuracy (using 0.2 as the threshold) 
is greater than 75 % (Corbane et al., 2021). 

GISA-10m constitutes a global 10-m ISA dataset in 2016 (Huang 
et al., 2022b). This product employs an automated sample generation 
strategy, creating 58 million samples through existing ISA datasets and 
crowdsourcing data. The GISA was validated based on 10,800 samples, 
with overall accuracy, F-score and kappa of 86.19 %, 77.96 % and 0.679, 
respectively (Huang et al., 2022b). 

All the above data were processed on GEE. The distinctive digital 
pyramid structure of GEE enables the fusion of data originating from 
varying temporal and spatial resolutions, contributing to the efficient 
data processing (Gorelick et al., 2017). 

3. Methodology 

Fig. 1 illustrates the mapping framework of GISA_Arctic, including 
sample generation, multi-source features extraction, adaptive RF clas
sification, spatiotemporal post-processing, and accuracy assessment. 

3.1. Training sample generation 

Although Huang et al. (2021b) has demonstrated the feasibility to 
acquire training samples from existing datasets via specific rules, it is 
difficult to collect ISA samples automatically in Arctic due to the large 
omission of existing datasets. Therefore, in this study visual interpre
tation with a series of spatial rules is utilized to generate training 
samples. 

In general, the diversity of training samples affects the generalization 
performance of the classifier. Therefore it requires enormous and widely 
distributed samples to ensure the mapping result (Gómez et al., 2016). 
However, it is time-consuming and laborious to visually search for po
tential ISA training samples over vast Arctic. To deal with this challenge, 
we attempted to locate possible ISA from GeoNames and OSM (mining 
areas, airports, etc.). GeoNames is a widely used toponymic dataset that 
collects global human settlements, names and coordinates information. 
In such a way, we can quickly locate potential ISA training samples. 
Taking Fig. 2b as an example, with reference to GeoNames, we suc
cessfully located the ISA in Murmansk, Russia. Then, potential ISA areas 
(yellow box in Fig. 2c&d) were outlined by interpretation from the 
earliest Landsat data available on GEE (Fig. 2c). In addition, we also 
checked the time-series vegetation index curves (obtained from Landsat 
and MODIS) to ensure the temporal stability of ISA training samples. 
Subsequently, spatial rules were applied to further filter the samples: (1) 
A 15 m buffer (about half of a Landsat pixel) was generated inward from 
the potential ISA sample area to reduce the influence of edge pixels; (2) 
We randomly sampled the obtained potential ISA with the distance be
tween them greater than 100 m to ensure the spatial independence; (3) 
Additional verification via high-resolution Google Earth images (mainly 
after 2000) was performed to improve the reliability of samples. 

Compared to the sparse ISA samples, the NonISA samples are more 
widely distributed. Therefore, we employed an automated strategy to 
generate NonISA samples. Firstly, we created a potential pool of NonISA 
sample from rergions labeled as NonISA by existing datasets (i.e., GAIA, 
GAUD, and GISA). In order to increase the accuracy of the NonISA 
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samples, some latest ISA datasets were also taken into consideration, 
such as OSM, WSF2015 (Marconcini et al., 2020), GHSL2018 (Corbane 
et al., 2021), GlobeLand30 2020 (Chen et al., 2015) and GISA-10m 
(Huang et al., 2022b). This approach of combining these ISA datasets 
with the buildings and roads (mainly from the OSM) could effectively 
reduce the ISA omissions. Finally, NonISA samples were randomly 
generated within the potential sample pool and their quality was further 
ensured through visual inspection. In this way, we obtained 1,220,052 
training samples in the Arctic, including 203,342 ISA samples and 
1,016,710 NonISA samples. 

3.2. Feature extraction and classification 

In the case of large-scale ISA mapping, the study region is usually 
divided into multiple sub-regions to better delineate the heterogeneous 
landscape. Therefore, we divided the Arctic with hexagons to ensure the 
mapping performance(Huang et al., 2022b). For each mapping grid (i.e., 
hexagon), a locally adaptive RF classifier was built with input features 
including spectrum, spectral difference index, phenology, and topog
raphy. Specifically, a total of 48 features were extracted from multi- 
source data, i.e., 18 spectral responses, 24 normalized indices, 3 tem
poral statistics, and 3 topographic features (Table 1). Above all, the 
20th, 50th, and 80th percentile of spectral features were obtained from 
all available Landsat images. In such a way, we could retain the time- 
series information while reduce the contamination from clouds and 
shadows. Based on the above annual spectral percentages, we calculated 
8 normalized indices for ISA mapping, namely the Normalized Differ
ence Vegetation Index (NDVI) (Rouse Jr et al., 1973), Normalized Dif
ference Snow Index (NDSI) (Hall et al., 1995), Normalized Difference 

Senescent Vegetation Index (NDSVI) (Marsett et al., 2006), Normalized 
Burn Ratio (NBR) (Klemas and Smart, 1983), Modified Normalized 
Difference Water Index (MNDWI) (Xu, 2006), Normalized Burn Ratio 2 
(NBR2) (Miller and Thode, 2007), Normalized Difference Built-up Index 
(NDBI) (Jin et al., 2015), Shortwave Red Normalized Difference Index 
(SRNDI) (Zha et al., 2003). Meanwhile, temporal statistics with 
phenological information, i.e., the standard deviation of NDVI, MNDWI, 
and NDBI, were used to better depict land covers with temporal fluc
tuations (e.g., water bodies and vegetation). Additionally, we calculated 
slope and aspect from GMTD2010 to describe the complex topography. 

The RF classifier is widely used for land cover mapping due to its 
strong anti-noise capability. In particular, RF outperforms other classi
fiers when dealing with high-dimensional data on a large scale (Gómez 
et al., 2016). In this study, local adaptive RF classifiers were used where 
the Arctic was divided into 412 hexagons with side length of 2◦. The 
corresponding local training samples from each region were used to 
train the RF classifier. Compared with the global model (i.e., mapping 
the entire Arctic region using all training samples), local RF model can 
better account for the variety of local landscapes, thus increase mapping 
accuracy. (Zhang and Roy, 2017). The number of trees for each RF 
model was set to 200 (Huang et al., 2022b). 

3.3. Post-processing 

The following post-processing methods were utilized to reduce 
possible false alarms and improve spatial-temporal consistency. First, 
we used a potential ISA mask composed of NTL, existing ISA datasets (i. 
e., WSF2015, GHSL2018, GlobeLand30 2020, and GISA-10m) and OSM 
to suppress false alarms. Specifically, the Enhanced Vegetation Index 

Fig. 1. The framework of GISA_Arctic mapping in this study.  

Z. Liu et al.                                                                                                                                                                                                                                       



Science of the Total Environment 905 (2023) 166966

5

Adjusted Nighttime Light Index (EANTLI) was used to improve the 
blooming effect phenomenon of NTL (Pok et al., 2017; Zhuo et al., 
2018). We investigated the relationship between NTL threshold and 

mapping performance to choose the optimal threshold. To this end, we 
assess the overall accuracy under the different NTL threshold. It is found 
that the overall accuracy increases as the NTL threshold increases, and 

Fig. 2. An example of auxiliary data used for visual interpretation of ISA training samples. (a) distribution of GeoNames in the Arctic Circle, (b) distribution of 
GeoNames in Murmansk region, (c) drawing of ISA samples based on Landsat, (d) inspection of ISA samples based on Google Earth images. 

Table 1 
The multi-source features for Arctic annual ISA mapping.  

Type Features Description Scale Dimension Source 

Spectrum 20th,50th,80th: Blue, Green, Red, NIR, SWIR1 and 
SWIR2 

20, 50, 80th percentile value of reflectance from annual Landsat 
data 

30 m 18 Landsat 

Spectral indices 20th,50th,80th: NDVI, NDSI, NDSVI, NBR, MNDWI, 
NBR2, NDBI and SRNDI 

NDVI = NI (NIR, Red), 
NDSI = NI (Green, SWIR1), 
NDSVI = NI (SWIR1, Red), 
NBR = NI (NIR, SWIR2), 
MNDWI = NI (SWIR2, Green), 
NBR2––NI (SWIR1, SWIR2), 
NDBI––NI (SWIR1, NIR), 
SRNDI = NI (SWIR2, Red), 
where NI represents the function (b1- b2) / (b1+ b2), b1 and b2 
denote two spectral bands 

30 m 24 Landsat 

Temporal 
Statistics 

NDVI_StdDev, MNDWI_StdDev and NDBI_StdDev Standard deviation of NDVI, MNDWI and NDBI 30 m 3 Landsat 

Terrain Elevation, slope and aspect Slope and aspect calculated from the elevation 250 
m 

3 GMTED  
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the overall accuracy starts to decreases around the threshold value of 1.6 
(Fig. S5). Therefore, we set the NTL threshold as 1.6 in this study. In 
addition, we made a 500-m buffer for potential ISA mask. Subsequently, 
we employed a series of post-processing steps, including gap filling, 
spatial-temporal filtering and sequence temporal reasoning to further 
improve the spatial-temporal consistency: Gap filling was used to fill in 
the missing results caused by data availability, cloud cover, and sensor 
failures. Spatial-temporal filtering was employed to alleviate the “salt 
and pepper” effect and classification errors. Sequence temporal 
reasoning was applied to improve pixel labels with temporal logic er
rors. Overall, these post-processing methods ensure our results become 
more reasonable and reliable. Readers can refer to (Huang et al., 2021b) 
for the detailed post-processing strategies. 

3.4. Accuracy assessment 

The accuracy of GISA_Arctic was evaluated by 37,800 test samples. 
We employed stratified random sampling to determine the location of 
ISA and NonISA samples. The distance between each sample was set 
more than 100 m to ensure their spatial independence. From 1985 to 
2021, the test samples were generated by visual interpretation at five- 
year intervals for a total of eight periods (i.e., 1985, 1990, 1995, 
2000, 2005, 2010, 2015 and 2020). To ensure the reliability of samples, 
the visual interpretation of the test samples was independently carried 
out by three experts with reference to high-resolution Google Earth and 
Landsat images. The samples with different labels were removed. The 
distribution of the test samples is shown in Fig. S1. Finally, the accuracy 
of GISA_Arctic was reported by overall accuracy (OA), kappa, producer's 
accuracy (PA), user's accuracy (UA) and F-score. The performance of 
GISA_Arctic ISA mapping result was further compared with GAIA, GAUD 
and GISA. 

3.5. Land-cover sources for Arctic ISA expansion 

Profiting from the long time-series GISA_Arctic, we further explored 
the sources of the Arctic ISA expansion in the last two decades. Specif
ically, we overlaid the GlobeLand30 2000 with GISA_Arctic to identify 
land-cover sources after 2000. These land-cover sources consist of 
various categories such as cropland, forest, grassland, shrubland, wet
lands, water, tundra, bare ground (Chen et al., 2015). 

4. Results 

4.1. Accuracy assessment 

The accuracy of the GISA_Arctic was assessed using 37,800 test 
samples (Table 2). Overall, GISA_Arctic has the best performance 
compared with existing products. Specifically, the GISA_Arcitc achieved 
the highest OA of 93.59 %, with an increase of 36.86 %, 39.17 % and 
33.99 % with respect to GAIA, GAUD and GISA, respectively. Moreover, 
the F-score of GISA_Arctic is 0.934, which exceeds GAIA, GAUD and 
GISA by 0.240, 0.147 and 0.325, respectively. It should be noted that 
compared with GAIA, GAUD and GISA, the ISA OE of GISA_Arctic is 
8.70 %, decreasing by 77.61 %, 83.37 % and 71.83 %, respectively. 
These findings indicate a notable decrease in omission errors within the 
Arctic region. 

The overall accuracies of GISA_Arctic, GAIA, GAUD and GISA in 
different periods were calculated. As seen from the Fig. 3, the accuracy 
of GISA_Arctic produced is significantly higher than other global ISA 
datasets. This can be attribute to the higher quality, quantity and dis
tribution of the training samples used in GISA_Arctic, compared to the 
other datasets. These findings highlight the importance and necessity of 
developing a new Arctic ISA dataset (i.e., GISA_Arctic). 

4.2. Analysis of Arctic ISA 

GISA_Arctic has documented the annual ISA dynamics over Arctic 
regions from 1985 to 2021. During the past 37 years, the Arctic ISA has 
grown 1.46 times, increasing from 857.83 km2 to 2115.49 km2. The 
spatial distribution of ISA in the Arctic in 2021 is shown in Fig. S2 at 0.2◦

spatial resolution. Northern Europe (Norway, Sweden, Finland) and the 
western part of Russia are the regions with the highest density of ISA. 
When examining the density of ISA across the Arctic, it is noteworthy 
that the northern European countries of Norway, Sweden, Finland, as 
well as the western part of Russia, exhibit the highest concentration of 
ISA. Interestingly, despite being the most densely populated region in 
terms of ISA, Europe has not experienced the most substantial ISA 
expansion. Instead, the growth has been more rapid in sparsely popu
lated areas characterized by a lower density of ISA. This phenomenon 
suggests that areas surrounding urban centers and rural regions, which 
initially have sparser ISA coverage, have witnessed a more pronounced 
growth of ISA. 

The national scale ISA expansion within the Arctic Circle is shown in 
Fig. S3. The results indicate that over 95 % of the Arctic ISA is occupied 
by Russia, Norway, Sweden, and Finland. Among them, Russia has the 
largest ISA, accounting for more than 60 % of the Arctic, while the three 
Nordic countries (i.e., Norway, Sweden, and Finland) comprise the 
remaining 35 %. More than 84 % of the Arctic ISA increment is 
embraced by Russia, Finland, and Norway. The growth rate of ISA in 
each country has increased significantly over the last decade, with 
Russia having the highest growth rate of 18.50 km2/year. 

Compared to GISA_Arctic, the existing datasets slightly underesti
mate high-intensity ISA areas (e.g., Murmansk in Fig. 4). However, they 
exhibit more omissions in low- and medium-intensity ISA areas, such as 
small and medium-sized cities (e.g., Fig. 5a&b), villages and towns (e.g., 
Fig. 5c&d). It is also noteworthy that GISA_Arctic extracts more roads, 
airports, industry and mining areas (e.g., Fig. 5a, b, e&f). Considering 
the acceleration of Arctic mineral extraction and infrastructure con
struction in recent years, the GISA_Arctic is more accurate for depicting 
Arctic ISA dynamics. 

Table 2 
Accuracy comparison between GISA_Arctic and other ISA datasets in the Arctic. 
The OE, CE, and F-score of ISA in each dataset are shown in bold.  

GAIA ISA NonISA Precision 

ISA 2245 40 98.25 % 
NonISA 14,153 16,362 53.62 % 
Recall 13.69 % 99.76 %  
OE of ISA 86.31 % CE of ISA 1.75 % 
F-score of ISA 0.240 OA 56.73 % 
GAUD ISA NonISA Precision 
ISA 1300 28 97.89 % 
NonISA 15,098 16,374 52.03 % 
Recall 7.93 % 99.83 %  
OE of ISA 92.07 % CE of ISA 2.11 % 
F-score of ISA 0.147 OA 53.88 % 
GISA ISA NonISA Precision 
ISA 3192 44 98.64 % 
NonISA 13,206 16,358 55.33 % 
Recall 19.47 % 99.73 %  
OE of ISA 80.53 % CE of ISA 1.36 % 
F-score of ISA 0.325 OA 59.60 % 
GISA_Arctic ISA NonISA Precision 
ISA 17,253 777 95.69 % 
NonISA 1645 18,125 91.68 % 
Recall 91.30 % 95.89 %  
OE of ISA 8.70 % CE of ISA 4.31 % 
F-score of ISA 0.934 OA 93.59 %  
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5. Discussion 

5.1. Inter-comparison with existing datasets 

In order to better demonstrate the performance of GISA_Arctic, we 
carried out a comprehensive spatial consistency with established 30-m 
long time-series global ISA datasets (i.e., GISA, GAIA, GAUD) and the 
latest 10-m global ISA datasets (i.e., WSF2015, GHSL2018, GISA-10m). 
To facilitate inter-comparisons across datasets with different resolu
tions, we calculated the ISA proportion within 0.01◦ grid (~1 km). 
Subsequently, the consistency between different datasets was estimated 
by linear regression of ISA proportion (Fig. S6). Comparatively, scatter 
plots for GISA, GAIA, and GAUD in relation to GISA_Arctic revealed 
fitted lines below the 1:1 reference line. This pattern indicates a signif
icant underestimation of ISA extent within the Arctic (Fig. S6). The re
sults also align with the accuracy assessments, wherein ISA omission 

rates for GISA, GAIA, and GAUD were higher than that of GISA_Arctic 
(Table 2). Notably, such underestimation usually occurs in areas char
acterized by sparse ISA, such as cities, towns, and mining regions 
(Fig. S7 d-f). In general, the 10-m datasets could capture more ISA 
benefit from higher spatial resolution. GISA-10m detects more complete 
roads and mines than GISA_Arctic (Fig. S7 d-f). GHSL2018 and 
WSF2015, which are more focused on human settlements, detect more 
accurate buildings than GISA_Arctic (Fig. S7 a, f). Although the existing 
10-m datasets outperform GISA_Arctic in terms of depicting fine-scale 
ISA, such as roads and buildings. GISA_Arctic provides long time- 
series ISA dynamics that could help understanding the impact of 
human activities over the Arctic region. 

5.2. Arctic ISA mapping 

Compared with the other ISA areas (e.g., middle and low latitude 

Fig. 3. Overall accuracy and ISA F-score accuracy of GAIA, GAUD, GISA and GISA_Arctic for 1985–2020.  

Fig. 4. Comparison of the GISA_Arctic and other time-series ISA datasets in Murmansk.  
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urban), the Arctic ISA is sparse. While the existing ISA datasets under
estimate high-intensity ISA, they exhibit more ISA omissions in the low- 
and medium-intensity ISA regions (Fig. 4). Conversely, GISA_Arctic ex
tracts more ISA (e.g., roads, mines) than the existing ones (e.g., GISA). 
Fig. 6 compares the quantity and distribution ISA training sample used 
in GISA_Arctic and GISA. It was found that GISA_Arctic embraces more 
and widespread ISA training samples than GISA, which suggests that 
Arctic ISA mapping could be much improved by combining visually 
interpreted ISA samples and automatically generated NonISA samples. 

In the case of sample acquisition strategy, generating samples from 
consistent regions of existing datasets has been shown to be efficient and 

feasible (e.g., GISA, GAUD)(Huang et al., 2021b; Yang and Huang, 
2021). However, the quantity, quality and spatial distribution of the 
training samples are limited by the datasets used. In general, a combi
nation of automated samples acquired from consistent areas and 
visually-interpreted samples from inconsistent areas can effectively 
improve mapping performance (Huang et al., 2022a). In the Arctic re
gion, ISA mapping remains challenging due to issues such as the short 
summer sunlight duration and the limited viewing zenith angle. 
Furthermore, existing datasets exhibit significant underestimation. 
These issues constrain the reliability and feasibility of automatic sample 
acquisition in the Arctic. Therefore, we employed visually interpreted 

Fig. 5. Comparison of GISA_Arctic with GAIA, GAUD, GISA, GHSL in Rovaniemi (a), Kandalaksha (b), Polyarnye Zori (c), Revada (d), Murmashi (e), Zapolyarny (f).  
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ISA samples and automatically generated NonISA samples for 
GISA_Arctic. In addition, we used GeoNames and OSM to locate poten
tial ISA, which significantly reduced the time required for interpreting 
ISA samples. 

5.3. Land-use sources of Arctic ISA 

We further analyzed the sources of ISA expansion in the Arctic from 
2001 to 2021 (Fig. 7). Considering that bare land and glacier accounts 
for less than 1 ‰ of ISA expansion, they were excluded in the analysis. 
Tundra, woodland, and grassland, were found to be the primary sources 
of ISA expansion, accounting for more than 80 % of the total. Contrarily, 
the cultivated land, wetland, and water together account for less than 
10 %. Notably, our analysis highlights that Russia significantly con
tributes the largest annual growth of ISA in the Arctic. This contribution 

is accompanied by a further increase in the proportion of tundra, forest, 
and grassland, while the relative share of cultivated land, wetland, and 
water decreases (Fig. S4). 

It can be seen that ISA expansion usually occurs in urban fringe 
(Fig. 8a-c), port and infrastructure construction sites (Fig. 8d), industrial 
development areas (Fig. 8e&f) and mining areas (Fig. 8g&h). Among the 
Arctic countries, the most significant ISA expansion has occurred in 
Russia and the Nordic region. The main drivers of continued ISA 
expansion are mineral exploitation, energy development, settlement 
expansion and infrastructure construction (Melia et al., 2016). The 
extent of Arctic sea ice has decreased since 1980 due to the global 
warming, making natural resources such as oil and gas more accessible 
at higher latitudes, contributing to increased Arctic shipping volumes 
(Mudryk et al., 2021). The development of Arctic shipping routes, such 
as the Northwest Passage, the Northern Sea Route, and the Trans-Polar 

Fig. 6. ISA training samples of GISA_Arctic and GISA in the Arctic for 2015. (a) ISA training sample distribution of GISA_Arctic, (b) ISA training sample distribution 
of GISA, n represents the number of ISA samples. 

Fig. 7. Land-use sources for ISA in the Arctic for 2001–2021.  
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Sea Route, has led to more petroleum exploitation and ship trans
portation, resulting in ISA growth in mines and ports (Stephenson et al., 
2011) (Melia et al., 2016). In general, various industrial developments 
focus on energy sources (e.g., power stations, steel mills) and trans
portation continue to accelerate the ISA expansion over the Arctic 
region. 

6. Conclusions 

This study developed the first Arctic ISA dataset (GISA_Arctic) for the 
Arctic Circle (i.e., regions with latitudes greater than 66◦34′N) from 
1985 to 2021. For this purpose, toponymic data such as GeoNames are 
used to collect high-quality and widely distributed training samples. 
This provides a reference for quickly collecting high reliability samples 
in areas with sparse and uneven distribution of ISA. Based on the 
337,799 Landsat images on the GEE platform, multi-source features, 
such as spectrum, spectral indices, phenology and topographic features 

were fed to local adaptive RF classifiers. Based on 37,800 test samples, 
the OE, CE and F-score of GISA_Arctic are 8.70 %, 4.31 % and 0.934, 
respectively, which outperforms existing ISA datasets. GISA_Arctic 
significantly reduces ISA omission compared to existing datasets, 
enabling better monitoring of Arctic ISA dynamics. 

Courtesy of GISA_Arctic, we analyzed the ISA dynamics in the Arctic 
from 1985 to 2021. The Arctic ISA expanded from 857.83 km2 to 
2115.49 km2 during this period, with over 84 % of Arctic ISA increment 
is embraced by Russia, Finland, and Norway. The analysis on land covers 
transformed to ISA is also presented in this research. It was found that 
more than 80 % of the ISA gain stems from forest, tundra and grassland 
after 2000, which may be contributed to the development of trans
portation, industrial construction, expansion of residential areas, and 
mining of mineral resources. Given the intensive ecological changes 
associated with global warming, the long time-series ISA dynamics 
provided by GISA_Arcitc will enhance our understanding of human in 
north polar. 

Fig. 8. Examples of land-cover sources of ISA expansion in 2001–2021. (a) Belokamenka, (b) Rovaniemi, (c) near North Murmansk, (d) Sabelta, (e) near Hammerfest, 
(f) near Nosovaya, (g) near Kaunisvaara, (h) near Petkura. 
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