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• A land surface temperature (LST) 
threshold was used to assess the thermal 
livability. 

• Building height and tree coverage 
dominantly affected the average com-
munity LST. 

• Building morphology mainly deter-
mined the spatial distribution of com-
munity LST. 

• About 20 % tree coverage and 40–60 m 
building height can cool the community 
LST most. 

• Thermally livable communities have 
higher volume ratio and lower sky view 
factor.  
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A B S T R A C T   

In the current research, the question of how to modify the microclimate through landscape planning to create a 
livable thermal environment within a residential community area has not been clarified. Therefore, this study 
investigated the effects of landscape on thermal livability in 2980 communities in Shenzhen, and obtained the 
following findings: (1) the proportion of trees and the average building height were key indicators to determine 
the average land surface temperature (LST) of a community, while the two-dimensional building characteristics, 
particularly shape, similarity, and patch dominance, were mainly responsible for regulating the spatial distri-
bution of LST within a community; (2) at the community scale, the cooling intensity of buildings was strongest 
when their average height was around 40-60 m, and cooling effect of trees was most pronounced when their 
proportion achieved 20 %; and (3) the LST threshold for thermal livability in Shenzhen was around 35 ◦C. In 
summer, a higher proportion of trees and grass, as well as buildings with higher average heights, larger volume 
ratios, and more complex three-dimensional structures were favorable to maintain a livable community thermal 
environment, while in winter, a lower proportion of trees was more encouraged. In addition, a smaller average 
sky view factor can achieve a community thermal environment that warm in winter and cool in summer. These 
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results are expected to facilitate urban planners to develop community renewal from the perspective of thermal 
livability.   

1. Introduction 

The urban warming induced by urbanization has been a widespread 
concern. Some abnormal temperature events (e.g., heat waves, cold 
waves, etc.) pose risks to the physical and psychological health of resi-
dents, especially for those who are engaged in outdoor production ac-
tivities (Deschenes, 2014). Given the fact that urbanization development 
is inevitable, how to regulate and improve the urban thermal environ-
ment as much as possible through landscape planning is an urgent issue 
for current research. 

Landscape planning has been regarded as a globally adaptation 
strategy to improve outdoor thermal comfort in cities. The United States 
promulgated a series of regulations on landscaping to mitigate land 
surface temperature (LST) and seek sustainable construction patterns 
(Larson et al., 2020). Similarly, China (Yao et al., 2020), Japan (Xiao and 
Yuizono, 2022) and South Korea (Kim et al., 2020) improved their 
outdoor thermal comfort by optimizing green landscape layout mode. In 
addition, the building landscape also plays an important role in climate 
adaptation planning networks. During 2016 to 2022, the Tokyo Metro-
politan Resilience Plan and the Tokyo Disaster Prevention Plan succes-
sively proposed a “design of the built environment” strategy to mitigate 
extreme heat through spatial planning and design interventions (Kim 
et al., 2022a). Evidence from different regions suggested that the urban 
thermal environment can be effectively improved by adjusting land-
scape configurations (referring to the composition, structure, and dis-
tribution pattern of landscapes) (Ramyar et al., 2021). As a corollary, 
rational landscape configurations have great potential to create the 
“microclimate refuge” in cities, i.e., a small patch buffered from climate 
change due to their less exposure to extreme temperatures and external 
fluctuations (Keppel et al., 2017). Microclimate refuges can provide 
relatively comfortable living environments for residents when they have 
difficulty adapting in climate change scenarios (Suggitt et al., 2018). 

Community, as the basic unit of urban settlements, is undoubtedly 
the best place to create the urban microclimate refuge (Hsu et al., 2021). 
Since 2020, China has been promoting the Community-oriented Micro- 
renewal Project (Tang et al., 2022). Through renovating the community 
landscapes, the livability of many old communities can be evidently 
improved. The goal of “livability” focuses on creating comfortable living 
spaces to meet the aspirations of community residents for a better life 
(Ruth and Franklin, 2014). However, community livability mentioned in 
existing studies mainly involved the building environment, ecological 
livability, transportation convenience, living comfort, and security 
(Huang and Liu, 2022), while little attention has been paid to the 
livability of thermal environment (in this paper, referred to as “thermal 
livability”). Accurately understanding the effects of landscape on the 
thermal environment at the community scale is a prerequisite for 
scientifically improving the community thermal livability, which is also 
one of the main research objectives of this study. 

Another objective of this study is to quantitatively explore landscape 
configurations that are conducive to creating thermally livable com-
munities. The first issue that needs to be clarified is what kind of com-
munity can be called a thermally livable community. Since the 20th 
century, researchers have successively developed >165 thermal comfort 
indices to assess the indoor and outdoor thermal environments (de 
Freitas and Grigorieva, 2017). These indices were designed to estimate 
the energy exchange between the surrounding environment and the 
human body based on thermodynamic principles, which took into ac-
count basic environmental parameters such as humidity, air tempera-
ture, air velocity, radiation temperature, type of activity and the 
insulating properties of the subject's clothing (Kumar and Sharma, 
2020). However, the thermal comfort index is inadequate when applied 

to assess the thermal livability. First, a “livable” thermal environment 
should be both comfortable and stable, but the traditional thermal 
comfort index can only be used to characterize the instantaneous com-
fort of a thermal environment without considering its temporal and 
spatial variations. Secondly, the calculation of the thermal comfort 
index requires the input of a large number of meteorological parameters 
measured by the ground in real time, which is not conducive to the 
large-scale and high-frequency assessment of the thermal livability. In 
this regard, a new thermal livability index based on LST values that 
retrieved from remotely sensed images will better solve these problems, 
because remote sensing data often have higher spatial and temporal 
resolution and do not depend on in situ measurements (Zhou et al., 
2018; Yang et al., 2023). 

Overall, in recent years, the effect of landscape configurations on the 
thermal environment has been widely discussed at the macro scale 
(Zhou et al., 2016; Yao et al., 2017; Wang et al., 2019; Yang et al., 2021), 
but at the micro scale, especially at the community scale with exclusive 
residential functions, the related studies were comparatively rare. Also, 
few studies have directly linked landscape configurations with thermal 
livability. Although LST is an indirect proxy for the thermal environment 
(Kim et al., 2022a), how it can be used to measure thermal livability 
remain largely unknown. 

Therefore, this study introduced a wide range of fine-grained 
geographic datasets, including 2.1 m high-resolution remote sensing 
imagery, very high-resolution light detection and ranging (LiDAR) data, 
30-m-resolution LST data products and the boundaries of individual 
communities, to produce landscape maps and building height maps 
within 2980 communities in Shenzhen, with the aims of: (1) clarifying 
the influence intensity, influence rules and their temporal variations of 
the landscape configurations on thermal environment at the community 
scale; and (2) assessing the livability of each community's thermal 
environment by designing a LST-based thermal livability index, so as to 
specifically and quantitatively analyze what kind of landscape config-
urations are conducive to maintaining a livable community thermal 
environment. 

2. Study area 

In this study, Shenzhen, Guangdong Province, China, was selected as 
a representative study area (Fig. 1). As China's first special economic 
zone, Shenzhen has been at the forefront of the world in urban con-
struction, especially in community construction, so the study of the 
community-scale landscapes and thermal livability in this city is ex-
pected to be transformed into practical planning policies that can serve 
as an exemplary role for other cities to create thermally livable 
communities. 

Considering the distribution characteristics of the urban heat island 
effect, this study confined the research scope to the main urban area of 
Shenzhen. The boundary of the main urban area was delineated as fol-
lows (Zhou et al., 2015): (1) establishing a 1 km × 1 km grid on the 
ZiYuan-3 high-resolution land cover map (see Section 3.1); (2) dividing 
each grid into a high-density grid (>50 %) and a low-density grid (<50 
%) based on the density of buildings (DOB) in each grid; and (3) merging 
the high-density grid and generating a 2 km buffer zone at its periphery 
to obtain the final boundary of the main urban area. 

The acquisition of community boundaries included three steps: (1) 
downloading point-of-interest (POI) data labeled as residential areas 
from the open API interface provided by Baidu Map platform and 
cleaning the data; (2) obtaining the corner point information of area-of- 
interest (AOI) boundary corresponding to the POIs; and (3) vectorizing 
the AOIs in geographic data processing software (e.g., ArcGIS, QGIS) 
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and conducting geographic correction and topology checking. After the 
above processing, a total of 3306 community boundaries were extracted. 
Then, these communities were further filtered by removing those 
without available fine-grained geographic data, and those with areas 
smaller than a pixel size of LST data. Finally, 2980 communities located 
in the main urban area were retained for this study. These communities 
are between 1363.27 m2–514,150.31 m2 in size and their spatial dis-
tribution is shown in Fig. 1. 

3. Data acquisition and processing 

3.1. High-resolution land cover map 

To meet the needs of community-scale research, this study used 
ZiYuan-3 high-resolution remote sensing imagery for land cover map-
ping. The data were mainly collected from the China Natural Resources 
Satellite Remote Sensing Cloud Service Platform (http://sasclouds.com/ 
chinese/normal/). ZY-3 is the first civil high-resolution stereo mapping 
satellite constellation in China, consisting of two satellites, ZY-3 01 and 
ZY-3 02 (Tang et al., 2015). Each satellite carries four optical sensors 
with 22◦ positioning, including one nadir-view panoramic camera, two 
side-view panoramic cameras (forward-view and backward-view), and 
one ortho-optical multispectral camera with spatial resolutions of 2.1 m, 
2.5 m, and 5.8 m, respectively (Huang and Wang, 2019). 

The ZY-3 satellite images were acquired during the limited period of 
April to October 2013 and with cloud cover <30 %. In this study, seven 
representative urban land cover categories were extracted, including: 
grass, tree, bare soil, building, water body, road, and other open 
impervious surface (OIS). The mapping process was shown in Fig. 2, and 
detailed methods could be referred to Huang et al. (2020). 

Firstly, all remote sensing images were pre-processed: (1) fusing 
nadir-view and forward-view image pairs to generate a Digital Surface 
Model (DSM) of the main urban area, and then producing orthogonal 
products of nadir-view images based on this DSM; (2) fusing the mul-
tispectral image with the orthorectified nadir-view image to improve its 
spatial resolution to 2.1 m; and (3) registering the auxiliary data with 
reference to the coordinate system of multispectral image. 

Secondly, buildings, roads and water objects were extracted from the 

auxiliary data: (1) obtaining building footprints mainly from Gaode Map 
platform, supplemented by the Map World data; (2) obtaining road 
networks main from Open Street Map, supplemented by the Map World 
data; and (3) obtaining water body boundaries from Map World data. All 
objects in the data that were inconsistent with the ZY-3 satellite image 
had been manually adjusted. 

Thirdly, grass, trees, bare soil and OIS were extracted from the 
remaining areas of the images: (1) calculating normalized difference 
vegetation index (NDVI), normalized difference moisture index (NDWI), 
multispectral features and normalized DSM values based on the multi-
spectral images and DSM data; (2) inputting the above variables into a 
random forest model for classification, where the ratio of training 
samples to testing samples was about 8:1; and (3) artificially correcting 
the classification results with reference to Google Earth images. 

Finally, the accuracy of classification results was evaluated Fig. 3 
showed the land cover mapping results of the main urban area of 
Shenzhen. Qualitatively, the mapping result clearly depicted the con-
tour information of different land cover types, especially some small and 
mixed buildings and vegetation landscapes, and the continuous linear 
pattern of roads was well preserved. Quantitatively, the user accuracy 
and producer accuracy of all land cover types in the mapping results 
exceeded 85 %, with an overall accuracy of 88.38 % (Table S1), which 
can meet the requirements of our fine-grained studies. 

3.2. Building height data 

The building heights used in this study were extracted from the 
LiDAR point cloud data provided by Shenzhen Municipal Bureau of 
Planning and Natural Resources, which covered a total of 562, 257 
single buildings within the main urban area (Fig. 4 (a)–(b)). To verify the 
data accuracy, we randomly selected 200 buildings from the data, and 
their reference height values were obtained by Google Street View map. 
Fig. 4 (c) showed the linear regression results between the data values 
and the reference values. The average R2 and RMSE of the regression 
model were 0.95 and 0.42 m, respectively, implying that the data was 
reliable. 

Fig. 1. Study area location and community distribution.  
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Fig. 2. The technical process of land cover classification and mapping based on ZY-3 images.  

Fig. 3. Land cover mapping result based on ZY-3 high-resolution remote sensing images. (a): Global map; (b)–(d): Local details.  
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3.3. Landscape metrics 

Landscape metrics are effective tools for quantitatively describing 
the configurations (e.g., composition, structure and spatial pattern) of 
landscapes, which have been widely applicated in urban landscape 
studies (O'Neill et al., 1988; Turner, 1990). In order to comprehensively 
understand the landscape pattern of communities, a total of 155 metrics 
were selected in this study with reference to previous literature, 
covering five aspects such as area-edge, shape, core area, contrast, and 
aggregation. Among them, there were one two-dimensional (2D) 

composition metrics for each of seven landscape categories (tree, 
grassland, bare soil, building, water body, road, OIS), 47 2D structure 
metrics for each of three landscape categories (tree, grassland, building) 
and seven three-dimensional (3D) structure metrics for building land-
scapes. After Spearman's correlation analysis, metrics with correlations 
exceeding 0.8 were excluded, and 28 metrics were retained and calcu-
lated for subsequent analysis (Table 1, Fig. S1). A detailed explanation of 
these metrics can be found in the help manual of the FRAGSTATS v4 
software (McGarigal et al., 2012). 

As shown in Table 1, the 2D composition metrics indicated that OIS 

Fig. 4. Building height extracted from the laser point cloud data. (a): Global map; (b): Local details; (c) Accuracy evaluation.  

Table 1 
Statistical description of landscape metrics of 2980 communities in Shenzhen.  

Class Metrics Minimum- 
Maximum 

Mean Standard 
deviation 

Variance 
coefficient 

2D landscape 
composition 

The proportion of OIS (PLAND_OIS) 1.3–83.5  40.8  15.5  0.4 
The proportion of grass (PLAND_GRASS) 0.0–38.5  10.1  9.6  1.0 
The proportion of tree (PLAND_TREE) 0.0–48.0  6.7  9.3  1.4 
The proportion of bare soil (PLAND_SOIL) 0.0–15.4  0.3  1.8  6.5 
The proportion of building (PLAND_BUILDING) 8.9–77.9  35.6  11.9  0.3 
The proportion of water body (PLAND_WATER) 0.0–0.2  0.0  0.0  10.6 
The proportion of road (PLAND_ROAD) 0.0–29.8  6.5  6.5  1.0 

2D landscape structure Patch density of building (PD) 85.4–2919.2  589.0  435.6  0.7 
Largest patch index of building (LPI) 0.9–77.7  18.4  15.4  0.8 
Edge density of building (ED) 185.9–1620.1  777.5  299.7  0.4 
Landscape shape index of building (LSI) 1.2–16.3  3.9  2.6  0.7 
Average shape index of building (SHAPE_MN) 1.0–2.7  1.5  0.3  0.2 
Average circumference of building (CIRCLE_MN) 0.3–0.8  0.6  0.1  0.2 
Average contiguity of building (CONTIG_MN) 0.3–0.9  0.8  0.1  0.2 
Average proximity of building (PROX_MN) 0.0–217.3  21.1  30.8  1.5 
Average similarity of building (SIMI_MN) 11.4–2774.6  203.2  281.4  1.4 
Average cohesion of building (COHESION_MN) 84.2–99.6  94.6  2.9  0.0 
Aggregation index of building (AI) 79.8–99.3  91.2  4.3  0.1 
Area-weighted average perimeter-area ratio of grass 
(PARA_AM_GRASS) 

0.0–19,047.6  4600.5  4139.9  0.9 

Splitting index of grass (SPLIT_GRASS) 0.0–147,549,609.0  376,595.1  5,010,633.4  13.3 
Area-weighted average perimeter-area ratio of tree (PARA_AM_TREE) 0.0–19,047.6  4264.1  4030.7  1.0 
Splitting index of tree (SPLIT_TREE) 0.0–866,772,481.0  711,246.6  16,772,826.6  23.6 

3D building structure Orientation variance of the building (OV) 0.0–69.8  21.0  19.7  0.9 
Average building height (MEAN_HEIGHT) 3.0–96.0  33.4  22.6  0.7 
The standard deviation of building height (STD_HEIGHT) 0.0–39.1  5.9  6.7  1.1 
The volume ratio of building (PLOT RATIO) 0.2–15.1  4.0  2.8  0.7 
Average shape coefficient of building (MEAN_SC) 1.0–2.3  1.1  0.2  0.2 
Average sky view factor of building (MEAN_SVF) 0.7–1.0  0.8  0.1  0.1  
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was the most dominant landscape type in most communities, with an 
average proportion of 40.8 %, followed by buildings (35.6 %), grass 
(10.1 %), trees (6.7 %) and roads (6.5 %), respectively, while the 
average proportion of bare soil and water bodies in these communities 
was almost 0. In terms of the 2D building structure metrics, except for 
the average proximity of buildings and the average similarity of build-
ings, the variance coefficients of all metrics did not exceed 1, implying 
that most of the 2D structures of buildings were relatively similar across 
communities. In contrast, there were significant inter-community dif-
ferences for the 2D structure metrics of grass and trees, especially the 
splitting index of grass and the splitting index of tree. For the 3D 
building structure metrics, the variance coefficient suggested that inter- 
community differences were mainly in the standard deviation of build-
ing height (1.1) as well as the orientation variance of buildings (0.9). On 
average, the average building height and the standard deviation of 
building height were 33.42 m and 5.90 m, respectively, while the 
orientation variance of buildings, the volume ratio of building, the 
average shape coefficient of building and the average sky view factor of 
building were 21.0◦, 4.0, 1.1 and 0.8, respectively. 

3.4. Landsat surface temperature product 

In this study, the Level-2 Surface Temperature Science Products 
(L2SPs) from Landsat-7 and Landsat-8 Collection-2 dataset were utilized 
to characterize the land surface thermal environment. Detailed data 

description can be found at https://www.usgs.gov/landsat-missions/ 
landsat-collections. Due to the cloud cover problem of the original im-
ages and the severe scanline error of Landsat-7 images, the available 
data of L2SPs were limited (Fig. 5). Therefore, this study expanded the 
data acquisition period to 2012–2014 to increase the amount of avail-
able data while maintaining temporal consistency with the land cover 
data. The strips of the selected L2SPs ranged from paths 121, rows 44 to 
paths 122, rows 44 under the WRS2 type, with a total of 199 images that 
covering the Shenzhen city (even if it is only a part of the area). Then, 
these L2SPs were geo-registered, linearly transformed and clipped. 

It should be noted that some images have incomplete coverage (e.g., 
Fig. 5 (a), (c), (d)) and some images have missing scanlines (e.g., Fig. 5 
(a), (b)), so a “community sampling” strategy was adopted for each 
image, i.e., communities that could not be fully covered by L2SPs were 
deleted (e.g., areas ① and ② in Fig. 6), while communities that had 
complete L2SP data coverage were retained (e.g., areas ③ and ④ in 
Fig. 6). Then, the mean LST error values within each retained commu-
nity boundary were calculated based on the quality control (QA) band of 
L2SPs. Communities with mean LST errors exceeding 5 K were removed 
to ensure that the LST data used were of high quality. 

In this way, each L2SP corresponded to a different number of 
available communities. To avoid bias in the regression model results due 
to the small number of input community samples, this study finally 
reserved 86 out of 199 L2SPs (Fig. 7), each of which corresponded to 
>100 available communities. Among them, there were no eligible L2SPs 

Fig. 5. Level-2 Surface Temperature Science Products (L2SPs) from Landsat Collection-2 dataset. (a): Landsat 7 (Path: 121, Row: 44); (b): Landsat 7 (Path: 122, Row: 
44); (c): Landsat 8 (Path: 121, Row: 44); (d): Landsat 8 (Path: 122, Row: 44). 
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available in April due to severe cloud coverage problem, and only very 
few available data in March and May. 

Finally, the accuracy of the L2SPs was validated against the daily 
average surface (0 cm) temperature recorded in the day-by-day meteo-
rological data provided by the China Meteorological Administration for 
the years 2012–2014 (Fig. 8). Statistically, the difference between the 
average L2SPs and the meteorological data ranged from − 7.46 ◦C (date: 
20130105) to 3.34 ◦C (date: 20140516) for the 86 L2SPs, with a mean 
deviation of − 2.74 ◦C, implying that the vast majority of the L2SPs value 
were lower than the meteorological value. This can be ascribed to the 
fact that the surface radiation received by satellite sensors will be 
absorbed and scattered by the atmosphere, resulting in the LST retrieved 
from remote sensing being slightly lower than its actual value. In gen-
eral, the distribution pattern of daily LST averages from L2SPs and 
meteorological station data still showed a high degree of agreement. 

As displayed in Fig. 8, the average LST values of 2980 communities 
ranged from 8.43 ◦C (date: 20131223) to 36.38 ◦C (date: 20140704). At 
the same moment in each day, there was an evident variation of the 
average LST between communities, ranging from 5.96 ◦C (date: 
20131224) to 17.47 ◦C (date: 20140516), which further confirmed that 
variability in community landscapes can lead to heterogeneity in ther-
mal environments. Therefore, rational landscape design has great value 
in improving the thermal livability of a community. 

3.5. LST threshold for thermal livability 

Out of the study purpose of assessing “community thermal 
livability”, an adaptive thermal livability threshold was designed. This 
threshold was estimated by the minimum mortality temperature (MMT) 
(i.e., the air temperature corresponding to the lowest population mor-
tality rate) in Shenzhen, which could be used to characterize the most 
comfortable and desirable air temperature for residents (Gasparrini 
et al., 2015). Compared to the traditional thermal comfort indices, the 
MMT indicator has two advantages in measuring thermal livability: (1) 
it can be estimated by the most frequent temperature (MFT) that 
recorded in the daily temperature data of the weather station. Yin et al. 
(2019) have demonstrated that this estimation method was not only 
convenient but also highly accurate; and (2) it can be adjusted according 
to the climatic context of different regions to adapt to regional 
heterogeneity. 

The daily mean temperature and the annual MFT in 2012, 2013 and 
2014 were calculated based on the day-by-day meteorological data of 
Shenzhen from the China Meteorological Administration (Fig. 9). By 
averaging the MFT values for three years (29.51 ◦C, 28.55 ◦C, 29.60 ◦C), 
the MMT of Shenzhen was set to approximately 29 ◦C during the study 
period. 

Then, the LST threshold for thermal livability was inferred from the 
MMT. A total of 20 L2SPs with <10 % cloud coverage in the main urban 
area were selected for comparison with the air temperature of the 
weather station on the same date, and a significant positive correlation 
was found between the maximum value of LST in each L2SP and the 
daily mean air temperature (Fig. 10 (a)). On average, the daily LST 
maximum is 5.59 ◦C higher than the daily air temperature, and this 
deviation tended to increase as the temperature increased (Fig. 10 (b)), 
which is in general agreement with the findings of many previous 
studies (Shiflett et al., 2017; Goldblatt et al., 2021; Cao et al., 2021). 
Based on these findings, in this study, the LST threshold for thermal 
livability was set roughly at MMT + 6 ◦C, i.e., 35 ◦C. 

3.6. Random Forest model 

A random forest (RF) regression model was introduced to analyze the 
community-scale effect of landscape on thermal livability. RF is a 
commonly used machine learning algorithm consisting of nonpara-
metric ensemble methods that rely on classification and regression tree 
(CART) models (Breiman, 1996). 

In this study, the landscape metrics were input as the explanatory 
variable, and the daily LST mean and LST standard deviation within the 
community were separately input as the response variable. The RF 
modelling process consisted of the following steps. 

(1) From 2980 community samples, selecting 70 % (i.e., 2086 com-
munities) as training data and 30 % (i.e., 894 communities) as 
Out of Bag (OOB) data. 

Fig. 6. Illustration of the “community sampling” strategy.  

Fig. 7. Temporal distribution of the reserved 86 L2SPs.  
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Fig. 8. Accuracy validation of L2SPs based on daily LST averages from meteorological stations (86 days in total).  

Fig. 9. The annual MFT value during 2012–2014 in Shenzhen. (a): 2012; (b): 2013; (c): 2014.  

Fig. 10. Validation of the relationship between daily air temperature and daily maximum LST. (a): Linear regression model of daily mean air temperature (DMAT) 
and daily maximum LST (DMLST); (b): Scatterplot of the difference between DMAT and DMLST with the DMAT. 
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(2) Based on the Bagging algorithm (Breiman, 2001), generating 
2086 regression trees Tn(x) as the samples at the root nodes of the 
trees.  

(3) When each node of the regression tree needs to be split, randomly 
selecting mtry from the 28 community landscape metrics for bi-
nary splitting. Here, for each model, this study set the mtry for 
each tree number to 1, 2, ......, 28 (28 is the total number of 
landscape metrics) for iterative operations, and finally selecting 
an mtry value that minimizes the model's misjudgment rate.  

(4) Repeat the process in step (3) until the leaf nodes were reached.  
(5) Averaging the prediction results Rn of 2086 regression trees Tn(x)

to obtain the final regression result Rn. The regression equation 
was as follows. 

Rn =
1

2086
∑2086

n=1
Rn (1) 

In addition, to ensure the robustness of the results, this study run 
each model 10 times and took the average as the final result.  

(6) Validating the model accuracy based on 894 OOB community 
sample data. The model error was calculated as follows. 

MSEOOB =
1

894
∑894

n=1
(R̂n− Rn) (2)  

where R̂n and Rn are the predicted and observed output, respectively. 
In addition to assessing model accuracy, MSEOOBcan also be used to 

measure the importance of each explanatory variable (Breiman, 2002). 
By randomly replacing the value of a community landscape metric in the 
training sample, the change in the residuals after the replacement can be 
calculated. The larger the change, the greater the influence intensity of 
the landscape feature on the community thermal environment. 

Compared with linear regression models and logistic regression 
models, RF regression models can better solve the problems that this 
study wants to explore in the following ways: (1) judging the importance 
of community landscape feature variables to indicate their influence 
intensity (Hou et al., 2023a); and (2) plotting the dependence curves 
between the explanatory and response variables to visualize the influ-
ence rules of each landscape feature variable on the community LST. 
Besides, considering the large number of variables selected for this 
study, the RF model is more advantageous in handling high-dimensional 
data and is less prone to overfitting. 

4. Results 

4.1. The influence intensity of community landscape variables on the 
thermal environment and their temporal variation 

Two variables, LST mean and LST standard deviation, were used in 
this study to describe the thermal environment within the community, 
and they were separately input into the random forest regression models 
as response variables. Each model runs 10 times for the robustness of the 
results. The average interpretability of the LST mean model ranged from 
53 % to 80 %, while the average interpretability of the LST standard 
deviation model ranged from 54 % to 70 % (Fig. S2). 

Figs. 11 and 12 presented the ranking of the influence intensity of 
each landscape metric on the LST mean and LST standard deviation for 
each of the 86 random forest models, respectively, where the top three 
landscape metrics were highlighted. 

From Fig. 11, the 3D building structure metrics and the 2D landscape 
composition metrics were the primary variables that affected the com-
munity LST means on most days. Specifically, among the 3D building 
structure metrics (i.e., variables in blue in the first column), average 
building height (MEAN_HEIGHT), the average shape coefficient of 
building (MEAN_SC), the average sky view factor of building 
(MEAN_SVF), the volume ration of building (PLOT_RATIO), and the 

standard deviation of building height (STD_HEIGHT) were the top three 
important variables in 65, 29, 18, 17, and 9 days, respectively, while the 
effect of the orientation variance of building (OV) on the LST mean was 
always weak. Among the 2D landscape composition metrics (i.e., vari-
ables in orange in the first column), the proportion of tree (PLAND_-
TREE), the proportion of grass (PLAND_GRASS), the proportion of 
building (PLAND_BUILDING), and the proportion of OIS (PLAND_OIS) 
had a decisive influence on the LST mean in 42, 21, 8, and 4 days, 
respectively, while the proportion of soil (PLAND_SOIL), the proportion 
of water body (PLAND_WATER), and the proportion of road (PLAND_-
ROAD) variables could barely affect the LST mean due to their low 
proportion within the community. In contrast, among the 2D landscape 
structure metrics (i.e., variables in grey in the first column), only the 
average proximity of building (PROX_MN), the largest patch index of 
building (LPI), and the landscape shape index of building (LSI) showed 
pronounced effects on LST means in 8, 7, and 7 days, respectively. 

Unlike the results of the community LST mean model, the dominant 
variables of the community LST standard deviation were almost all 2D 
landscape structure metrics (Fig. 12). Statistically, the landscape shape 
index (LSI), the average similarity of building (SIMI_MN), the largest 
patch index (LPI), the patch density of building (PD), the average 
proximity of building (PROX_MN), the edge density of building (ED), the 
area-weighted average perimeter-area ratio of grass (PARA_-
AM_GRASS), and the splitting index of tree (SPLIT_TREE) influenced the 
standard deviation of community LST in 83, 82, 63, 6, 5, 1, 1, and 1 days, 
respectively. 

In the time series, the influence intensity rankings of the dominant 
variables varied less on the daily scale, but obviously on the monthly 
scale. For example, the importance ranking of the proportion of tree 
(PLAND_TREE) variable reached its peak in March (Fig. 13 (a)), which 
was mainly related to the vegetation growth cycle. In general, vegeta-
tion grows vigorously during March–August, and its life activity grad-
ually decreases as the weather turns colder. The influence of 2D 
landscape structure metrics (Fig. 13 (b), (e)) and 3D building structure 
metrics (Fig. 13 (c), (f)) were more intense in September–March and less 
intense in May–August, which can be attributed to the change of solar 
altitude angle. In summer, when the solar altitude angle is large in 
Shenzhen, buildings have limited shading of solar radiation, while in 
winter, the 2D and 3D structure metrics of buildings become the 
dominant factors that affect the LST mean of the community. It should 
be noted that the LST images used for this study are missing in a large 
amount in April, so the analysis of this month is deficient. 

4.2. The influence rules of community landscape variables on the thermal 
environment and their temporal variation 

According to the findings in Section 4.1, the average building height 
(MEAN_HEIGHT) and the proportion of tree (PLAND_TREE) were found 
to be the most important variables influencing the community LST 
mean. Herein, Figs. 14 and 15 demonstrated the influence rules of these 
two variables on the LST mean and their temporal variation over 86 
days. From Fig. 14, it can be found that in most days, the positive 
regression coefficient at low MEAN_HEIGHT values implied that 
increasing the MEAN_HEIGHT value could lead to an elevation of the 
community LST mean, while as it increased to a threshold, the regression 
coefficient becomes negative, implying that it would cool the commu-
nity thermal environment when the building height exceeds a certain 
value. On average, MEAN_HEIGHT reached its maximum cooling effect 
when it was around 40-60 m, and this threshold was relatively lower in 
summer. 

When the buildings in the community were low-heighted, the flow of 
the lower atmosphere will take away part of the heat from the surface, 
resulting in a low LST (Li et al., 2019), while when the buildings in the 
community were tall, they could reduce the community LST both by 
intercepting the solar radiation and casting shadows on the surface 
(Huang and Wang, 2019). For medium-heighted buildings, they could 
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Fig. 11. Daily rankings of the influence intensity of landscape metrics on LST mean in the random forest models (86 days in total).  
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Fig. 12. Daily rankings of the influence intensity of landscape metrics on LST standard deviation in the random forest models (86 days in total).  
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not only hinder the air flow, but also did not provide strong shading, 
thus causing an increase in LST. Yu et al. (2020) reached similar con-
clusions by exploring the effect of building height on the thermal envi-
ronment at a local scale. 

In contrast, the regression coefficients of the proportion of tree 
(PLAND_TREE) in the 86 random forest models were almost all negative 
(Fig. 15). It gradually decreased as the PLAND_TREE values increased, 
and finally leveled off. This signified that the increase of tree cover could 
effectively reduce the mean value of community LST, but the cooling 
effect of trees would no longer enhance beyond a certain threshold. It 
was observed that, although there were inter-day variations, in most 
cases the tree cover could guarantee a significant cooling effect at the 
community scale when it reached the 20 % threshold. In particular, on 
the daily scale, the curves of some models (e.g., 0209, 0801, 0814, 0818, 
1210) indicated that the increase in tree cover would raise the average 
community LST, which may be due to some specific meteorological 
conditions such as low air humidity, since the warming effect of vege-
tation has been reported in many arid climate zone cities (Yu et al., 
2018; Liu et al., 2021a). 

In addition to PLAND_TREE and MEAN_HEIGHT, the influence rules 
of other relatively important landscape metrics on the community 
thermal environment were as follows: (1) In Fig. S3, the increase of the 
proportion of grass (PLAND_GRASS) was often accompanied by the 
decrease in the mean LST (i.e., y-axis values <0). Similar to PLAND_-
TREE, a strong cooling effect can be achieved when PLAND_GRASS 
reached 20 % on most days. However, the complexity and inter-day 

variability of its curve was much higher than that of PLAND_TREE due 
to its relationship with the LST mean was often disturbed by other 
dominant variables; (2) In Fig. S4, as the average shape coefficient of 
building (MEAN_SC) increased from 0 to 2, its regression coefficient 
increased rapidly in a linear fashion and turned from negative to posi-
tive. This indicated that when the MEAN_SC value is low, it was bene-
ficial to reduce the LST mean, while when it was high (especially after it 
exceeded 2), it was necessary to consider decreasing it to maintain a low 
community LST; (3) In Fig. S5, the influence rule curve of the average 
sky view factor of building (MEAN_SVF) presented two opposite shape 
characteristics of descending and ascending in 86 days. To investigate 
the reason, we extracted the x-value corresponding to the smallest y- 
value (i.e., the MEAN_SVF threshold with the strongest cooling effect) 
from each of the 86 curves for correlation analysis with daily meteoro-
logical data (Fig. S6). The results showed that air pressure was the main 
meteorological factor affecting this threshold: on days with higher air 
pressure, a larger MEAN_SVF led to a stronger cooling effect, and vice 
versa, a smaller MEAN_SVF was more conductive for cooling; (4) In 
Fig. S7, the daily influence rule curves of the volume ratio of building 
(PLOT_RATIO) were relatively consistent during the 86 days. In general, 
communities with higher PLOT_RATIO values tended to have more 
intensive building cooling. 

Fig. 13. Monthly rankings of the influence intensity of landscape metrics on LST mean (Left column) and LST standard deviation (Right column) in the random forest 
models (11 months in total). (a), (d): 2D landscape composition metrics; (b), (e): 2D landscape structure metrics; (c), (f): 3D building structure metrics. 
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4.3. Analysis of landscape configuration for maintaining a livable 
community thermal environment 

To analyze what kind of the landscape configuration was conductive 
to maintaining a livable community thermal environment, the top 10 % 
communities whose average LST was closest to the LST threshold for 
thermal livability in Shenzhen (i.e., 35 ◦C) were extracted (hereafter 
referred to as “thermally livable communities”), and their landscape 
metrics were clustered on a daily scale. Fig. 16 displayed the clustering 

results of six landscape metrics that played a dominant role in affecting 
the mean LST of the communities. 

On most days, except for the average sky view factor of building 
(MEAN_SVF), the values of other five metrics of thermally livable 
communities were notably higher than the overall mean value of all 
communities. Among them, the proportion of grass (PLAND_GRASS) and 
the proportion of tree (PLAND_TREE) were particularly prominent 
during June–October, while the average building height (MEAN_-
HEIGHT), the volume ratio of building (PLOT_RATIO) and the average 

Fig. 14. Influence rules of the landscape metrics on LST mean based on the dependence curves of random forest model, taking the average building height 
(MEAN_HEIGHT) variable as an example (the number above each chart is the date corresponding to the model). 
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shape coefficient of building (MEAN_SC) were higher than the overall 
mean values mainly between July–September, March–September and 
May–September. This suggested that high grass and tree cover, high 
building heights and volume ratios, and complex building morphologies 
were beneficial to maintaining a livable community thermal environ-
ment during the summer days. There is no doubt that trees and grasses 
have a strong cooling effect on the thermal environment in summer, and 
this has been agreed upon in many studies (Wang et al., 2019; Yang 
et al., 2021; Liu et al., 2021a,b). For buildings, high average building 

heights and complex building morphologies are effective in blocking 
direct sunlight and providing more shade in summer (Li et al., 2020; Li 
et al., 2021). 

In contrast, communities with low PLAND_TREE had a higher ther-
mal livability in the winter days. This is largely due to that both 
photosynthesis and transpiration of trees slow down in winter, making it 
difficult for heat to escape. Moreover, trees in a community can prevent 
surface heat flow caused by cold winds to some extent, allowing the 
local surface climate to be decoupled from the general climate, thus 

Fig. 15. Influence rules of the landscape metrics on LST mean based on the dependence curves of random forest model, taking the proportion of tree (PLAND_TREE) 
variable as an example (the number above each chart is the date corresponding to the model). 
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creating a microclimate refuge (Dobrowski, 2011; Zhou et al., 2017). 
Moreover, no matter in summer or winter, the MEAN_SVF of ther-

mally livable communities was generally lower than the overall mean 
values. This implied that the dense building morphology in 3D space 
favored the maintenance of thermally livable environments in either 
warm or cold weathers. The reason, as mentioned above, is that these 
communities have formed a relatively independent local microclimate 
environment due to avoiding strong heat flow (Yu et al., 2021). It should 
be emphasized that this tendency was not absolute or invariant owing to 
varied meteorological conditions and complex synergistic effects be-
tween landscapes. 

5. Discussion 

5.1. Relationship between landscape and thermal environment at different 
scales 

Current researches have reached some consensus on the influence of 
the 2D composition of the landscape on the thermal environment at the 
city scale. It is generally agreed that high-coverage vegetation and water 
bodies were the essential “cooling sources” in cities, while buildings and 
other impervious surfaces were the primary “heating sources” (Cao 
et al., 2010; Zhou et al., 2017). This finding was also confirmed in this 
community-scale study. Notwithstanding, at the community scale, the 
influence intensity of different landscapes on the thermal environment 
differed from that at the city scale. Numerous studies have reported that 
building occupancy was the overarching factors in determining the 
overall thermal environment at the city scale (Guo et al., 2020; Yuan 
et al., 2021; Hou et al., 2023b), whereas this study found that for 
communities, tree cover was a more critical factor for average LST 
values. In addition, due to the limited coverage of water body, its 

influence on thermal environment was almost negligible at the com-
munity scale, which was also contrary to the findings at the city scale. 

This inconsistency is chiefly owing to the differences in the landscape 
and human activities across different scales. At the city scale, buildings 
are usually the most dominant and densely distributed landscape, while 
trees have a limited share and are often planted as the secondary land-
scapes interspersed between buildings. In the areas with high building 
coverage, especially in commercial and industrial functional zones, 
there is usually high intensity of human activity in daytime, resulting in 
considerable anthropogenic heat emissions (Tong et al., 2020). By 
contrast, at the community scale, the population density is lower during 
the daytime, and the heat emission from living activities is far less than 
that from commercial and industrial activities. More importantly, the 
cooling intensity of trees on their surrounding surface thermal envi-
ronment would be amplified at a smaller community scale according to 
the “island theory” (Ziter et al., 2019). Based on previous studies, about 
40 % tree cover can dominantly influence the LST at the city scale (Liu 
et al., 2021a,b), while this study reported that only 20 % tree cover can 
prominently cool down the land surface at the community scale. Like-
wise, it can be concluded that there is a difference in the influence on the 
thermal environment between large water bodies (e.g., lakes, rivers, 
etc.) discussed at the city scale and fragmented water bodies (e.g., 
fountains, swimming pools, etc.) within the community. 

This scale effect was also witnessed in the results of the 3D landscape 
structure metrics. The findings of existing studies on the relationship 
between building height and LST in cities were contradictory. For 
example, Berger et al. (2017) revealed that taller buildings in cities were 
prone to lead to urban heat island effect, while Huang and Wang (2019) 
and Zheng et al. (2019) concluded that an increase in building height is 
beneficial in mitigating urban heat. In this study, it was found that at the 
community scale, as the average building height increased, LST showed 

Fig. 16. The average landscape metrics of thermally livable communities (folded lines) and overall communities (scattered points) on a daily scale, taking the six 
dominant factors affecting the community LST mean as an example. 
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a varied curve that first ascended and then descended, and when it was 
around 40-60 m, its cooling intensity reached the maximum. It can be 
seen the analysis at the micro-community scale can better expose the 
complex influence mechanism of the building structure on the thermal 
environment. It was this strong influence of the 3D building structures 
on LST at the micro scale that makes it the most important factor 
affecting the community thermal environment. When the study scale 
was upgraded to the whole city, the 2D building morphological features 
tended to exert a greater impact on LST (Berger et al., 2017; Liu et al., 
2021a,b; Yu et al., 2021). 

Apart from spatial scales, different temporal scales could also lead to 
discrepancies in researchers' understanding of the relationship between 
landscape and thermal environment. Existing studies have investigated 
this relationship at the diurnal (Lai et al., 2021; Hesslerová et al., 2013), 
seasonal (Liu and Weng, 2008; Peng et al., 2018; Guha and Govil, 2022), 
and annual (Zhou et al., 2016; Dutta et al., 2019) scales and they have 
given a plenty of different and even opposite conclusions. This study 
further complemented some new findings on the relationship between 
landscape and thermal environment on a daily scale to help refine 
stakeholder perceptions. 

5.2. Relationship between landscape, thermal environment and livability 
from different perspectives 

This study introduced the concept of “thermal livability” to measure 
the stable comfort of a community's thermal environment, so as to 
analyze the optimal community landscape configuration that can 
maintain a livable thermal environment. Fig. 16 demonstrated an 
interesting finding: on most days, the average sky view factor of building 
(MEAN_SVF) in thermally livable communities is lower than that of 
other communities. Fig. S6 also exhibited that a smaller MEAN_SVF have 
a warming effect during high air pressure days, while the opposite was 
true in low air pressure days. Therefore, it can be inferred that a building 
structure with a lower MEAN_SVF is conducive to achieving a livable 
community thermal environment across summer and winter seasons 
since air pressure is generally lower in summer and higher in winter. 
This finding has also been witnessed in Kim et al. (2022b). However, 
some studies have put forward contradictory suggestions from the 
perspective of residents' subjective cognition on community livability. 
Sarkar et al. (2021) found through interviews that residents generally 
perceived communities with higher building SVF to be more livable 
because of more daylight and better air circulation. Guo et al. (2021) 
also pointed out that residents prefer community environments with 
open views when choosing where to live. A similarly controversial in-
dicator was the volume ratio of building (PLOT_RATIO). The results in 
both Figs. 16 and S7 implied that higher PLOT_RATIO was more bene-
ficial to constructing a livable community thermal environment. 
Nevertheless, in the general perception of community residents, the 
lower the PLOT_RATIO of a community, the higher its livability (Pandey 
et al., 2010). Thus, we can conclude that when treating a problem from 
different perspectives, the conclusions we obtained can vary 
enormously. 

Beyond that, factors such as aesthetic significance, economic value, 
and social function are also essential for landscape planning and design, 
which requires planners to take a multifaceted consideration and trade- 
off to maximize the community livability. In this sense, the specific 
thresholds of landscape metrices that provided in this study can facili-
tate the formulation of urban renewal strategies from the perspective of 
improving the thermal livability of the communities. 

6. Conclusion 

The comfort of thermal environment is an important indicator for 
evaluating regional livability, but it has not yet received sufficient 
attention in existing studies. In this study, we designed a thermal 
livability index based on LST thresholds and used it as a bridge to link 

thermal environment and livability, elucidating two critical research 
issues: (1) the influence mechanism of landscape on thermal environ-
ment and its temporal variation at the community scale; and (2) the 
optimal community landscape configuration that is conducive to 
maintaining a livable thermal environment. The results revealed that 
landscape is not only an ornament of the city, but also a “regulator” 
between thermal environment and livability, which complemented the 
previous research results and provided planners with a new perspective 
from thermal livability when designing community landscapes. 

Some limitations still remained in this study. It is well known that 
remotely sensed LST products usually have missing values due to cloud 
cover. Even though this study attempted to obtain as much available 
L2SPs as possible by extending the research period, there were still very 
few eligible data in some months (e.g., March, April and May). This may 
lead to bias in the data analysis for that month or affect the regularity of 
the continuous time series analysis. In addition, the results of this study 
were only applicable to Shenzhen city. The same approach may yield 
discrepant conclusions when applied to other cities, as the influence 
mechanism of landscape on the thermal environment tends to receive 
the impact of background climate and urban development level, which 
has been argued in previous studies. Nonetheless, the methodology 
proposed in this study provided new ideas and feasible technical routes 
to address some of the questions that remain (such as the two critical 
research issues mentioned above). In the next step, we will consider 
expanding the temporal and spatial scope of the study to obtain more 
generalized conclusions and reveal the characteristics of spatiotemporal 
variations. 
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