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TD-SSCD: A Novel Network by Fusing Temporal
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Abstract— The change detection of remote sensing images has
a wide range of applications in many fields. In recent years,
deep learning has become one of the most powerful tools for
remote sensing change detection due to its excellent feature
learning capability. However, most deep learning methods require
a lot of labeled data for the training, which is time-consuming
and labor-intensive. Recently, a new learning paradigm—self-
supervised learning—has become one of the hot topics in the
field of change detection due to its ability to learn feature
representations by training with a large amount of unlabeled data
and without a large number of sample annotations. However,
the existing methods for self-supervised learning are usually
designed for natural image processing and are less considered
for change detection in more complex scenes (e.g., remote
sensing imagery). Therefore, in this article, we propose a novel
network by fusing temporal and differential information for
self-supervised contrastive learning change detection, namely,
TD-SSCD. Specifically, TD-SSCD aims to mine information from
the bitemporal images and their differential images (DIs) in
a self-supervised learning framework, and it gradually learns
the potential correlations between them through an alternating
iteration learning strategy. The experimental results based on
the Onera Satellite Change Detection (OSCD) and Számítástech-
nikai és Automatizálási Kutatóintézet (SZTAKI) datasets show
that the proposed method outperforms the current state-of-
the-art (SOTA) unsupervised and self-supervised change detec-
tion (SSCD) methods. Benefiting from pretraining on unlabeled
samples, the method closes the gap between unsupervised and
supervised change detection.

Index Terms— Contrastive learning, remote sensing image
change detection, self-supervised learning, temporal and differ-
ential.

I. INTRODUCTION

CHANGE detection has become one of the most important
topics in the field of remote sensing [1], [2]. It is the
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technology of observing and identifying the information about
land-surface changes by analyzing two (or more) images that
are obtained at different observation times in the same area.
Change detection in remote sensing images has been widely
applied in various applications, such as land management [3],
environmental monitoring [4], disaster assessment [5], and
urban planning [6]. The existing remote sensing image change
detection techniques can be roughly divided into supervised
and unsupervised ones based on whether labeled training
samples are used or not [7]. The supervised techniques have
achieved satisfactory results in change detection [8]. However,
supervised techniques require considerable prior knowledge
[9]. In other words, they require more training samples for
learning the features of remote sensing images. In practical
applications, it is difficult to collect a large number of labeled
samples of remote sensing images, which often limits the
practicability of the supervised methods. Thus, unsupervised
remote sensing change detection techniques that do not depend
on the availability of labeled samples are receiving increased
attention.

The traditional unsupervised remote sensing change detec-
tion methods tend to use clustering or a threshold to determine
the changed or unchanged regions [10]. Unfortunately, most
of these methods are designed with the individual pixel as the
elementary unit and rely on hand-crafted features, resulting
in poor robustness in complex scenes [11]. In recent years,
deep learning techniques have been widely used in remote
sensing due to their powerful feature learning capabilities
[12], [13], [14], [15], and many unsupervised change detection
methods based on deep learning have been developed and have
achieved impressive results. A pretrained convolutional neural
network (CNN) was applied to extract spectral–spatial features
from bitemporal images, and then, the conventional change
vector analysis (CVA) was employed to identify changes [16].
In addition to these various CNNs, autoencoders [17] and
generative adversarial networks (GANs) [18] are widely used
in unsupervised change detection tasks [19]. For example,
Gong et al. [20] transformed heterogeneous images into a
shared-latent space via variational autoencoders and then used
GAN to obtain more accurate change maps. However, some
studies have shown that the commonly used unsupervised
change detection methods, such as GAN [21], focus more
on the pixels themselves rather than abstract deep feature
representations [22]. To address this problem, researchers have
proposed change detection methods based on transfer learning
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Fig. 1. Self-supervised learning paradigm. (a) Process of self-supervised learning. (b) Proposed TD-SSCD change detection method DI.

to extract the deep features of remote sensing images by using
a pretrained model to obtain the change information [16].
However, these methods based on transfer learning greatly rely
on the transferability of the pretrained model.

More recently, self-supervised learning method provides a
new paradigm, as shown in Fig. 1(a). First, self-supervised
model learns universal feature representations from a massive
unlabeled image data and then transfers to downstream tasks
to achieve similar (even better) performance to supervised
learning on downstream tasks with a limited number of labeled
samples. The way to construct sample pairs is one of the
key points of self-supervised learning [23]. For example,
Chen et al. [24] proposed MoCov3, which encourages features
from different views of the same image (positive pairs) to
be closer and feature representations from different images
(negative pairs) to be more exclusive, to guide the model to
learn semantical invariant features of image. There are also
self-supervised methods that do not require negative pairs,
e.g., SimSiam [25] and bootstrap your own latent (BYOL)
[26], which also achieve good model performance by simply
encouraging the maximization, the similarity between positive
pairs, significantly reducing the computational cost. Recently,
self-supervised learning methods have been applied to remote
sensing change detection tasks [27], [28]. Specifically, the
existing self-supervised learning-based change detection meth-
ods usually follow the self-supervised pretraining process
used in scene classification to obtain a well-trained feature
extractor. Chen and Bruzzone [28] used the BYOL method
for change detection, showing similar performance to the
supervised method. It is worth noting that the above self-
supervised change detection (SSCD) methods work under the
assumption that the proportion of change regions in the image
is small. By self-supervised learning of temporal invariant
features (i.e., semantic features of the ground objects), the
semantic features of the bitemporal remote sensing images are
subtracted during reasoning to determine whether the objects
have changed. In this process, the features in the differential

space of the bitemporal images are ignored. From this point
of view, the SSCD methods might obtain better results if the
information from the bitemporal images can be fully utilized.
It has been shown in several studies that change detection
with early fusion strategies [using differential images (DIs)
or connected bitemporal images] is effective in retaining the
change information from the original images, but, unfortu-
nately, they may retain some pseudochanges at the same time
[29]. In summary, the change detection methods with early
and late feature fusion strategies have their own respective
advantages and disadvantages, and their complementation is
expected to achieve better results [30]. Thus, effectively com-
bining the temporal images and their differential features may
be a promising solution for improving the performance of
SSCD methods. However, this point has not been considered
in the existing unsupervised change detection literature.

In view of this, in this article, we propose a novel SSCD
scheme by fusing the temporal and differential feature extrac-
tion branches, called TD-SSCD. As illustrated in Fig. 1(b),
TD-SSCD learns the temporal change and differential features
of the bitemporal images in the pretraining phase, then uses
the two well-trained networks to calculate the change proba-
bility, and obtains the final binary change map based on an
appropriate threshold. Among them, the pretraining process
is divided into two stages. In the first stage, we make the
model learn the temporal invariance feature of bitemporal
images by self-supervised learning. This stage focuses on
mining the features of temporal images themselves. Then,
in the second stage, we introduce DIs to the self-supervised
learning of temporal information in the first stage to realize the
joint learning of temporal and differential information in the
self-supervised framework. It is worth mentioning that self-
supervised frameworks usually use data enhancement tech-
niques (such as cropping, color distortion, or random noise) to
obtain multiple views from the same image and then learn the
correlation between different views. In contrast, in the method
proposed in this article, we propose a new multiple views
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construction scheme in order to achieve joint SSCD of tempo-
ral and its differential information. We consider that the feature
mappings of early fusion (temporal feature learning) and
late fusion (differential feature learning) can represent change
information from different perspectives and can be considered
as multiple views of SSCD. Furthermore, in order to better
accommodate the correlation between temporal-differential
multiple views during network training, we propose a new
training strategy: 1) propose a distribution consistency loss
to learn the feature representation; 2) design an update loss
and combine it with the distribution consistency loss to form
a balanced recurrent architecture to guide the two feature
extraction modules to learn from each other during the training
process to mine potential relationships between temporal and
DIs; and 3) introduce a distribution sharpness component to
dynamically suppress error messages and highlight areas that
change during training.

The main contributions of this article are summarized as
follows.

1) We propose a new SSCD scheme, namely, TD-SSCD.
Unlike the existing SSCD methods, this method uses
temporal images and their DIs as the self-supervised
learning multiple views, aiming to fully mine the change
features of temporal images. The method uses two
different self-supervised frameworks in pretraining to
learn and fuse temporal and differential information,
respectively. This self-supervised pretraining process
provides a new idea for self-supervised remote sensing
change detection.

2) In order that the TD-SSCD network can better utilize the
change information in the temporal and DIs, we propose
a recurrent alternating self-supervised training method.
It uses bitemporal and DIs as positive samples and
guides the network to learn and fuse the potential
correlations of temporal and DIs through a combination
of cyclic alternating loss functions. Meanwhile, we pro-
pose a distribution sharpness component to improve the
reliability of the change feature distribution.

The rest of this article is organized as follows. Section II
presents the related works in change detection and self-
supervised learning. Section III introduces the proposed TD-
SSCD change detection method in detail. The experimental
results obtained on two different datasets and the related
comparisons with supervised and unsupervised methods are
provided in Section IV. Finally, in Section V, we draw our
conclusions.

II. RELATED WORKS

In this section, we introduce the methods related to unsu-
pervised change detection and the self-supervised learning.

A. Unsupervised Change Detection

The traditional change detection algorithms commonly use
the approach of pixelwise image differencing and adopt clus-
tering or threshold segmentation mechanisms to identify the
changed and unchanged areas [31]. Among these methods,
a popular one is to combine principal component analysis

(PCA) with k-means (i.e., PCA-k-means) to remove noise and
the unimportant information in the images by transforming the
bitemporal images through PCA and then classifying them
with k-means [32]. However, most of these methods compare
individual pixels, without considering the relevant information
between pixels in the neighborhood. As a result, the resulting
change map often contains a large amount of “salt-and-
pepper” noise. Thonfeld et al. [33] developed a robust CVA
(RCVA) method by considering the surrounding neighborhood
of each pixel. However, this method cannot achieve effective
feature representation in complex scenes. To obtain a robust
feature representation, Bovolo [34] proposed an object-based
parcel CVA (PCVA) method, which performs independent
hierarchical segmentation of multitemporal images to utilize
the spectral and spatial information by encoding the spatial
context of pixels. Although all these methods emphasize the
importance of spatial context information and neighborhood
information, they are based on manually designed features,
which are usually not robust.

In recent years, deep learning has been widely applied in
remote sensing change detection tasks due to its excellent
performance in feature capture and expression [35], [36],
[37]. However, deep learning methods usually require a large
number of training samples. To solve this problem, some
studies have used a preclassification approach to obtain a
coarse change map and then select high-confidence samples
from the change map to train the network to obtain the
final change classification map. For example, Li et al. [37]
proposed an unsupervised change detection method based on
deep learning, which uses wavelet features to identify changed
and unchanged pixels, and then trains the network with
patches centered on these pixels as samples. Gao et al. [38]
combined a traditional method with deep learning and used
the CVA to identify samples with high confidence, and then
extracted the pixel features with a high likelihood of change
by the deep learning technique, and used the slow feature
analysis to highlight the change feature components during
the training process. These methods can effectively capture
the feature of an image and obtain better results than the
traditional ones. However, the quality of the change maps in
these deep learning change detection methods is affected by
the preclassification change maps. Unfortunately, in complex
regions, the results obtained by the traditional methods are not
always reliable. To solve this problem, some change detection
methods based on transfer learning have been proposed. For
example, Li et al. [17] proposed the deep CVA (DCVA)
method, which extracts the deep features of the target scene
through the deep learning model trained by other tasks, and
then compares and analyzes the bitemporal deep change fea-
tures to obtain the final classification map. However, it seems
difficult to obtain satisfactory results when the pretrained
dataset and the target task differ significantly. To alleviate this
problem, Du et al. [39] proposed a two-stage transfer learning
change detection strategy, in which the pretrained model is
fine-tuned on the target dataset before the change detection.
However, the problem of model performance limitation caused
by the difference between the source domain and target domain
cannot be solved completely.
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B. Self-Supervised Learning
In recent years, self-supervised learning has made much

progress, with encouraging results in multiple computer vision
tasks [41], [42]. Self-supervised learning allows us to pretrain
using the large number of available unlabeled images. Among
the self-supervised learning methods, contrastive learning has
been successfully applied to the field of natural image process-
ing. As shown in Fig. 1(a), self-supervised contrastive learning
consists of two steps: 1) pretraining and 2) fine-tuning for
the downstream tasks. Firstly, a self-supervised framework is
designed to learn the feature representation from unlabeled
image data. Specifically, this allows the network to learn the
invariance of the transformation by forcing the different views
of the same image (positive sample pairs) to be similar and
the different images (negative sample pairs) to be dissimilar.
In addition, in this step, the model is able to capture low-level
and high-level features that are useful for other downstream
tasks. Afterward, the pretrained model can be transferred to the
downstream task, thus achieving a performance that is similar
to that of supervised learning in the downstream task, with
limited labeled samples.

Inspired by this, several studies have applied this self-
supervised paradigm to various tasks in remote sensing, and
obtained promising results with only a small number of labeled
samples. For example, Tao et al. [43] used a self-supervised
framework for remote sensing scene classification by using
a large unlabeled dataset in the pretraining, and then fine-
tuned the well-trained model using a small number of labeled
samples to transfer the learned representation to the target
task. In the finite labeled data task, this method obtained better
results than the traditional supervised methods. Li et al. [44]
proposed a global style and local matching contrastive learning
network (GLCNet), which guides the model pretraining pro-
cess through global style and local matching modules to learn
multiscale features of the remote sensing images. The GLCNet
has shown its superiority over some supervised learning and
self-supervised methods on semantic segmentation. Notably,
these studies employed data augmentation schemes, such as
random noise or color distortion, to simulate the temporal
changes in remote sensing images, in order to facilitate the
model to learn the temporal invariance of remote sensing
images during the pretext process. However, the temporal
differences in remotely sensed images are mainly the texture
and color differences caused by the complicated imaging
conditions, which cannot be truly simulated by the conven-
tional image transformation approaches. Fortunately, remote
sensing change detection tasks can naturally provide multiple
views (i.e., bitemporal remote sensing images collected at
different times in the same region) and do not require data
transformation. Therefore, some change detection studies have
directly used pre- and postchange images as the multiple
views to guide the model to learn the temporal invariance of
remote sensing images. For instance, Chen and Bruzzone [28]
proposed an SSCD method based on multiple unlabeled views,
which achieved a better result than the state-of-the-art (SOTA)
unsupervised approach by using the BYOL [26] framework.
Saha et al. [27] proposed a self-supervised learning change
detection method that combines deep clustering, a Siamese

network, and contrastive learning strategies to obtain a satis-
factory performance with only a small amount of unlabeled
data.

The experimental results reported in the above studies have
preliminarily indicated that change detection based on self-
supervision has great potential. However, there are still some
problems with the existing SSCD methods. To be specific,
these SSCD methods are similar to the unsupervised change
detection methods based on transfer learning, i.e., a well-
trained convolutional network (obtained by pretraining) is used
to extract and compare the deep features of bitemporal images
(i.e., late fusion). However, although the convolution operation
has a strong nonlinear fitting capability, it may lose part
of the original image information and lead to some change
information being ignored [46]. Since there have been few
studies on SSCD, this problem has not been investigated in
the self-supervised framework. However, on the other hand,
this issue has been addressed in the supervised methods. For
example, Daudt et al. [47] designed a late fusion change
detection method, which extracts the features of bitemporal
images through a depthwise separable fully convolutional
network and then fuses the features to generate a change
map. Similarly, Gadzicki et al. [48] proposed three different
phase fusion networks [i.e., fully convolutional early fusion
(FC-EF), fully convolutional Siam-conc (FC-Siam-conc), and
fully convolutional Siam-difference (FC-Siam-diff)] to explore
the advantages of different feature fusion schemes in change
detection tasks. The results showed that the late fusion-based
methods can obtain good results. However, in some scenarios,
the early fusion approach can obtain a better performance [49].
This means that different fusion schemes have their respective
advantages and disadvantages in different scenarios. In this
article, inspired by this observation, we propose a new self-
supervised learning framework by simultaneously considering
the bitemporal images and their differential features to fully
explore the potential of self-supervised methods in remote
sensing change detection.

III. METHODOLOGY

A. Overall Architecture

The overall structure of the proposed method TD-SSCD
is shown in Fig. 2. The framework consists of two stages,
including stage 1: learning the temporal invariance features
from bitemporal images and stage 2: self-supervised learning
and optimization based on the temporal and differential. It is
assumed that a set of bitemporal patches are extracted from the
images and the corresponding DIs. Suppose a set of bitemporal
patches are extracted from the images and the corresponding
DIs. In the first stage of self-supervised learning, the bitem-
poral patches are input into the two branches, respectively,
to realize that each branch can learn image information of
different temporal. In the second stage, in order to consider the
advantages of bitemporal and DIs in change detection in the
SSCD framework, this study proposes a new positive feature
embedding construction strategy for SSCD, that is, the feature
representation Fef (i.e., early fusion) of temporal images and
the feature representation Flf (i.e., late fusion) of DIs as
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Fig. 2. Schematic overview of the proposed TD-SSCD change detection approach. It can be divided into two main stages. Stage 1: Taking Time1 (T 1)
image as an example, backbone (also referred to as an encoder) fϕ1 is used to extract semantic features from images, and then, the extracted features are
projected into a common domain through an MLP network (i.e., projection head hθ1). Immediately afterward, the projected features from the projection head
hθ1 are input into the prediction head zθ and converted into a new feature representation. In stage 1, the feature learning is optimized under the two temporal
features distance loss Lsim. Stage 2: in the differential branch, the DI feature representations Fef are extracted from the backbone fϕ3 and the projection
heads hθ3, and the feature representation Flf of the bitemporal image changes in stage 1 is computed. Fef and Flf are utilized to construct a distribution
consistency loss LDC to train the differential branch. Finally, the two branches can be optimized to mutually enhance each other through an alternating iteration
learning strategy (referred to as Lupdate). Stop-gradient means that gradients cannot be back-propagated through the encoder. Momentum means that a slowly
progressing module of T 2 implemented as a momentum-based moving average of the module of T 1.

positive feature pairs. Furthermore, to better achieve SSCD
learning of these two features, we propose an optimization
method with iterative alternation of distribution consistency
loss and update loss to guide the bitemporal image branch and
DI branch networks to learn from each other. By this mutual
learning approach, the information of bitemporal and DIs can
be fully exploited, and the loss of important information for
determining changes is greatly reduced. In addition, in order
to better learn the change information of bitemporal and DIs,
we propose a distribution sharpness component to dynamically
suppress the error information, highlight the change region,
as well as ensure the flexibility of the model.

B. Stage 1: Learning the Temporal Invariance Features of
Bitemporal Images

In general, the multiple views in the self-supervised learning
methods are obtained by different augmentation techniques,
such as cropping, color distortion, or random noise [48], [49].
Fortunately, remote sensing change detection tasks (bitemporal
images) naturally have multiple views and do not require data
transformations. The difference between the multiple views
is mainly due to seasonal factors and imaging conditions.
Therefore, this difference can guide the model to learn the
temporal invariance features in the first stage.

As seen from stage 1, the two branches have similar
structures, i.e., backbone and projection head, where each
backbone extracts the useful features from the image at
each time, and the projection head is a multilayer percep-
tron (MLP) network that projects the extracted features into
a common domain. In an ideal scenario, the unchanged
region would produce similar features from backbones hθ1
and hθ2. However, this may cause the output of hθ1 and
hθ2 to be exactly the same, resulting network collapse.

So, we add a two-layer MLP (i.e., prediction head zθ )

after hθ1. These designs have been shown to be effective in
BYOL [26], MoCo [41], and SimCLR [42].

Suppose there is a pair of bitemporal images x1 ∈ RH,W,C

and x2 ∈ RH,W,C , where x1 and x2 are the unchanged patches
in images T 1 and T 2, respectively. The output vectors of
the two branches are denoted as z1 ≜ zφ(hθ1( fϕ1(x1))) and
p2 ≜ hθ2( fϕ2(x2)). Thus, the task of stage 1 can be defined
as follows:

θ1, ϕ1 = arg min
θ,ϕ1
{sim(z1, p2)} (1)

sim(x, y) =
x
∥x∥2

∗
y
∥y∥2

(2)

where sim is a measure of the feature similarity between patch
x1 and x2. ∥ · ∥2 refers to L2 normalization.

In addition, we use a strategy without negative pairs to
maximize the similarity of the different temporal patches, and
at the same time, to prevent the parameters of hθ1 and fϕ1 and
hθ2 and fϕ2 from being exactly the same, we set the parameters
of hθ2 and fϕ2 to a constant (stop-gradient [25]) and use the
updated parameters of hθ1 and fϕ1 to slowly update hθ2 and
fϕ2 (momentum update [41]). This step of the momentum
update can be written as follows:

ϕ2,θ2← λϕ2+ (1− λ)ϕ1, λθ2+ (1− λ)θ1 (3)

where λ ∈ [0, 1) is a momentum coefficient, which is usually
set to 0.999 as recommended by [40]. Based on these learning
strategies in stage 1, the contrastive loss Lsim can be expressed
as follows:

Lsim = −

(
1
2

sim
(

F̂ z, stopgrad
(

F̃h2
))

+
1
2

sim
(

F̃ z, stopgrad
(

F̂h2
)))

(4)
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Fig. 3. Details of stage 2 in TD-SSCD.

where F̂ z and F̃ z represent the final output feature maps of x1
and x2 in zφ . F̂h2 and F̃h2 represent the final output feature
map of x1 and x2 in hθ2. stopgrad indicates the stop-gradient
operation.

C. Stage 2: Temporal and Differential Feature Learning and
Fusion in SSCD

The pretext process at stage 2 is shown in Fig. 3. The
existing SSCD methods generally use features learned from
bitemporal images to capture image changes (i.e., late fusion).
It aims to extract features from the bitemporal images and
detect the changes by measuring the distance between feature
pairs. It can reduce pseudochanges, but it can also lead to
loss of the original image change information. In contrast,
the change detection based on the differential map (i.e., early
fusion) focuses more on the information of surface changes
[51]. However, the difference map may contain pseudochanges
that are caused by seasonal, insolation, and atmospheric fea-
tures. In summary, both late and early fusions have their
advantages and disadvantages. Therefore, in order to combine
their advantages in SSCD, we propose a novel self-supervised
strategy. In general, we propose new positive embedding
strategy, i.e., Fef and Flf (see Figs. 2 and 3). Meanwhile,
to achieve deep integration and complementarity of Fef and Fef
in the SSCD framework, we propose an alternating iterative
training method, including distribution consistency loss and
update loss, to guide the mutual learning between temporal
and differential branches. In the proposed learning strategy,
a branch in the fixed framework is fixed to update another
branch, alternating iterative updates, and loops until con-
vergence. In addition, we propose a distribution sharpness
component to dynamically suppress misinformation, highlight
the regions of change, and ensure model flexibility. The details
are as follows.

1) Construction of Positive Embedding Pairs: Conventional
self-supervised learning encourages the network to learn the
invariance of the transformation by forcing different views
of the same image (i.e., positive sample pairs) to be similar.
However, this approach is more inclined to obtain the semantic
features of the images and cannot mine the temporal change
information between bitemporal images effectively. Therefore,
we propose a new positive feature embedding pair in the
bitemporal differential space for SSCD. In detail, the feature
maps (i.e., Fef and Flf) learned by the bitemporal images
(late fusion feature) and their DI (early fusion feature) are
considered as the positive embedding pairs. In this way, both
temporal and differential information can be considered for

change detection. To achieve this goal, we add a differential
branch to learn the features of the DI and realize the fusion
of the differential branch (with fϕ3 and hθ3 as the backbone
and projection) and temporal branch (with fϕ1 and hθ1 as
the backbone and projection, respectively) during the network
learning (see Fig. 3)

Fef = hθ3( fϕ3(DI)) (5)
Flf = hθ1( fϕ1(x1))− hθ1( fϕ1(x2)). (6)

2) Alternating Iteration Learning Strategy: In stage 2 of the
training process, an alternating learning strategy is proposed
to guide the temporal and differential branches to learn from
each other. However, at the beginning of training, Fef is
unreliable since fϕ3 and hθ3 are randomly initialized, so that
the well-trained fϕ1 and hθ1 may learn the error information
from Fef. In turn, Flf generated by fϕ1 and hθ1, which has
learned the error information, can mislead fϕ3 and hθ3. This
process can continuously and iteratively transfer the incorrect
information between the two branches during the training pro-
cess and eventually lead to model collapse in both branches.
Consequently, this traditional self-supervised training strategy
can hardly ensure the interactive learning between the two
branches.

To deal with this issue, we propose an alternating iteration
learning strategy. To be specific, when completing the training
of hθ1 and fϕ1, we stop the gradient computation and feedback
of hθ1 and fϕ1, and the maximum similarity between Fef and
Flf is used to guide hθ3 and fϕ3 to learn the knowledge from
Flf. Afterward, likewise, the differential branch is frozen by
fixing hθ3 and fϕ3, and the temporal branch (i.e., hθ1 and fϕ1)

is updated by learning the information from the differential
branch (i.e., Fef). In this way, the aforementioned shortcoming
caused by the traditional self-supervised learning strategy
can be effectively overcome, since the proposed alternating
learning strategy can iteratively and progressively strengthen
the temporal and differential branches in order and boost
their information/knowledge interactions during the training
process.

For the proposed alternating learning strategy, we first
introduce the training of the differential branch while freezing
the temporal branch. It should be noted that self-supervised
learning usually calculates the similarity based on the feature
distances. However, simply narrowing the feature distance
between multiple views cannot express and model the complex
correlation between Fef and Flf. In the remote sensing change
detection, Fef and Flf should have similar class probability dis-
tributions since they both aim to distinguish between changed
and unchanged areas. Therefore, in this study, we propose
to optimize the consistency of the multiple-view probability
distributions to guide hθ3 and fϕ3 and hθ1 and fϕ1 to learn from
each other. The symmetrized distribution consistency (dc) can
be written as follows:

DC(Flf, Fef) =
1
2

H(Flf|Fef)+
1
2

H(Fef | Flf) (7)

where H(|) refers to the conditional entropy. Particularly, since
during the alternating learning, the gradient feedback of hθ1
and fϕ1 is stopped, and the overall distribution consistency
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loss can be defined as follows:

LDC = dc(stopgrad(Flf), Fef). (8)

Afterward, the temporal branch is updated while freezing
the differential branch. In order to update the frozen hθ1 and
fϕ1, an update strategy is designed. In the self-supervised
contrastive learning, momentum update is usually adopted to
gradually transfer the knowledge when updating the frozen
network. However, this update strategy is based on the assump-
tions that the data inputs to both encoders are different views
of the same image or that the differences between the two
encoders are small. Unfortunately, significant differences exist
between the temporal and differential encoders in stage 2.
More specific, hθ1 and fϕ1 aim to extract the semantic fea-
tures from the temporal images, while hθ3 and fϕ3 aim to
learn the change information from the DI. This violates the
aforementioned assumptions of the commonly used update
strategy. To overcome this issue, we propose a frozen network
update strategy based on knowledge distillation, which can be
expressed as follows:

KD(x, y) = −

 N∑
j

p(y/τ)log(p(x/τ)

 (9)

where p(x) = exp(x j )/
∑N

k exp(xk), and τ is a scalar tem-
perature parameter. This strategy can transfer the knowledge
from the differential branch to the temporal branch, making
the latter more focus on the change information. Therefore,
the update loss Lupdate can be defined as follows:

Lupdate =
1
2
(KD(stopgrad(Fef), Flf)+KD(Flf, stopgrad(Fef))).

(10)

3) Distribution Sharpness: Although the distribution con-
sistency loss can be an effective guide for hθ3 and fϕ3 to
understand the feature distribution of Flf, there are still some
limitations.

1) In the change detection, due to the low prior proba-
bility of the change, in most cases, pixels in the same
spatial location and in different time phases are usually
unchanged. In this way, the training of the network is
more inclined to learn the unchanged sample distribution
and ignore the changed samples.

2) Moreover, direct calculation of distribution consistency
loss may lead to homogeneity between Fef and Flf.

To overcome these issues, in this study, the distribution sharp-
ness strategy is proposed, as shown in Fig. 4.

First, both Fef and Flf represent the intensity of change,
which can be regarded as an initial change map. Therefore,
we further divide the pixels of the feature map into two
classes (i.e., changed samples ωch and unchanged samples ωun)

according to their change intensity to provide more reli-
able distribution information. Specifically, we use a dynamic
threshold T to select a small number of samples with a
large possibility of change from the same batch as changed
samples with high confidence, and the rest of the samples are

Fig. 4. Illustration of distribution sharpness.

considered to be unchanged. This threshold T is defined as
follows:

T = µ+ ξδ (11)

w(i, j) ∈

{
ωch, if w(i, j)> T
ωun, if w(i, j) ≤ T

(12)

where µ and δ are the mean and the standard deviation of all
Flf features in a batch, respectively. Assuming that the pro-
portion of the change regions in a batch is small, µ and δ can
measure the Flf feature representation of the unchange/change
components, respectively. Thus, ξ is a hyperparameter that
balances these two components.

Then, in order to make the model more focused on the
change information and encourage the mutual information
learning between Fef and Flf, we sharpen the distribution of
the samples. For the unchanged sample ωun, we minimize
the entropy of the intraclass distribution of each unchanged
sample, in order to sharpen the output distribution. For the
change sample ωch, we aim to diversify its distribution to avoid
the network assigning all the change samples to the same class.
Next, expanding the differences between the changed and
unchanged samples. This enables the features of the samples of
the unchanged ωun in Fef and Flf more compact and highlights
the change ωch. The processed feature map can be expressed
as follows:

w̃ =
{
ωch, ω

′

un

}
(13)

ŵ =
w̃ − µw̃

2

√
σ 2

w̃
+ ε

(14)

where σ 2
w̃

is the standard deviation of w̃, ŵ represents the
reconstructed feature map, and µw̃ is the mean value of w̃.

Finally, the distribution consistency loss of Fef and Flf after
distribution sharpness transformation is calculated. This can
be defined as follows:

LDC = DC(stopgrad(ŵlf), ŵef) (15)

where ŵlf and ŵef denote Fef and Flf after distribution sharp-
ness processing, respectively.

D. Overall Loss and Change Detection

The training process consists of two stages, corresponding
to S1 and S2 epochs, respectively. For the first S1 epochs
(stage 1), only the contrastive loss Lsim is used to modulate
the network weights. For the subsequent S2 epochs (stage 2),
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Algorithm 1 Algorithm of TD-SSCD Pre-Training
Input:

Bi-temporal images patch: x B
1 , x B

2 , which indicate the image
patch in batch B of T1 and T2, respectively.

Differential image patch: DI B , which indicates the differen-
tial image patch in batch B.

Backbone: fϕ1, fϕ2, fϕ3, which denote a backbone with
parameter ϕ1, ϕ2, ϕ3, respectively.
Projection head: hθ1, hθ2, hθ3, which denote a projection head

with parameter θ1, θ2, θ3, respectively.
Prediction head: zφ , which denotes a projection head with

parameter φ

Parameters: θ1, ϕ1, θ2, ϕ2. θ3, ϕ3, φ

Epoch: S1,S2 denote the number of pre-trained epochs at
stage 1 and stage 2, respectively, and S = S1 + S2. The first
N epochs at stage 2 is optimized without alternating iteration
learning strategy.

Number: n is a counter.
Result: Updated θ1, ϕ1, θ3, ϕ3
//Initialization
Randomly initialize parameters θ1 of hθ1 and copy to hθ2, hθ3
Randomly initialize parameters ϕ1 of fϕ1 and copy to fϕ2, fϕ3
1: for s ← 1 to S do
2: for b ∈ B do
3: F̂ z, F̃ z = zφ(hθ1( fϕ1

(
xb

1

)
)), zφ(h

θ1( fϕ1
(
xb

2

)
))

4: F̃h1, F̃h2 = hθ2( fϕ2
(
xb

1

)
), h

θ2( fϕ2
(
xb

2

)
)

5: Fef = hθ3( fϕ3
(

DI b))
6: Flf = hθ1( fϕ1

(
xb

1

)
)− hθ1( fϕ1

(
xb

2

)
)

7: end for
8: Calculate contrastive loss Lsim

9: Calculate distribution consistency loss LDC

10: Calculate update loss Lupdate

//Stage 1: Learning the Temporal Invariance Features of Bi-
Temporal Images
11: if s ≤ S1 then
12: Update θ1, ϕ1 to minimize Lsim

13: Update θ2, ϕ2 with momentum update
//Stage 2: Fusing Temporal and Differential Information
14: elif s ≤ S1 + N then
15: Update θ3, ϕ3 to minimize LDC

//Balanced combination of loss functions
16: elif s = S1 + N + 2n then //n = 1, 2, 3 . . . . . .

17: Update θ1, ϕ1 to minimize Lupdate

18: else
19: Update θ3, ϕ3 to minimize LDC

20: end if
21: end for
22: return parameters θ1, ϕ1, θ3, ϕ3

we combine the update loss with the distribution consistency
loss to guide Fef and Flf to learn from each other

Lstage2 =


LDC, if S2 < N
Lupdate, if (S2 < N ) = 2n
LDC, Otherwise

(16)

Fig. 5. Visual comparison of the change detection maps obtained by
different approaches on the OSCD lasvegas dataset. (a) T 1 image. (b) T 2
image. (c) Ground-truth map. (d) FC-EF. (e) SiamUnet conc. (f) SiamUnet
diff. (g) PCA-k-means. (h) DCV A. (i) BYOL. (j) SimSiam. (k) SimCLR.
(l) Proposed TD-SSCD approach. (m) Confusion map of the proposed
TD-SSCD approach (TP: white; TN: black; FP: green; FN: red).

where n is a counter starting at 0. The pseudocode of our
proposed TD-SSCD algorithm is shown in the following. Once
the network is trained, we can obtain two feature extractors
(hθ1 and fϕ1 for T 1 and T 2, and hθ3 and fϕ3 for DI) and
generate a feature vector from the image. In detail, given an
input image x ∈ RH,W,C , we can intercept a square local
image region with a side length l centered on the pixels in
row r and column c and then obtain the feature vector D(r, c)
by a trained feature extractor. We define D1(r, c), D2(r, c),
and DI (r, c) as the feature vectors of the bitemporal images
and the difference image in row r and column c, respectively.
The change intensity map is defined as the difference e(r, c)
between the feature vectors

e(r, c) = (∥D1(r, c)−D2(r, c)∥2 +DI (r, c))/2 (17)

where the first item represents the change intensity learned
from the temporal branch, and the second one stands for
the change information derived from the differential branch.
Change detection is then realized by setting a suitable
threshold value.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Dataset Description

We used two datasets to validate the proposed TD-SSCD
method (Figs. 5–8): the Számítástechnikai és Automatizálási
Kutatóintézet (SZTAKI) dataset [52] and the Onera Satellite
Change Detection (OSCD) dataset [53]. The SZTAKI dataset
contains 13 image pairs (acquired between 2000 and 2005)
provided by The Institute of Geodesy, Cartography and
Remote Sensing in Hungary. This dataset consists of three
parts, including Archive (one pair), SZADA (seven pairs), and
Tiszadob (five pairs). The spatial resolution of the imagery
is 1.5 m/pixel. The OSCD dataset (24 image pairs) was
created for change detection using Sentinel-2 images acquired
between 2015 and 2018. The dataset consists of 24 pairs

Authorized licensed use limited to: Wuhan University. Downloaded on November 11,2023 at 07:56:31 UTC from IEEE Xplore.  Restrictions apply. 



QU et al.: TD-SSCD: A NOVEL NETWORK BY FUSING TEMPORAL AND DIFFERENTIAL INFORMATION 5407015

Fig. 6. Visual comparison of the change detection maps obtained by
different approaches on the OSCD chongqing dataset. (a) T 1 image. (b) T 2
image. (c) Ground-truth map. (d) FC-EF. (e) SiamUnet conc. (f) SiamUnet
diff. (g) PCA-k-means. (h) DCV A. (i) BYOL. (j) SimSiam. (k) SimCLR.
(l) Proposed TD-SSCD approach. (m) Confusion map of the proposed
TD-SSCD approach (TP: white; TN: black; FP: green; FN: red).

Fig. 7. Visual comparison of the change detection maps obtained by
different approaches on the SZADA-2 dataset. (a) T 1 image. (b) T 2 image.
(c) Ground-truth map. (d) FC-EF. (e) SiamUnet conc. (f) SiamUnet diff.
(g) PCA-k-means. (h) DCV A. (i) BYOL. (j) SimSiam. (k) SimCLR. (l) Pro-
posed TD-SSCD approach. (m) Confusion map of the proposed TD-SSCD
approach (TP: white; TN: black; FP: green; FN: red).

Fig. 8. Visual comparison of the change detection maps obtained by
different approaches on the Tiszadob-5 dataset. (a) T 1 image. (b) T 2 image.
(c) Ground-truth map. (d) PCA-k-means. (e) DCVA. (f) BYOL. (g) SimSiam.
(h) SimCLR. (i) Proposed TD-SSCD approach. (j) Confusion map of the
proposed TD-SSCD approach (TP: white; TN: black; FP: green; FN: red).

of multispectral images (10 m/pixel). In the experiments,
the RGB and near-infrared bands were used. This dataset has
two parts, including test set (ten pairs) and train set (14 pairs).

B. Comparison Methods

To verify the effectiveness of the proposed TD-SSCD
method, we compared it to a series of SOTA unsupervised,
supervised, and SSCD methods.

1) PCA-k-means [31]: an unsupervised change detection
method that extracts feature vectors with PCA and
distinguishes between changed and unchanged regions
through k-means.

2) DCVA [16]: an unsupervised deep learning change
detection method that adopts a pretrained CNN to extract
the spatial-contextual information and then uses CVA to
identity changed pixels.

3) BYOL [28]: it utilizes the self-supervised BYOL method
to obtain the feature representation of bitemporal images
and uses appropriate thresholds to distinguish changed
and unchanged regions.

4) SimSiam [25]: a self-supervised learning method and
its basic idea is to force positive samples to be similar.
In this study, it was carried out for change detection.

5) SimCLR [42]: a self-supervised learning method that
learns a feature representation by forcing the positive
samples to be similar and the negative samples to be
dissimilar.

6) FC-EF [47]: a supervised deep learning change detec-
tion method that concatenates bitemporal images before
passing them through the network. The change map can
be obtained by conducting the “encoded–decoded” on
the fused image.

7) FC-Siam-conc [47]: a supervised deep learning change
detection method that uses a Siamese encoder to obtain
the features of bitemporal images and concatenates them
in the decoding step.

8) FC-Siam-diff [47]: a supervised deep learning change
detection method that obtains the features of bitemporal
images through a Siamese extractor, and the absolute
value of the difference between the bitemporal image
features is connected in the decoding step.

C. Experimental Settings

The proposed TD-SSCD method was implemented in
PyTorch, with the training and test of the network on an
NVIDIA RTX 2080Ti GPU. The patch size of the input data
was 8, and patches were extracted from the scenes with a
stride of 4. ResNet-18 [54] was adopted as the backbone of the
proposed framework. In stage 1, a stochastic gradient descent
(SGD) optimizer was applied for 500 epochs, with the learning
rate set to 0.03. The encoder with the lowest loss in stage 1
training process was saved for stage 2 task. In stage 2, we used
the SGD optimizer for 20 epochs, with the learning rate set
to 0.03. N and τ were set to 10 and 0.5, respectively. ξ is set
to 3.

For our experiments on SSCD, we selected the train set
portion (14 pairs) of the OSCD dataset for pretraining (without
using the labels of the datasets) and selected OSCD_lasvegas
and OSCD_chongqing [28] of them to test the model per-
formance according to the recommendations of the existing
literature. For the SZTAKI dataset, we selected images from
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the SZADA and Tiszadob regions (excluding the Tiszadob-5
and SZADA-2, total ten pairs) to pretrain our model (without
considering the labels of the datasets) and used Tiszadob-5
and SZADA-2 [54] from these two regions according to
the recommendations of the existing literature to test the
performance of the model.

In the experiments for the supervised change detection,
for the OSCD dataset, according to [53], 14 of the images
(training set for OSCD dataset) were used for training, and
the OSCD_lasvegas and OSCD_chongqing regions were used
for testing. With regard to the SZTAKI dataset, in terms of
[47], in the SZADA region, the SZADA-2 image pair was
used as test, and the other six pairs of images in this region
were used for training. In the Tiszadob region, the Tiszadob-5
image pair was used for testing, and the remaining four image
pairs were used for training.

To quantitatively assess the methods, three evaluation
metrics are used in this article: overall accuracy (OA),
F1-score (F1), and kappa coefficient (kappa). The higher the
values of these metrics, the better the model performance. The
three evaluation metrics can be calculated as follows:

OA =
TP+ TN

TP+ FP+ FN+ TN

F1 =
2× precision× recall

precision+ recall

Kappa =
OA− PE
1− PE

PE =
(TP+ FP)× (TP+ FN)

(TP+ TN+ FP+ FN)2

+
(TN+ FN)× (FP+ TN)

(TP+ TN+ FP+ FN)2 (18)

where FN, TP, FP, and TN refer to false negative, true positive,
false positive, and true negative, respectively.

D. Results and Comparison
1) OSCD_lasvegas: Fig. 5 shows the change detection

maps obtained by the comparison methods and the proposed
TD-SSCD method. It is clear that the change detection results
of the traditional method (i.e., PCA-k-means) differ from those
of the other ones, and its results exhibit significant salt-and-
pepper noise. In contrast, this issue can be better addressed
by DCVA. However, DCVA pays more attention to the large
changed areas and misses a lot of small discrete changed areas.
The supervised and self-supervised methods can effectively
suppress the false detections and accurately detect the small
changed areas.

Table I lists the experimental results obtained on the
OSCD_lasvegas dataset, with the best performance highlighted
in bold. It can be seen that most of the change detection meth-
ods can achieve a good accuracy. As expected, the supervised
methods (i.e., FC-EF, SiamUnet_conc, and SiamUnet_diff)
show a better performance than the unsupervised ones in
most of the metrics. It is interesting to see that the SSCD
methods are superior to some of the supervised methods
(e.g., FC-EF). In particular, the proposed TD-SSCD model
shows the best performance among the unsupervised methods,
with the F1 (72.11%), OA (95.38%), and kappa (69.60%)
all being the highest. For the other self-supervised methods,

TABLE I
QUANTITATIVE EVALUATION OF THE DIFFERENT APPROACHES

APPLIED TO THE OSCD_LASVEGAS DATASET

TABLE II
QUANTITATIVE EVALUATION OF THE DIFFERENT APPROACHES

APPLIED TO THE OSCD_CHONGQING DATASET

TABLE III
QUANTITATIVE EVALUATION OF THE DIFFERENT APPROACHES

APPLIED TO THE SZADA-2 DATASET

they show similar performances in most of the evaluation
metrics. In addition, we can find that the self-supervised
methods bring great improvements in kappa and F1, compared
with DCVA. This shows that the feature extractor obtained
by the self-supervised learning is superior to the pretrained
feature extractor used by DCVA. It should be kept in mind
that the supervised learning approach uses a large number of
labeled samples for training, while the self-supervised learning
methods train the networks based on the explicit information
of the images but without the labels. In our experiments, the
self-supervised methods reach or even surpass the accuracy of
the SOTA supervised learning methods, which illustrates the
great potential of self-supervised learning in change detection
tasks.

2) OSCD_chongqing: The results of the comparison
between the proposed TD-SSCD model and the other compar-
ison methods on this region are shown in Fig. 6 and Table II.
As can be seen from Fig. 6, there are many missed detections
in the FC-EF results, which indicates that the information
contained in the difference image alone is not sufficient for
change detection. In contrast, the proposed TD-SSCD method
does not present this kind of omission errors, although it
also uses a difference image. Meanwhile, compared with
the other self-supervised methods, the proposed TD-SSCD
method successfully eliminates some pseudo-changes and
obtains more accurate and clearer results. This demonstrates
that the proposed TD-SSCD method reasonably combines the
advantages of original bi-temporal images and their difference
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information during the change feature learning. As can be
seen in Table II, the proposed TD-SSCD model obtains the
best performance among all the methods (even compared with
the supervised ones) in terms of F1 (59.41%), OA (93.83%),
and kappa (56.22%). Compared with the other methods, the
proposed model obtains improvements of 12.1% (over FC-EF),
8.7% (over SiamUnet_conc), 9.6% (over SiamUnet_diff),
13.3% (over PCA-k-means), 11.3% (over DCVA), 3.8% (over
BYOL), 3.8% (over SimSiam), and 3.5% (over SimCLR),
respectively. Note that the accuracy of SimCLR is next to
the proposed TD-SSCD, and a possible reason is that it uses
a positive and negative pair strategy, which makes it more
sensitive to small changes.

3) SZADA-2: The SZADA dataset contains many kinds of
changes, including roadway construction, building construc-
tion, new cultivated land, and so on. The change detection
results of the different methods on the SZADA-2 dataset are
shown in Fig. 7. It can be seen that the results of all the
unsupervised methods have both omissions and false alarms
to some degree. The proposed TD-SSCD method obtains a
change map that is more consistent with the ground truth.
As shown in Table III, the proposed TD-SSCD model obtains
the best overall performance among the unsupervised and
self-supervised schemes. In particular, compared with the
BYOL model, the improvements of kappa, OA, and F1
achieved by the proposed TD-SSCD method are 8.4%, 1.42%,
and 6.13%, respectively. It should be noted that the perfor-
mance of different self-supervised networks is significantly
different in this experiment, unlike the OSCD experiments.
This suggests that the study areas have a significant impact
on the results of the self-supervised methods. However, it is
promising that the proposed TD-SSCD method consistently
shows a superior performance in both datasets [i.e., OSCD
(10 m) and SZTAKI (1.5 m)]. For the three supervised learning
methods, it is clear that the performance of SiamUnet_diff is
worse than that of the other two. FC-EF obtains the highest
accuracy among the supervised methods. This reflects the
importance of difference images in change detection since it
can properly guide the network to learn the change information
from the bitemporal images. This also illustrates the rationality
of the proposed strategy, i.e., fusion of temporal and DIs for
self-supervised learning of change detection.

4) Tiszadob-5: Due to the small number of training samples
in this dataset, it is difficult to obtain a desirable performance
with the supervised methods. This illustrates the necessity of
the unsupervised change detection methods. The visual results
of different methods on the Tiszadob-5 dataset are shown in
Fig. 8. As can be seen, the main land-cover types in the
region are farmland and grassland, with the changes mainly
appearing in the vegetation. This leads to a large number of
false alarms in the comparison methods. For instance, the
traditional method (i.e., PCA-k-means) is heavily influenced
by noise, and a large amount of unchanged vegetation is
mistakenly identified as changed area. However, the proposed
TD-SSCD method successfully eliminates these false changes
and produces more accurate and clearer results. Table IV
lists the quantitative evaluation results, which are consistent
with the visual inspection. The proposed TD-SSCD model
obtains the best accuracy, and compared with the other self-

TABLE IV
QUANTITATIVE EVALUATION OF THE DIFFERENT APPROACHES

APPLIED TO THE TISZADOB-5 DATASET

supervised methods, TD-SSCD shows clear superiority. This
indicates that the fusion of temporal and DIs enhances the
ability of the self-supervised learning of the change informa-
tion. In this way, the robustness of the model to both omission
and commission errors is enhanced.

E. Ablation Studies
We further investigate the role of each component in the

TD-SSCD (see M1–M8). In this section, M1–M6 contain
information from the differential feature learning and the
temporal feature learning branches, and M7 and M8 contain
only temporal semantic information.

1) M1: Complete two-stage change detection framework
TD-SSCD. Please kindly note that in stage 2, the loss
function is a combination of the distribution consistent
loss LDC and the two-branch update loss Lupdate, with
an alternating iteration learning strategy, and a distri-
bution sharpness operation that magnifies the difference
between changed and unchanged features.

2) M2: Elimination of the update loss Lupdate in stage 2 on
the basis of M1.

3) M3: Elimination of distribution sharpness operation in
stage 2 on the basis of M1.

4) M4: Replacement of the distribution consistent loss
LDC with the mean square error loss (i.e., a Euclidean
distance between two features) on the basis of M3.

5) M5: Elimination of Lupdate on the basis of M3.
6) M6: Replacement of the alternating iteration learning

strategy in stage 2 with a momentum update strategy
compared to M1.

7) M7: Compared to M1–M6, stage 2 was completely
removed. That is, information from the differential fea-
ture learning branch is completely lost.

8) M8: Elimination of the prediction head on the basis
of M7.

Taking OSCD_chongqing dataset as an example, the exper-
imental results are shown in Table V. It can be seen that
the performance of the model deteriorates gradually with the
removal of the proposed modules. In general, the accuracy
of the two-stage models, with the exception of M6, is sig-
nificantly higher than the performances of the models using
only temporal semantic information. It suggested that the
DIs provide useful information to correctly identify changing
and unchanged regions. Furthermore, compared with M1, the
severe drop in accuracy of M6 mainly attributes to the large
heterogeneity between the encoders of the differential branch
and the temporal branch. In this case, the momentum update
strategy is not applicable, and the alternating iteration updating
strategy works well.
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TABLE V
QUANTITATIVE EVALUATION OF THE ABLATION STUDY RESULTS

WITH OSCD_CHONGQING DATASET

Meanwhile, in the ablation studies of the two-stage model.
1) Comparative results between M1 and M2, as well as

between M3 and M5, it can be seen that the addition
of Lupdate achieves a positive interaction between the
temporal and the differential branches.

2) M3 and M4 verify that LDC can more robustly measure
the consistency of the two branches in characterizing
feature changes than using Euclidean distance-based
feature matching.

3) The comparison between M1 and M3 shows that distri-
bution sharpness can be effective in separating changed
and unchanged features in differential features.

In the single-stage ablation studies: M8 can hardly correct the
change region (kappa: 0.3560), suggesting that the prediction
head can effectively prevent the collapse of the temporal
branch. Since the learning process of the differential branch
(i.e., stage 2) depends on the characterization of the temporal
features and the alternating iteration updating in the initial
stage, it is considered the prediction head to be indispensable
in the temporal branch.

F. Effect of the Amount of Self-Supervised Data
Since the number of pretraining samples is one of the

keys to the performance of a self-supervised method, this
section analyzes the relationship between the performance
of different SSCD methods and the number of pretrain-
ing samples. We conducted experiments on OSCD dataset
and designed two pretraining dataset scenarios. Specifically,
1) pretraining using the train set of OSCD dataset (ten pairs)
and 2) pretraining the train set of OSCD with S2MTCP dataset
[56] (1535 pairs). It is worth mentioning that S2MTCP dataset
contains 1521 bitemporal Sentinel-2 image pairs for urban
areas, with a size of 600 × 600. This dataset is used to
augment the amount of data in OSCD dataset for the self-
supervised methods in the pretraining phase.

From Table VI, it can be found that with the increase
of pretraining data, the performance of most self-supervised
methods tends to increase on the whole. Therefore, using a
larger dataset for pretraining is beneficial for self-supervised
methods. Furthermore, it can be seen that the proposed self-
supervised method has obtained good results in the 14-pair
image condition, which indicates that even with not very
large dataset, the proposed self-supervised learning can make
full use of the unlabeled data to obtain good performance.
It is worth mentioning that our proposed method consistently
reaches the highest performance regardless of the amount
of pretraining data, which demonstrates the superiority of
TD-SSCD.

G. Influence of Noise
During the imaging process, the signal or image usually

has various degradation, noise effects, or variability [57].

TABLE VI
RESULTS OF SELF-SUPERVISED METHODS ON DIFFERENT

PRETRAINING DATASETS

TABLE VII
SENSITIVITY ANALYSIS OF TD-SSCD WITH DATA DEGRADATION

Therefore, referring to the setup in [57], we performed ran-
domly degradation of the OSCD dataset to explore the impact.
Specifically, we randomly selected 30% of the pixels in the
pretraining dataset and test area data of OSCD and added
25 dB of white Gaussian noise into each band of these pixels.
The results are shown in Table VII.

As can be seen from Table VII, the influence of white
Gaussian noise on TD-SSCD is not significant. It indicates
that our model is still effective in learning the true sematic
features after the data degradation.

H. Influence of Land Cover Change in Pretraining Data
In self-supervised learning, multiple views are typically

obtained using various augmentation techniques, such as crop-
ping, color distortion, or random noise. However, in remote
sensing change detection tasks, it is common to use bitemporal
images as multiple views without applying data transforma-
tions. In this scenario, the model is guided to learn temporal
invariance features by understanding the temporal differences
between these multiple views caused by factors, such as
seasons and imaging conditions. Unfortunately, the bitemporal
images may not only contain temporal differences but also
change in land cover types, which can potentially limit the
performance of model. To investigate the impact of land cover
type changes on self-supervised training, we modified the
OSCD dataset by masking the changed regions within it,
denoted as TD-SSCD (mask change). The experimental results
are presented in Table VIII. From the results, we can find
that the performance of the model is improved overall after
masking the changed regions. Notably, when comparing the
results of the OSCD_chongqing, the improvement in model
performance was particularly significant. This suggests that
this approach may be more beneficial when performing self-
supervised training on a dataset where no land cover type
changes have occurred.

I. Influence of ξ

An important hyperparameter of the distribution sharp-
ness module is ξ . When ξ is larger, the change features
are more significant and vice versa. To investigate the
influence of ξ , we set it to 1, 2, 3, and 4 and observe
the change in TD-SSCD performance on OSCD_chongqingAuthorized licensed use limited to: Wuhan University. Downloaded on November 11,2023 at 07:56:31 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE VIII
SENSITIVITY ANALYSIS OF TD-SSCD IN LAND COVER CHANGE

Fig. 9. Classification accuracy versus ξ on OSCD_chongqing.

dataset (see Fig. 9). It can be seen that there is good detection
performance on OSCD_chongqing when the value ξ is within
a certain range. It benefits from the distribution sharpness
module, which makes the model focus on the true change
information and filter out nonrelevant information. While when
ξ is too large, the distribution sharpness module retains only a
small amount of change features information with high confi-
dence, resulting in insufficient information retained to identify
the changed and unchanged regions, and the performance of
the model decreases. In this experiment, TD-SSCD reaches
best result when ξ = 3. Therefore, in this article, without loss
of generality, we set ξ to 3 in all experiments.

J. Influence of Threshold Method
It is one of the key steps in unsupervised change detection

to analyze the change map and determine the change threshold
to distinguish the changed and unchanged pixels. To give a fair
comparison with current self-supervised learning-based change
detection method [28], in this study, we used the adaptive
threshold method suggested by [28] to determine appropriate
threshold.

To further investigate the influence of threshold method on
the performance of TD-SSCD, we also used the Otsu [58]
method, which is popular among unsupervised change detec-
tion methods, for comparison experiments. It can be found
in Tables IX and X that Otsu threshold method gives the
model the best accuracy in the OSCD_chongqing dataset,
while adaptive threshold method has the highest accuracy in
the other datasets. In addition, it can be found that the results
of the two threshold methods show small differences, which
indicates that our proposed TD-SSCD method is robust to
different threshold methods.

K. Analysis of Efficiency
Table XI shows the number of parameters and the compu-

tation costs of TD-SSCD, BYOL, SimSiam, and SimCLR on
OSCD dataset. It is noted that the table shows the computation
cost of these self-supervised methods during the pretraining

TABLE IX
VARIATION OF RESULT AS THRESHOLD METHOD IS

VARIED ON OSCD DATASET

TABLE X
VARIATION OF RESULT AS THRESHOLD METHOD IS

VARIED ON SZTAKI DATASETS

TABLE XI
COMPARISON OF PARAMETERS AND COMPUTATIONAL COSTS OF

DIFFERENT METHODS ON THE OSCD DATASET

process. All model runtimes are based on an 11-GB RTX
2080ti GPU. Obviously, SimSiam is the fastest because it
uses Siamese network to reduce the parameters and only
calculates the similarity between positive pairs to learn the
representations. Although SimCLR is also a Siamese network,
it is limited by the need to calculate the distance between
negative pairs and positive pairs, resulting in the greatest time
consumption. The TD-SSCD has a large number of parame-
ters, mainly because it uses multiple feature extractors to learn
temporal and differential information, respectively. However,
due to its unique alternating iteration learning strategy, the
speed is similar to the time spent on BYOL.

V. CONCLUSION

In this article, we have proposed a two-stage self-
supervised network for remote sensing change detection,
namely, TD-SSCD, by simultaneously considering the tempo-
ral images and their differential features in the self-supervised
learning. Unlike traditional self-supervised methods, a new
stage was proposed during the pretraining process, in order
to fully exploit the semantic and change information of unla-
beled bitemporal images. Specifically, we designed a balanced
loss combination in the new stage to help the two feature
representation schemes, i.e., features learned from bitemporal
images and their DI, to learn from and boost each other in an
alternating manner through the two proposed loss functions
(i.e., distribution consistency loss and update loss). Further-
more, a feature distribution sharpness component was designed
in terms of the distribution of the two features to improve the
learning ability of the model.

The experimental results show that compared with the
current SOTA unsupervised and SSCD methods, the proposed
TD-SSCD change detection method performed better on two
popular change detection datasets and showed a good learning
ability for changed areas. In addition, the results showed that
the proposed method had similar and even better performance
compared to supervised learning change detection methods,
which narrowed the gap between unsupervised and supervised
change detection.

Frankly, the TD-SSCD method proposed in this article has
the following limitations. 1) It requires a certain amount of
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unlabeled images to ensure a sufficient model training. 2) We
use temporal differences between bitemporal remote sensing
images to guide the model to learn temporal invariance fea-
tures. These temporal differences are mainly caused by factors,
such as seasons and imaging conditions. However, in change
detection tasks, the bitemporal images contain more than just
this temporal difference and the land cover type may change,
which may mislead the model learning. Therefore, our future
work will focus on building reliable remote sensing image
pairs to advance the development of SSCD methods in remote
sensing. In addition, we will further study semantic change
detection, which can reveal semantic classes before and after
the change for more detailed analysis.
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