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Abstract— Obtaining timely and reliable built-up area (BUA)
information across extensive geographical zones holds crucial
significance for understanding environmental change and human
activities. BUAs often exhibit detailed textures and structures in
high-resolution imagery but also present strong heterogeneity.
Current methods for BUA extraction primarily relied on planar
information from single-view imagery, struggling to effectively
capture the 3-D attributes of urban landscapes. Therefore,
to address this challenge, this article proposes a cross-angle
propagation network (CAPNet) based on multiview remote
sensing stereo observation imagery. Our contributions are three-
fold: 1) we propose the cross-angle fusion module (CAFM) to
exploit BUA’s complementary spatial–spectral-angular context
across different viewing angles. This module leverages atten-
tion mechanisms for the automated acquisition of multiangle
feature representation learning from diverse angle combinations.
2) We propose a multiangular propagation decoder (MAPD) that
pioneers the exploration of gradually propagating multiangle dis-
parity information through bidirectional-adjacent feature fusion
across hierarchical levels. 3) We construct a large-scale, high-
resolution multiview BUA (MVBA) dataset over China’s 41 major
cities based on the ZY-3 satellites. Extensive experiment results on
MVBA and the public WV-3 multiview semantic stereo datasets
verify CAPNet’s superiority to existing state-of-the-art (SOTA)
models, on preserving overall BUA shape, edge, and internal
structures. The dataset and the source code of CAPNet will
be publicly available at https://github.com/zuo-ux/Cross-Angle-
Propagation-Network.

Index Terms— Attention mechanism, built-up area (BUA),
dataset, high resolution, multiview.

I. INTRODUCTION

ACCORDING to the latest statistics from the United
Nations, the urban population is projected to reach 68%
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of the global population by 2050 [1]. The urbanization process
leads to an expansion of cities in both the horizontal and
vertical dimensions. On one hand, cities encroach upon other
types of land resources as they expand spatially. On the other
hand, they exhibit vertical growth with the emergence of
increasingly tall buildings, resulting in a more intricate and
diverse vertical structure of urban features. Cities significantly
alter the climate, ecological environments, regional and global
water cycles, and gas circulation. According to existing lit-
erature [2], [3], [4], [5], [6], [7], in this study, built-up area
(BUA) is defined as the spatial extent covered by continuous
building structures, but excluding main roads, parks, and large
open spaces. To better understand human activities and their
interactions with the environment, it is paramount to timely
and reliably acquire spatial distribution and extent of BUA.
This information is critical in numerous domains, including
urban development and planning, national land dynamics
monitoring and assessment, ecological environments, climate
change, public safety, and sustainable development [8], [9].

However, existing research primarily relies on medium to
low-resolution imagery for large-scale BUA extraction, such
as MODIS 1 km Map of Global Urban Extent (MOD1 K,
927 m) [10], Global Human Settlement Layer (GHSL-Landsat,
20∼38 m) [11], [12], Global Impervious Surface Area (GISA,
30 m) [13], Global Urban Footprint (GUF, 12 m) [3], and
GISA-10 m [14]. These coarse-resolution products may fall
short of meeting the need for precise information regarding
the distribution of BUA. Moreover, the accuracy of these BUA
products often varies significantly across different regions.
For instance, GUF derived from synthetic aperture radar
(SAR) data presents challenges in distinguishing between
buildings, trees, and elevated bridges, often resulting in sparse
and low-rise BUA omissions. GUF is also susceptible to
coherence noise, especially in complex urban environments.
Similarly, GHSL may encounter difficulties in distinguishing
roads from bare ground and overlooking residential areas with
lower brightness [5]. Therefore, conducting further research
into high-quality and high-resolution BUA extraction is
necessary.

High-resolution imagery can provide clearer details of spa-
tial textures and geometric structures, visually representing
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the spatial relationships between target and neighboring ele-
ments. This is beneficial for distinguishing different land cover
types within urban areas, facilitating accurate extraction of
BUA, and potentially mitigating challenges associated with
mixed pixels in medium to low-resolution imagery. Never-
theless, although higher spatial resolution allows for more
detailed information acquisition, it accentuates challenges such
as high intraclass heterogeneity and low interclass homo-
geneity. Moreover, considering the diversity of land cover
categories within BUA and the complexity of the neighbor-
hoods, achieving accurate large-scale BUA extraction still
presents numerous challenges. To be specific, influenced by
historical, cultural, environmental, and economic development
levels, BUA in different regions also exhibits distinct regional
characteristics. Furthermore, due to their similar planar spatial
characteristics, artificial features exhibit lower separability,
making it difficult to accurately distinguish complex urban
artificial land cover categories solely based on single-view
remote sensing imagery. This issue can be addressed by
considering 3-D spatial information [15]. For example, point
cloud data acquired through SAR and light detection and
ranging (LiDAR) contain 3-D information. However, SAR data
is susceptible to coherent noise in complex urban environ-
ments, and LiDAR data’s high costs limit their applicability
to large-scale urban areas. Compared to SAR and LiDAR
data, utilizing multiview high-resolution (MVHR) imagery to
capture 3-D spatial information offers a series of advantages,
e.g., efficiency, timeliness, cost-effectiveness, and broad obser-
vation coverage.

BUA primarily consists of clustered structures that rise
above the Earth’s surface, displaying diverse spatial distribu-
tions in high-resolution imagery when observed from various
viewing angles. For instance, the roofs of buildings are
prominently visible in nadir (NAD)-view imagery, while their
sides are typically captured in forward (FWD)- and backward
(BWD)-view imagery. Consequently, multiview information
has the potential for differentiating BUA from other land cover
types, resulting in more accurate and detailed urban scene
interpretation [16].

In recent years, some high-resolution optical satellites have
been capable of acquiring MVHR imagery through observation
modes such as constellations, co-orbiting, or cross-orbiting
configurations. For instance, the ZiYuan3 (ZY3) constellation,
consisting of ZY3-01, ZY3-02, and ZY3-03 satellites, suc-
cessfully launched on January 9, 2012, May 30, 2016, and
July 25, 2020, respectively. ZY3 are China’s first civilian
high-resolution stereo mapping satellites designed to acquire
stereo images along its orbital path. ZY3 satellites employ
the three-line-array charge-coupled device (CCD) equipped
with multispectral and three panchromatic cameras. It captures
nearly simultaneous imagery of the same area from multi-
ple angles, including the NAD-view multispectral imagery,
FWD-, NAD-, and BWD-view panchromatic imagery, all at
fixed observation angles (±22

◦

). As illustrated in Fig. 1, the
NAD, FWD, and BWD cameras are stitched by three or four
pieces of the time-delay-integration CCD sensors. The detailed
specifications parameters of the ZY3 satellites are listed in
Table I.

Fig. 1. Relationship between the panchromatic camera focal and data output
of the ZY3-03.

TABLE I
DETAILED SPECIFICATIONS PARAMETERS OF THE ZY3 SATELLITES

The MVHR imagery is acquired with minimal time inter-
vals, ensuring that the observed area’s land use, atmospheric,
and illumination conditions remain unchanged. In this sce-
nario, the variations in grayscale values in the MVHR imagery
primarily result from different viewing angles. Moreover,
suitable tilt angles are beneficial for detecting artificial features
such as buildings. There have been a few studies utilizing
MVHR imagery for urban area extraction [17], building extrac-
tion [18], and building height estimation [19].

As illustrated in Fig. 2, vertical features, such as staggered
high-rise buildings, exhibit distinct angular variations under
varying observation angles due to the side views, surface
anisotropy, and shadows [20]. In contrast, ground-level objects,
such as bare land, maintain higher consistency in different
viewing angles. Based on this phenomenon, the fundamental
idea of the proposed cross-angle fusion module (CAFM) is
able to emphasize the angular variation manifestations of

Authorized licensed use limited to: Wuhan University. Downloaded on December 15,2024 at 09:24:39 UTC from IEEE Xplore.  Restrictions apply. 



ZUO et al.: CAPNet FOR BUA EXTRACTION BY FUSING SPATIAL–SPECTRAL-ANGULAR FEATURES 5408320

Fig. 2. Angular variations manifestations of typical urban features in MVHR imagery.

BUA by describing the angular differences between MVHR
imagery while simultaneously suppressing the influence of
other surface features.

BUA extraction from remote sensing imagery has been
extensively studied, including manually designed features [21],
[22], [23], [24] and deep learning (DL) networks [25]. The
readers can refer to Section II-B for a detailed review. Nev-
ertheless, in summary, there exist limitations and challenges
that require attention: 1) most current research on BUA

predominantly focuses on the 2-D features provided by single-
view perspectives, failing to characterize the structure of
objects and thus struggling to achieve accurate discrimination
among them; 2) the potential of MVHR imagery to represent
and characterize urban vertical structures has not been fully
explored; deep fusion of spatial–spectral-angular information
is lacking; and 3) existing datasets related to BUA suffer from
inadequate coverage and sample diversity, and multiview BUA
(MVBA) datasets and samples are scarce.
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TABLE II
COMPREHENSIVE OVERVIEW OF THE RELATED DATASETS REGARDING BUA

To deal with these important issues, the main research
content and contributions of this study are summarized as
follows.

1) Considering the complementarity of 2-D spatial and
angular information, we propose the CAFM based on
MVHR imagery. This module can learn complementary
spatial–spectral-angular information to comprehensively
represent BUA.

2) In this study, we introduce the multiangular prop-
agation decoder (MAPD), which progressively and
sequentially propagates multiangle disparity information
through bidirectional-adjacent fusion. This approach sig-
nificantly enhances the capability to capture multiscale
and multiangle variations from urban scenes.

3) Considering the lack of MVBA datasets, we utilize
the ZY-3 multispectral and multiview imagery to con-
struct the large-scale MVBA dataset. This dataset covers
41 representative cities in China with an area of 55 000
km2, which can effectively represent various scenar-
ios and distribution types of BUA, thereby advancing
research in large-scale BUA extraction.

The remaining sections of this article are organized as
follows. Section II provides an overview related to BUA
extraction, including BUA extraction methodologies, MVHR
feature representation, and existing datasets regarding BUA.
Section III describes the production of the MVBA dataset.
Section IV introduces the proposed cross-angle propaga-
tion network (CAPNet) for integrating spatial–spectral-angular

1https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-
vaihingen.aspx

2https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-
potsdam.aspx

3https://www.datafountain.cn/special/BDCI2020

information. Section V conducts a series of comparative exper-
iments between CAPNet and state-of-the-art (SOTA) methods.
Section VI aims to evaluate the benefits of CAFM and MAPD
while discussing this study’s limitations and potential future
research directions. Section VII concludes the work.

II. RELATED WORK

A. BUA Datasets

The performance of DL-based BUA extraction is heavily
reliant on the quality of samples. Therefore, constructing a
high-quality dataset that accurately reflects the characteristics
of BUA is indispensable [26], [27]. As shown in Table II,
current studies have focused on local regions such as cities,
countries, and continents to construct a series of datasets rel-
evant to BUA extraction. According to the existing literature,
the primary data sources for urban area mapping products
include aerial imagery, high-resolution satellite remote sensing
imagery, LiDAR point cloud data [28], and nighttime remote
sensing imagery [29].

From Table II, it can be seen that the current datasets are pri-
marily concentrated within relatively small geographical areas,
which are insufficient to meet the requirements of large-scale
BUA extraction. Particularly, currently, MVHR BUA datasets
are lacking and are rarely investigated. To represent the dis-
tribution and morphology of BUA more comprehensively, this
study integrates multispectral imagery with MVHR imagery
to construct a large-scale MVBA dataset. It is evident that our
constructed MVBA dataset exhibits advantages in extensive
coverage, diverse distribution of BUA types, rich data diversity
(including multiangle and multispectral information), and a
large volume of samples. Readers can refer to III for the
production of the dataset.
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B. BUA Extraction

In complex urban environments, relying solely on spectral
features often fails to yield satisfactory results [47]. Therefore,
a substantial amount of research has been dedicated to design-
ing spatial features to complement the limitations of spectral
features, including texture [22], morphological [23], and shape
features [24]. While handcrafted feature representations have
succeeded in some classification tasks, they often fall short
in comprehensively describing the complex characteristics of
urban areas.

With the rapid advancement of DL, the application of
convolutional neural networks (CNNs) has become increas-
ingly widespread, showcasing enhanced feature representation
capabilities across various computer vision applications. Com-
pared to traditional methods, CNNs can automatically learn a
substantial amount of high-level semantic features from raw
images. For instance, the fully convolutional network (FCN)
[48] advanced the image semantic segmentation by replacing
fully connected layers with fully convolutional layers and
employing deconvolutional structures to restore feature map
dimensions, allowing the segmentation of images of arbitrary
sizes. However, FCN overlooks global contextual information,
which hinders the network from comprehending complex
scenes. This results in the neglect of fine-grained details and
issues such as unclear object boundaries. Subsequent to FCN,
a series of segmentation models based on CNNs have emerged,
e.g., SegNet [49], HRNet [50], U-Net [51], DeeplabV3 [52],
UperNet [53], FPN [54], and ResUNet-a [55].

While CNNs offer significant advantages in feature extrac-
tion, they inherently suffer from translation invariance,
information locality, and other inductive biases that con-
strain their capacity to capture features across a broad range.
Introducing self-attention mechanisms [56], [57] can address
these issues to some extent. The idea behind self-attention
mechanisms is to select relevant information by capturing
the relationships between any two positions in the feature
maps. For instance, ISANet [58] extracts semantic informa-
tion at different scales by introducing the decomposition of
sparse affinity matrices and multistage attention modules. The
transformer model [59] can utilize self-attention mechanisms
to control the input–output interactions. For instance, Pool-
Former [60] abstracts the transformer into a MetaFormer with
a generalized architecture while employing a nonparametric
pooling operation as a weak token mixer. SegFormer [61]
introduces an MLP decoder that aggregates information from
different layers, by combining local and global attention
for powerful representation. However, the transformers-based
models are subject to some limitations, such as high com-
putational demands, slow processing time, and the need for
abundant training data.

In recent years, a number of studies have attempted to
utilize CNNs to extract BUA, but these efforts typically focus
on specific regions. For instance, LMB-CNN [6] constructs
patch-based graph models with the learned features, and then
obtains BUA through postprocessing. BA-UNet [1] utilizes
residual blocks in U-Net to address network degradation,
and efficiently extracts BUA from high-resolution Gaofen-3

data. DSCNN [25] combines high-resolution panchromatic and
multispectral imagery for automatic BUA extraction.

It is noted that many artificial urban features exhibit sim-
ilar planar spatial characteristics (e.g., textures and shapes).
Furthermore, urban objects with varying heights exhibit differ-
ences in brightness, structure, and spatial arrangement when
observed from different viewing angles, owing to changing
illumination, occlusion, and shadows.

Currently, most of the methods heavily rely on 2-D planar
spatial features derived exclusively from single-view imagery,
thus overlooking the benefits of angle-specific information.
Therefore, there is a pressing need to explore more effective
approaches for fully harnessing the combined spatial–spectral-
angular information obtained from multispectral and MVHR
imagery. This endeavor can help alleviate uncertainties in BUA
extraction and offer a comprehensive representation of cities
characterized by intricate vertical structures.

C. Feature Representation From Multiview Satellite Imagery

High-resolution remote sensing satellites equipped with
stereoscopic observation modes offer the potential to extract
3-D structural information. A digital surface model (DSM)
derived from MVHR imagery through stereo matching can
be employed as additional data for further processing and
analysis. For instance, Li et al. [62] utilized contour data from
OpenStreetMap (OSM) as prior information and extracted
normalized DSM (nDSM) from GeoEye stereo imagery to
obtain height information. Subsequently, they applied the
Bayesian theorem to fuse contour data with height information,
to improve urban land-use classification accuracy. Huang et al.
[63] utilized semi-global matching (SGM) to derive nDSM
from ZY-3 stereo imagery, for the subsequent classifier train-
ing. However, the performance of such methods is primarily
contingent on the quality of the DSM, which can be influenced
by factors such as image variations, baseline-to-height ratio,
and occlusion. Moreover, these approaches might overlook the
inherent multiangle spatial information in stereo imagery.

An alternative approach involves converting the raw digital
number (DN) value from MVHR into surface reflectance
values that contain discriminative information about different
objects. For instance, MV-OBIA [64] utilizes multiview infor-
mation to classify multiview object instances corresponding
to each orthophoto object and utilizes a voting procedure
to assign a final label to the orthophoto object. Liu et al.
[65] utilized the bidirectional reflectance distribution function
(BRDF) model to assess the potential of utilizing multiview
data in geographic object-based image analysis (GEOBIA).
However, these studies treat spectral and angular variations as
supplementary information, which does not fully exploit the
rich multiangle spatial information.

Recent studies involve developing new spatial features to
effectively leverage multiangle features. For instance, angular
difference features (ADFs) [16] can comprehensively describe
the differential characteristics of urban features in MVHR
imagery from pixel, feature, and label levels. In addition, the
ratio multiangular built-up index (RMABI) and normalized
difference multiangular built-up index (NDMABI) [5] are
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introduced to further enhance the characterization of building
features using MVHR imagery.

The aforementioned feature representation from MVHR
mainly operates at mid- or low-feature levels, lacking
the capacity to capture multiangular semantic information.
DL offers an opportunity to fully exploit angular information
in MVHR imagery and depict the structure of urban areas. For
instance, DFSN [66] employs a weight-shared ResNet-50 to
extract deep semantic features from the left-view image, then
processes stereo image pairs using a pretrained PSMNet [40]
to obtain disparity features. These features are subsequently
aggregated to generate final segmentation results.

However, it should be noted that the above-mentioned
approaches simply concatenate multiangle features and sub-
sequently input them into deep networks without fully
exploiting the implicit complementary information among
multiple views. To the best of our knowledge, there is currently
limited research exploring spectral–spatial-angular information
fusion. Therefore, it is necessary to investigate how to utilize
multiangle features more effectively and unlock its potential
in BUA extraction.

III. HIGH-RESOLUTION MVBA DATASET

This study leverages MVHR imagery to establish a large-
scale, multiview, and high-resolution dataset (namely, MVBA).
This dataset covers China’s 41 major cities, encompassing an
extensive area of 55 000 km2 and incorporating a wide range of
BUA samples. The MVBA dataset can effectively capture the
diversity in geographical distribution, climatic conditions, and
economic development patterns of BUA, and offer valuable
insights into their unique characteristics.

In this study, we acquired BUA samples from the
high-resolution land cover product Hi-ULCM [63], which
is based on ZY-3 satellite imagery covering China’s major
cities. Hi-ULCM categorizes seven primary land cover classes:
buildings, grass/shrubs, water, trees, soil, roads, and other
impervious surfaces (OISAs). An accuracy assessment was
conducted on over 40 000 test samples, yielding an impressive
overall accuracy (OA) rate of 88.6%.

A. Generation of BUA Coverage

We propose a multiscale fusion algorithm to generate BUA
samples considering their multiscale characteristics. Specifi-
cally, a series of windows with different sizes are employed,
and the building density within each window is computed
in a semi-overlapping manner. Subsequently, the results from
different window sizes are fused to obtain the residential area
intensity (RAI) value. Let R10, R30, R50, R70, and R100 denote
the RAI value for window sizes of 102, 302, 502, 702, and
1002, respectively, and RAI can be written as

RAI = R10 + R30 + R50 + R70 + R100. (1)

Subsequently, the RAI value is normalized within the range
[0, 1], and a threshold value is selected (in this study RAI is
set to 0.1). Regions with RAI values exceeding this threshold
were considered as BUA. Fig. 3(a) illustrates the relation-
ship between BUA extraction accuracy and RAI thresholds,

Fig. 3. (a) Relationship between the threshold and the accuracy of BUA
extraction and (b) ROC curve.

with an interval of 0.05. Evaluation metrics include mean
intersection over union (mIoU), macro-F1 (mF1), Kappa, and
OA. Based on a comprehensive analysis of the accuracy trend
curve [see Fig. 3(a)] and the receiver operating characteristic
(ROC) curve [see Fig. 3(b)], a threshold value of 0.1 was
selected. As depicted, the OA of the MVBA dataset achieves
96.63% when compared to manually annotated samples. It is
worth noting that subsequent manual visual inspections were
performed, which included the removal of roads, open spaces,
and water, thereby reducing the influence of RAI thresholds
on the samples. Finally, a visual inspection was conducted
to manually rectify the errors in the initial BUA samples to
ensure the accuracy of the dataset.

B. Construction of BUA Dataset

This study combined expert interpretation and a multiscale
fusion algorithm to semi-automatically generate annotated
binary labels corresponding to the MVHR imagery, using the
NAD-view multispectral imagery as a reference. Subsequently,
we cropped the MVHR imagery and the annotated binary
labels to a set of patches with 512 × 512 pixels. To retain the
continuity of the objects near the edges of the cropped regions
and ensure that each BUA had a corresponding complete
slice, we leave 25% overlapping portions between adjacent
cropped areas. Fig. 4 illustrates the geographical distribution
of sample cities and the extracted BUA in some cities. It is
evident that the MVBA dataset can cover various scenes
and geographical distributions, and provide a comprehensive
assessment of the model’s feature extraction performance and
generalization capability. In addition, taking Wuhan as an
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Fig. 4. Geographic distribution of sample cities and BUA examples in some sample cities.

Fig. 5. Overall distribution of BUA. (a)–(l) True-color satellite imagery represents the different distribution types of BUA.

example (see Fig. 5), we observe that the overall distribution
of BUA is accurate and diverse.

IV. CROSS-ANGLE PROPAGATION NETWORK

The ZY-3 multiview satellite can simultaneously collect
NAD-, FWD-, and BWD-view panchromatic and NAD-
view multispectral imagery. Significant variations often exist

between MVHR imagery of the same area due to multi-
ple observational angles. Therefore, joint consideration of
spatial–spectral-angular information is essential to enhance
the discriminability of urban scenes. This study proposes
the CAPNet that fuses multispectral and MVHR imagery
for BUA extraction. As depicted in Fig. 6, CAPNet consists
of four main components: the multiinput stream encoder
(HorNet), CAFM, MAPD, and logical classification layer.
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Fig. 6. Overall workflow of CAPNet for BUA extraction. Note that the “MS” represents the multispectral imagery.

Since the NAD-, FWD-, and BWD-view imagery are cap-
tured nearly simultaneously, considering their similarity and
complementarity, in this study, we separately encoded the
multiview features that reflect urban vertical structure to better
preserve the original information from different viewpoints.
This encoding method also facilitates more flexible adjustment
of fusion methods to accommodate various scenarios and
requirements. CAPNet can improve its ability to learn spatial–
spectral-angular features from MVHR imagery by sharing
all encoder parameters. This approach can significantly boost
the efficiency of network training. Furthermore, in the final
stage of the encoder, the CAFM is deployed to proficiently
capture angle feature representations across MVHR imagery.
Then, MAPD is designed to fuse multilevel and angle feature
representations. Finally, the BUA extraction is accomplished
through the logical classification layer.

A. Feature Extractor

The HorNet feature extractor [67] introduces recursive
gated convolutions (gnConvs) for efficient and scalable input-
adaptive, long-range, and high-order spatial interactions in a
coarse-to-fine manner. The highly flexible and customizable
operation gnConv is introduced as follows.

For the input feature x ∈ RC×H×W , where C , H , and W are
the channel dimension, height, and width of the input feature,
respectively, a Conv1×1 layer is initially employed to adjust
the channel dimensions while partitioning it into po and q
along the channel dimension

[ po, q] = Conv1×1(x) ∈ R2C×H×W (2)

with po ∈ RC/2n−1
×H×W , q ∈ R2C−(C/2n−1)×H×W .

Subsequently, q undergoes a depth-wise convolution layer
DWConv7×7, while being split into a series of projected n-
order features {qk ∈ RC/2n−k−1

×H×W
}

n−1
k=0 . gnConv is then

executed, where k-order features pk are matched in channel
dimension with the k-order features qk using Conv1×1 layer
and then element-wise multiplication is used to accomplish
the interaction between adjacent features. This ensures that the
higher order features are progressively preserved, resulting in
the final recursion step pn

[q0, q1, . . . , qn−1] = DW Conv7×7(q) (3)

pk+1 =

{
po ⊙ qo, k = 0
Conv1×1( pk) ⊙ qk, 1 ≤ k ≤ n − 1

(4)

where ⊙ denotes elementwise multiplication. From (4), the
k-order interactions in qk can be interpreted as the attention
weighting for pk . Hence, gnConv can extend self-attention
from second-order to arbitrary-order interactions. Finally, the
output of the gnConv is obtained through a projection layer
Conv1×1

y = Conv1×1( pn) ∈ RC×H×W . (5)

We chose HorNet as the backbone network for our proposed
CAPNet, as its recursive gated convolutions can facilitate
high-order spatial interactions. This capability is beneficial
for identifying complex structures within BUA, such as
shapes, sizes, and relationships between adjacent buildings and
appurtenances.
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Fig. 7. Overview of the CAFM for multiangle features fusion.

B. Cross-Angle Fusion Module

Under various observation views, the spatial distribution of
grayscale levels in MVHR imagery changes, yet the informa-
tion provided by each view is highly correlated. As planar
and stereoscopic features have distinct characterizing abilities
for BUA, directly stacking multiangle features and feeding
them into the network for training could introduce ambiguity
in feature extraction. This is because there are significant
differences in the semantics represented by different views.

To fully leverage the complementarity among multiangle
features, we encode the multispectral, FWD-, NAD-, and
BWD-view imagery as feature vectors FMS, FFWD, FNAD,
and FBWD

∈ RC×H×W , respectively. This encoding process
aims to extract multiangle features that reflect urban vertical
structure. Here, C , H , and W denote these feature maps’
channel dimensions, height, and width, respectively.

As depicted in Fig. 7, to facilitate the model’s focus on dif-
ferences among various views throughout the learning process,
we employ the global max-pooling operation GMP(·) along
the channel dimension to suppress spatial distribution informa-
tion and condense the entire feature map into a single value.
Consequently, it transforms spatial information into feature
values denoted as FMS

GMP, FFWD
GMP , FNAD

GMP, and FBWD
GMP ∈ RC×1×1.

This approach can effectively mitigate the offset introduced
by angular disparities, and enable a more precise comparison
of feature values at different positions under varying angles

FMS
GMP = GMP(FMS) (6)

FFWD
GMP = GMP(FFWD) (7)

FNAD
GMP = GMP(FNAD) (8)

FBWD
GMP = GMP(FBWD). (9)

Given that different angle combinations yield distinct ADFs,
we map the acquired multiangle features onto channels and
perform pairwise concatenation. Subsequently, we employ a
1 × 1 convolutional layer, accompanied by batch normaliza-
tion and activation function, to capture nonlinear interactions
among channels. This process is intended to characterize the
angular difference properties of BUA observed from various
views, which can be written as

FMS-FWD
= Conv1×1

(
Cat

(
F

MS
GMP , F

FWD
GMP

))
(10)

FMS-NAD
= Conv1×1

(
Cat

(
F

MS
GMP , F

NAD
GMP

))
(11)

FMS-BWD
= Conv1×1

(
Cat

(
F

MS
GMP , F

BWD
GMP

))
(12)

FFWD-NAD
= Conv1×1

(
Cat

(
F

FWD
GMP , F

NAD
GMP

))
(13)

FFWD-BWD
= Conv1×1

(
Cat

(
F

FWD
GMP , F

BWD
GMP

))
(14)

FNAD-BWD
= Conv1×1

(
Cat

(
F

NAD
GMP , F

BWD
GMP

))
(15)

where Cat(:, :) represents the concatenation operation along
the channel dimension and Conv1×1 represent a learnable
1 × 1 convolution layer with stride 1 used for lateral feature
connections.

Subsequently, three adjacent connected angular features
are summed. A 1 × 1 convolutional layer and the sigmoid
function are then applied to learn nonexclusive relationships,
emphasizing multiple channels. The process to obtain the
weight maps for each view is formulated as

F A1
= σ(Conv1×1(FMS-FWD

+ FMS-NAD (16)

+ FMS-BWD))

F A2
= σ(Conv1×1(FFWD-NAD

+ FFWD-BWD

+ FNAD-BWD)). (17)
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As for the additive operations, F A1 focuses on integrating
complementary information between spectral-angular combi-
nations, providing the model with comprehensive spectral
and morphological features. F A2 focuses on the multiview
differences and their complementarity, aiding the model in
understanding and utilizing the relationships between dif-
ferent viewing angles. These specific combinations enhance
the model’s ability to perceive and interpret complex BUA
environments from various viewpoints.

Afterward, the FWD-, NAD-, and BWD-view features are
stacked, and a 3-D operation, which facilitates cross-channel
information interaction, is applied to obtain the cross-view
features. The weights F A1 and F A2 are employed to conduct
weighted operations on the features FMS and FMAF, and
dynamically adjust the fusion weights for different views to
achieve spatial alignment of features

F3D-MAF
= ST

(
FFWD, FNAD, FBWD)

(18)

FMAF
= 3D

(
F3D-MAF) (19)

F2
= F A2

· FMAF (20)

F1
= F A1

· FMS (21)

where ST(:, :) represents the stacking operation and N repre-
sents the number of angles.

Concerning the 3-D operation, given an element xi ja within
F3D-MAF

∈ RN×C×H×W , where i and j denote coordinates in
the spatial domain plane, and a denotes the angular position.
The process to obtain yi j a within FMAF using a convolution
kernel w ∈ RN×1×1 can be formulated as

yi j a = F

b +

n∑
1

K∑
wi

K∑
w j

N∑
wa

wn
wi w j wa

xn
i+wi , j+w j ,a+wa

 (22)

where wn
wi w j wa

represents the value located at (wi , w j , wa)

in the convolutional kernel of the nth layer feature map in
F3D-MAF.

The dimensions (N , K , and K ) denote the size of the 3-D
convolution kernel along the angular, width, and height dimen-
sions, respectively. b corresponds to the offset tensor and F(·)

represents the activation function. This approach can preserve
the local contextual relationship of spectral data blocks and
multiangle tensor texture features in 3-D space, which reflects
the correlation and variation of MVHR imagery. Finally, a
1 × 1 convolution layer is employed on the concatenation
of the F1, F2 to extract an appropriate description Ffinal of
the implicit correlation among multiple angles from the fused
feature vector

Ffinal
= Conv1×1

(
Cat

(
F1, F2)). (23)

Traditional multiangle feature representation methods
directly handle multiangle tensor features composed of rows,
columns, and angular modes, which often results in the loss of
local contextual relationships among multiangle textures [19].
To deal with this issue, this article proposes CAFM, to leverage
the intrinsic structural distinctions among angular features.
This module augments the discriminative capabilities when
dealing with diverse, complex urban features by adopting
an attention mechanism to capture and describe contextual

relationships(i.e., the correlations among pixels from different
views). It subsequently jointly learns deeper features in the
spatial–spectral-angular domain with enhanced discriminative
ability.

C. Multiangular Propagation Decoder

CAFM is designed to extract distinctions angular variations
insights from multiviews, enabling the rational propagation
and fusion of complementary multiscale, multiangle features
characterized by weak interactions.

In order to further enrich the multilevel feature interactions
and maximize the utilization of extracted ADFs, the proposed
MAPD first built the angular-specific shallow-deep pathway,
in which the low-level fine-scale information is propagated
under the guide of the high-level semantic knowledge from
shallow to deep layer, and the angular-specific deep-shallow
pathway is used to propagate large-scale global semantic
information from deep to shallow layer. This enables the
decoder to perceive and leverage neighborhood and global
information related to BUA, ultimately leading to a more
discriminative representation across various scales.

The details of MAPD are illustrated in Fig. 8. Formally,
the multilevel initial features from the encoder are denoted as:
S1 ∈ RC×H×W , S2 ∈ R2C×(H/2)×(W/2), S3 ∈ R4C×(H/4)×(W/4),
and S4 ∈ R8C×(H/8)×(W/8). Note that S4 is the extracted
high-level ADF by CAFM. Here, C , H , and W , respectively,
represent the channel dimensions, height, and width of the
feature maps extracted during the first stage of the encoder. For
the shallow-deep pathway, the initial integration encompasses
low-level features that lack multiangle disparities. In detail,
we progressively up-sample the features S2, S3 to the same
resolution as the feature S1, obtaining UP2(S2), UP4(S3).
Subsequently, these upsampled features are channel-wise con-
catenated with the feature S1 and then a 1 × 1 convolutional
layer is added to extend it to a much richer space, obtaining
C1 ∈ R8C×H×W . Following this, the features S4 is up-sampled
to align with the resolution of S1 and is concatenated with C1
and UP4(S3) to obtain C2. The process continues with the con-
catenation and dimensionality reduction of C2 with UP8(S4),
resulting in C3. Finally, C3 is concatenated and dimensionality
reduction is performed alongside UP8(S4), ultimately yield-
ing C4. By aligning the channel dimensions of multilevel
features C1, C2, C3, and C4, we can effectively capture
intricate semantic information and fine-grained details. This,
in turn, bolsters the model’s understanding of angular varia-
tions in BUA within complex scenes. This gradual approach
enables the progressive capture of finer details, facilitating
accurate extraction in scenarios involving small targets and
complex scenes. The above-mentioned procedures can be
expressed as

C i =


Conv1×1

(
Cat(S1, UP2(S1), UP4(S3))

)
, i = 1

Conv1×1
(
Cat(C1, UP4(S3), UP8(S4))

)
, i = 2

Conv1×1
(
Cat(C i−1, UP8(S4))

)
, i = 3, 4

(24)

where C i ∈ R8C×H×W , i is the index of different scale layers
in the shallow-deep pathway. UP j (·) represents the bilinear
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Fig. 8. (a) Feature information propagation way in the MAPD for enhancing the ability of hierarchical feature representation. Note that orange and blue
rectangles represent the bottom–top and deep-shallow pathways, respectively. (b) Lightweight cross-scale connection node, as a crucial component of MAPD,
functions as a bridge between features of varying scales in both preceding and current pathways. Its primary responsibility is the aggregation and reconstruction
of multilevel feature dimensions, ensuring a seamless flow of information across scales.

interpolation algorithm with a scale factor of j . Conv1×1
represents the 1 × 1 convolution layer with a stride of 1,
which is subsequently followed by batch normalization and an
activation function. We employ 1 × 1 convolutional layer to
achieve channel dimension transformation, incurring relatively
low computational costs, and better handling of details and
texture information. Upon observation, it becomes evident that
the multiangle disparity information present in C1, C2, C3,
and C4 exhibits a gradual increase, where in C1 is devoid
of such information. Consequently, we systematically propa-
gate features rich in angle disparity information backward to
those with lesser amounts, ensuring a comprehensive utiliza-
tion of available multiscale, multiangle features. Specifically,
the deep-shallow pathway connects adjacent features through
lateral concatenation operation. In brief, the cross-scale con-
nection node takes the corresponding adjacent feature of
the shallow-deep pathway and the previous fused features
as the input to update the current fused features. Afterward, the
fused feature acts as the input for the next node. This process
is repeated for all adjacent scale layers, resulting in fused
multiscale semantic features P1, P2, P3, and P4. This helps
extract more discriminative representations by leveraging prior
information. In addition, the connected features are carried
with larger convolution kernel weights to facilitate channel
compression, which can effectively expand the receptive field
for feature perception and ensure the incorporation of region-
ally correlated feature details. The process of the deep-shallow
pathway can be described as

P i =


Conv3×3(Cat(C3, C4)), i = 1
Conv3×3(Cat(P i−1, C5−i , C4−i )), i = 2, 3
Conv3×3(Cat(P3, C1)), i = 4

(25)

where P i ∈ R8C×H×W , represents the feature layer used for
BUA extraction after feature fusion. For both shallow-deep and
deep-shallow pathways in this article, the convolutional kernels

are used with a stride of 1. This is crucial for preserving
as much spatial information as possible in an accurate BUA
extraction.

In the context of BUA extraction tasks, our MAPD
introduces an innovative fusion approach for multiangle dis-
parity information and multiscale information. This approach,
distinct from existing multiscale fusion decoder structures,
incorporates shallow-deep, deep-shallow propagation, and
lateral connections. Through this enhanced integration of mul-
tiangle, multiscale information, MAPD generates semantically
rich features that maintain consistent dimensions.

D. Logical Classification Layer

After CAFM completes the interaction of multiangle dis-
parity information, MAPD progressively facilitates semantic
interaction between multiscale and multiangle information
bidirectionally across different feature levels, ultimately gen-
erating a series of feature maps P1, P2, P3, and P4,
encompassing varying degrees of textural details, semantic
relevance, and multiangle disparity information. However,
a notable issue arises from the lack of inherent con-
nections among these features. Therefore, in this study,
we directly aggregate these hierarchical features through
channel concatenation and obtain the BUA extraction results
in Slogist. This enables the network to capture more
comprehensive and discriminative multiangle and multi-
scale representations, significantly expanding the range for
feature selection and combination. The process can be
formulated as

Slogist
= Conv1×1(Cat(P1, P2, P3, P4)). (26)

For ease of expression, we collectively refer to the
1 × 1 convolution layer, followed by batch normalization and
an activation function as Conv1×1.
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V. EXPERIMENT

A. Datasets

To comprehensively validate the effectiveness and feasibility
of CAPNet for large-scale BUA extraction, in this study,
experiments were conducted based on the MVBA and WV-3
multiview semantic stereo datasets. The results were then
compared with SOTA models.

1) MVBA Dataset: This research conducts experiments in
41 representative cities across China, encompassing coastal,
inland, mountainous, and plain regions, thereby represent-
ing a wide range of typical Chinese cities. Furthermore,
the study areas were selected with deliberate consideration
of the economic development levels, encompassing megac-
ities, medium-sized urban centers, and smaller towns. The
acquisition dates for all imagery are within the growing
season, ranging from April to August. For our experiments,
we have specifically chosen high-quality imagery with cloud
cover below 10%. All imagery contains four multispec-
tral bands: blue (450∼520 nm), green (520∼590 nm), red
(630∼690 nm), and near-infrared (770∼890 nm). Further-
more, multiview images are available: FWD (500∼800 nm),
NAD (500∼800 nm), and BWD (500∼800 nm).

2) WV-3 Multiview Semantic Stereo Dataset: The WV-3
multiview semantic stereo public dataset comprises 4188 pair-
wise two-view stereo semantic images sourced from the urban
semantic 3-D (US3D) project [39]. These images cover an
area of approximately 100 km2, encompassing Jacksonville,
Florida, and Omaha, Nebraska, USA. The size of each imagery
is 1024 × 1024 pixels, and each imagery contains three spec-
tral bands. Semantic classes included buildings, elevated roads
and bridges, low vegetation, impermeable surfaces, and water.

B. Implementation Details

For fair comparisons, all experiments were implemented on
two GeForce RTX 3090 graphics processing units (GPUs). The
experiment configuration is detailed in Table III. The MVBA
and WV-3 multiview semantic stereo datasets are randomly
partitioned into training, validation, and test sets with a 7:2:1
ratio.

To evaluate the effectiveness of BUA extraction, this arti-
cle conducted quantitative comparative experiments using the
mIoU, mF1, and Kappa metrics

mIoU =
1

m + 1

m∑
i=0

TP
FN + FP + TP

(27)

mF1 =
1

m + 1

m∑
i=0

2 × TP
2 × TP + FP + FN

(28)

Kappa =
po − pe

1 − pe
(29)

po =
TP + TN

TP + TN + FP + FN
(30)

pe =
(TP + FP) · (TP + FN)

(TP + TN + FP + FN)2

+
(FN + TN) · (FP + TN)

(TP + TN + FP + FN)2 (31)

TABLE III
DETAILS OF EXPERIMENT CONFIGURATION

where m represents the total number of classes. True positive
(TP) denotes the number of pixels where the predicted and true
values are both BUA. True negative (TN) indicates the number
of pixels where both predicted and true values correspond
to non-BUA. False positive (FP) represents the number of
pixels predicted as BUA but are, in fact, non-BUA. False
negative (FN) corresponds to the number of pixels predicted
as non-BUA but are actually BUA.

C. Results and Analysis

Table IV presents the comparison results of the proposed
CAPNet with other SOTA models in the BUA extraction.
For fairness, the NAD-, FWD-, and BWD-view panchromatic
imagery and NAD-view multispectral imagery are directly
concatenated and input into the comparison models along the
channel dimension. The results demonstrate that, compared
to the current SOTA models, the proposed CAPNet achieves
more accurate BUA extraction, giving the highest mIoU, mF1,
and Kappa values, which are 85.32%, 91.96%, and 83.93%,
respectively. In terms of the mIoU evaluation metric, CAPNet,
when compared to the baseline network (HorNet), exhibits
an accuracy improvement of 3.09%. Furthermore, when com-
pared to HRNet, ISANet, UNet, Poolformer, Segformer, and
DeeplabV3+, CAPNet shows accuracy increments of 5.44%,
2.82%, 7.75%, 4.70%, 2.16%, and 1.92%, respectively. These
results verify the better performance of CAPNet in multiview
feature representation and BUA detection.

Moreover, it can be observed that due to the limitations
of convolutional operations in capturing global feature rep-
resentations, transformer-based models (such as Poolformer,
Segformer, and ISANet) outperform CNNs-based models
(HRNet and UNet) in the task of BUA extraction, par-
ticularly in exploring MVHR imagery. This also suggests
that the MVBA dataset exhibits sufficient diversity, enabling
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TABLE IV
QUANTITATIVE METRIC COMPARISONS OF DIFFERENT MODELS ON THE MVBA DATASET

Fig. 9. Overall BUA extraction results for some test cities.

transformer-based models to better capture complex patterns
and features from the data.

Fig. 9 shows the comprehensive performance of CAPNet in
extracting a wide range of BUA. The first and second rows,
respectively, depict the MVHR imagery and the corresponding
extracted BUA for selected test cities. In these visualizations,
white and black areas represent BUA and non-BUA, while
a red dashed line outlines the boundary of the test city.
It is worth noting that CAPNet consistently preserves detailed
information regarding BUA across various urban landscapes.
For instance, CAPNet accurately extracts both small residen-
tial areas and expansive commercial zones within the urban
core, while effectively filtering out major roads, rivers, parks,
or extensive bare soil/ground areas. Furthermore, it demon-
strates its capability to identify scattered small villages in
suburban regions.

Fig. 10 illustrates the randomly selected test patches of four
representative Chinese provincial capital cities: Wuhan, Hefei,
Changsha, and Zhengzhou. These cities have high population
densities and are distributed across diverse regions, showcasing
distinct landscapes. In 10, the red elliptical regions are marked
as areas prone to misclassification or omission, located in the
cities’ core, suburban, or rural areas. Red and blue regions
denote misclassified and missed BUA, respectively. White and

black regions correspond to correctly extracted BUA and non-
BUA. Specifically, in the test area located in the suburbs
[P#(a)] of Changsha, BUA is dispersed and characterized by
irregular structures, encompassing high buildings and small,
low-density buildings of varying sizes, and shadows cast by
the tall buildings further compound the scene. In the test
area situated along the river [P#(b)] in Wuhan, the landscape
primarily consists of bare soil, roads, and dense buildings,
with limited vegetation cover. In the test area located in a town
[P#(c)] in Zhengzhou, buildings are densely and systematically
arranged and subdivided into several blocks by streets. In the
test area located in a rural [P#(d)] in Hefei, BUA is sparsely
scattered in areas of bare soil. These complex and challenging
scenarios offer a valuable testing scenario to evaluate the
model’s capability in addressing missed detections and false
positives.

Overall, it can be observed that the proposed CAPNet can
extract clear outlines and comprehensive internal details of
BUA in both urban and rural regions, where CAPNet effec-
tively reduces omissions, minimizes false alarms, and exhibits
fewer instances of adhesion and fragmentation. Results show
that traditional U-Net exhibits noticeable misclassifications
and omissions. HRNet captures abundant spatial information
about BUA with clear boundaries, and it reasonably fills in
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Fig. 10. Comparison of representative semantic segmentation results of different networks on the MVBA dataset. The scenes P#(a)–P#(d) illustrate the
extraction results of BUA from four representative cities: Changsha, Wuhan, Zhengzhou, and Hefei, respectively.
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TABLE V
QUANTITATIVE METRIC COMPARISONS OF DIFFERENT MODELS ON THE WV-3 MULTIVIEW SEMANTIC STEREO DATASET

gaps within the BUA to some extent. However, when dealing
with areas with bare soil that have similar textures to BUA,
HRNet may result in misclassifications. Poolformer provides
relatively coarse extraction results of BUA, showing inaccurate
boundary delineation. In contrast, in test areas P#(a) and
P#(b), CAPNet can alleviate the adverse effects of bare soil
areas near BUA that share similar visual textures, while also
producing relatively complete boundaries. When dealing with
the densely populated test area P#(c), only CAPNet can avoid
the detection of roads between adjacent building clusters,
and correctly identify them as non-BUA. In test area P#(d),
CAPNet accurately identifies the small, isolated buildings in
suburban areas as non-BUA but other models fail.

VI. DISCUSSION

A. Additional Experiments With WV-3 Multiview Dataset

We further utilized the publicly WV-3 multiview semantic
stereo dataset to evaluate the effectiveness of CAPNet across
various scene categories not just the BUA category. Since the
WV-3 semantic stereo dataset encompasses only two viewing
angles, we designated the left- and right-view imagery as the
input for CAPNet, to capture the angular differential features.

The results presented in Table V clearly demonstrate
that our proposed CAPNet achieves the highest mIoU,
mF1, and Kappa scores, reaching 87.60%, 93.19%, and
88.94%, respectively, outperforming the current SOTA meth-
ods. Moreover, when considering the mIoU evaluation metric,
CAPNet exhibits superior performance across various cate-
gories, including ground, tree, building, water, and clutter,
with the highest scores of 92.28%, 72.27%, 88.43%, 94.38%,
and 90.64%, respectively. Compared to the baseline network
(HorNet), CAPNet exhibits gains of 1.23%, 3.84%, 2.37%,
1.91%, and 2.25% for these categories, resulting in an OA
improvement of 2.48%.

Furthermore, when evaluated on individual categories,
CAPNet is more effective in extracting buildings and impervi-
ous surfaces. Compared to HRNet, ISANet, UNet, Poolformer,
Segformer, and DeeplabV3+, CAPNet enhances the accuracy
of BUA extraction, by achieving improvements of 5.02%,
0.39%, 6.84%, 21.43%, 10.87%, and 2.54%, respectively.

As depicted in Fig. 11, we analyzed two typical test areas.
Here, the white, cyan, blue, and yellow areas indicate ground,
tree, building, and water regions, respectively. The red areas
indicate misclassified and missed detection regions. Overall,

TABLE VI
PERFORMANCE OF DIFFERENT BACKBONE NETWORKS

CAPNet exhibits satisfactory performance and minimal arti-
facts. In the scenario P#(a), which exhibits a diverse range
of multiscale features and distinct building morphologies,
CAPNet outperforms other networks by accurately delineating
small-scale trees and large-scale buildings. From the challeng-
ing high-density building scenario P#(b), it is evident that
CAPNet achieves finer segmentation of individual buildings
compared to other networks. Furthermore, in regions adjacent
to buildings and trees, CAPNet produces finer results with
fewer misclassifications. These results highlight that CAPNet
can more effectively distinguish objects with similar charac-
teristics within urban areas.

B. Ablation Experiments

We selected several commonly used architectures for com-
parison, including CNNs-based networks (BiSeNetV2 [68],
SegNeXt [69], and ConvNext [70]) and transformer-based net-
work (MixVisionTransformer [61]). As shown in Table VI, the
experimental results indicate that HorNet demonstrates better
accuracy performance. Specifically, in terms of MIoU, HorNet
shows improvements of 3.80%, 2.65%, 3.46%, and 1.31%
compared to BiSeNetV2, SegNeXt, ConvNext, and MixVi-
sionTransformer, respectively. Therefore, HorNet is selected
as the backbone network for CAPNet due to its superior
performance.

Table VII indicates that utilizing all possible additive com-
binations may degrade the model accuracy slightly (−0.6%).
It is noteworthy that in all possible additive combinations,
we define F A1 as the sum of combinations that include
FFMS-NAD, while F A2 represents the sum of combinations
that do not include FFMS-NAD. In the single-view mode, only
the MS-imagery was input into the CAPNet model (without
CAFM). A possible explanation is that we have already
performed all the pairwise combinations of multiview data
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Fig. 11. Comparison of representative semantic segmentation results of different networks on the WV-3 multiview semantic stereo dataset. The scenes P#(a)
and P#(b) illustrate the extraction results of two typical test areas: Scene P#(a) represents multiscale objects, and P#(b) represents a high-density building
scenario.

TABLE VII
PERFORMANCE OF THE MODEL WITH DIFFERENT CONFIGURATIONS

during the previous steps, and the ZY-3’s MS and NAD-view
imagery share identical viewing angles. Therefore, it becomes
unnecessary to conduct additive operations for all possible
combinations.

To further investigate the advantages of MAPD and CAFM
in handling multispectral and multiangle features, this section
conducts a series of ablation experiments based on MVBA.

As demonstrated in Table VIII, incorporating MAPD and
CAFM into the baseline network has yielded gains of 1.12%
and 2.23%, respectively, in terms of the mIoU. It can be
seen that CAFM leads to a larger increase in accuracy com-
pared to MAPD, and their combined utilization can further
enhance the performance, resulting in a 3.09% improvement.
The experiment results reveal that, compared to single-view
mode, multiview features represented by the CAFM can more
effectively capture the heterogeneity of objects’ features, and
thereby achieve better discrimination capabilities. In addition,
the MAPD is beneficial for integrating contextual features
across multiple scales and mitigating the information loss
incurred by repeated up-and-down sampling.

TABLE VIII
ABLATION EXPERIMENTS OF CAFM AND MAPD

Fig. 12. Visualization of ablation experiments results: (a) true-color satellite
imagery, (b) ground truth, and (c) BUA optimization map, displaying effects
of MAPD and CAFM.

For a more comprehensive analysis of each module of the
proposed CAPNet, Fig. 12 illustrates the performances when
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Fig. 13. Visual explanation to the category “BUA” generated at different views using Grad-CAM. Red regions indicate high scores for the “BUA” category.

MAPD and CAFM are adopted individually and in combi-
nation. Here, the white and black regions indicate BUA and
non-BUA areas, respectively. Simultaneously, combinations of
blue and orange, green and orange, and green, orange, and
blue, respectively, denote correctly predicted as BUA when
individually incorporating MAPD, CAFM, and the simulta-
neous introduction of MAPD and CAFM, in comparison to
the baseline model. It can be observed that the initial results
exhibit numerous artifacts and missed detections, resulting in
fragmented patches within the BUA and difficulties in preserv-
ing boundary details. By incorporating MAPD, information
loss is reduced. Specifically, the jaggedness at the boundaries
is alleviated, with more refined and orderly segmentation
contours while suppressing non-BUA noise. It can be also
seen that using only single-angle information can lead to
false alarms, imprecise boundaries, and misclassifications.
Particularly, there exist omissions in the low-rise structures
such as rural buildings. These issues primarily originate from
objects like roads, farmlands, open spaces, and bare soil that
exhibit similarities to BUA. To compensate for the limitations
of single-view imagery in describing the structure of BUA,
CAFM has the capability to learn spectral and structural
differences of objects across MVHR imagery. It integrates
angular and spectral information efficiently, and highlights
pixels with significant angular differences, thus achieving more
reliable BUA extraction results.

C. Visualization Analysis

This study introduces a CAFM based on MVHR imagery,
which can effectively extract multiangular features and
better represent the structural characteristics of BUA.

As demonstrated in Fig. 13, using the Grad-CAM method [71],
we highlight the regions where the CAFM significantly influ-
ences the prediction results, so as to understand how the
CAFM assists the model‘s decision.

Fig. 13 illustrates that MS-, NAD-, FWD-, and BWD-view
features can depict the characteristics of BUA from differ-
ent viewing angles. However, each viewing mode has its
own emphasis and often focuses on large areas with limited
detail. In contrast, the angular-fusion features generated by
the CAFM can highlight more comprehensive areas in densely
built and high-rise regions, and at the same time, capture both
detailed and global information of BUA.

D. Future Directions

For the MVBA extraction task, while this study has achieved
satisfactory results through dataset construction and model
design, there are still limitations as follows.

1) Transferability Challenges: When dealing with larger-
scale BUA extraction, the model’s generalization
capacity is restricted when exposed to data with
diverse characteristics and scenes. Therefore,
future research could explore domain adaptation
methods to mitigate the generalization errors and
domain shift issues stemming from distribution
inconsistencies.

2) Data Source Diversity: The data sources utilized in
the proposed CAPNet are still limited (multispectral
and multiview optical remote sensing imagery). Fur-
ther effective fusion of diverse data sources (such as
DEM, OSM, nighttime light imagery, and radar images)
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can be employed to achieve a more accurate BUA
extraction.

3) Model Complexity: The CAPNet employs a multibranch
encoder structure, resulting in more network parameters.
In future endeavors, model light-weighting could be
considered to accelerate model computation speed while
maintaining extraction effectiveness. This is particularly
valuable for high-resolution BUA extraction tasks at the
global scale.

VII. CONCLUSION

BUAs, which serve as the central zones for both residential
living and industrial production, are intricately connected to
the ecological conditions of the Earth’s surface. This article
focuses on the reliable extraction of high-resolution BUA,
by utilizing China’s MVHR imagery as the primary data
source. Starting with constructing a sample dataset, the core
of this study centers around the research of MVBA extraction
algorithms.

We first utilize multispectral and MVHR imagery acquired
from the ZY-3 satellites to construct a high-resolution and
multiview dataset for BUA extraction (MVBA). Encompass-
ing 41 representative cities in China, this dataset effectively
captures the spatial distribution of BUA across various types,
regions, and topographical scenes. MVBA can play a crucial
role in promoting the utilization of DL techniques for large-
scale, multiview, and high-resolution BUA extraction tasks.

Currently, there is a lack of research on utilizing angu-
lar features for urban land cover interpretation. Therefore,
in consideration of the characteristics of BUA, this article
proposes CAPNet for BUA extraction by leveraging spatial–
spectral-angular features based on the MVBA dataset. CAPNet
employs a shared encoder to simultaneously extract spectral
and angular semantic features, and CAFM is designed for an
effective multiangle feature fusion. In addition, it integrates
adjacent layers on shallow-deep and deep-shallow pathways
during the decoder stage, which narrows the semantic gap
between multilevel-angle features and strengthens the infor-
mation flow more efficiently. The experimental results confirm
that CAPNet demonstrates superior sensitivity in detecting
BUA and considerably improves the accuracy of BUA extrac-
tion from complex scenes.
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