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A B S T R A C T

Recently, deep learning models have found extensive application in high-resolution land-cover segmentation
research. However, the most current research still suffers from issues such as insufficient utilization of multi-
modal information, which limits further improvement in high-resolution land-cover segmentation accuracy.
Moreover, differences in the size and spatial resolution of multi-modal datasets collectively pose challenges to
multi-modal land-cover segmentation. Therefore, we propose a high-resolution land-cover segmentation network
(STSNet) with cross-spatial resolution spatio-temporal-spectral deep fusion. This network effectively utilizes
spatio-temporal-spectral features to achieve information complementary among multi-modal data. Specifically,
STSNet consists of four components: (1) A high resolution and multi-scale spatial-spectral encoder to jointly
extract subtle spatial-spectral features in hyperspectral and high spatial resolution images. (2) A long-term
spatio-temporal encoder formulated by spectral convolution and spatio-temporal transformer block to simulta-
neously delineates the spatial, temporal and spectral information in dense time series Sentinel-2 imagery. (3) A
cross-resolution fusion module to alleviate the spatial resolution differences between multi-modal data and
effectively leverages complementary spatio-temporal-spectral information. (4) A multi-scale decoder integrates
multi-scale information from multi-modal data. We utilized airborne hyperspectral remote sensing imagery from
the Shenyang region of China in 2020, with a spatial resolution of 1authors declare that they have no known
competm, a spectral number of 249, and a spectral resolution ≤ 5 nm, and its Sentinel dense time-series images
acquired in the same period with a spatial resolution of 10 m, a spectral number of 10, and a time-series number
of 31. These datasets were combined to generate a multi-modal dataset called WHU-H2SR-MT, which is the first
open accessed large-scale high spatio-temporal-spectral satellite remote sensing dataset (i.e., with >2500 image
pairs sized 300 m × 300 m for each). Additionally, we employed two open-source datasets to validate the
effectiveness of the proposed modules. Extensive experiments show that our multi-scale spatial-spectral encoder,
spatio-temporal encoder, and cross-resolution fusion module outperform existing state-of-the-art (SOTA) algo-
rithms in terms of overall performance on high-resolution land-cover segmentation. The new multi-modal dataset
will be made available at http://irsip.whu.edu.cn/resources/resources_en_v2.php, along with the corresponding
code for accessing and utilizing the dataset at https://github.com/RS-Mage/STSNet.

1. Introduction

Land cover refers to the physical coverage of materials on the Earth’s
surface [1,2]. High spatial resolution land use and cover information is
essential for decision-making in several areas. This information provides
a vital foundation for conserving and sustainably utilizing natural re-
sources by accurately monitoring changes in forest cover, water resource
distribution, and soil erosion [3]. In the monitoring of geographic na-
tional conditions, high-resolution remote sensing data provide timely

and accurate support for governments and relevant organizations in
urban expansion, infrastructure construction, and natural disaster
monitoring, ensuring scientific and effective decision-making [4,5].
Additionally, high-resolution data play a crucial role in achieving car-
bon neutrality by helping assess carbon stocks and the dynamics of the
carbon cycle. These data facilitate the formulation of effective carbon
management strategies that support carbon emission reduction and
sustainable development goals [6–8]. In these applications, remote
sensing technology, with its advantages of wide coverage, high
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spatio-temporal-spectral resolution, and ability to access information
without being constrained by ground conditions, has become an essen-
tial tool for obtaining high-resolution land-cover information, promot-
ing technological progress and innovation across various fields [9,10].
By its very nature, land-cover segmentation assigns a land class label to
each pixel of remote sensing imagery by means of semantic segmenta-
tion techniques [11–13]. Recently, deep learning has opened up the
possibility of automated, fine-grained land-cover segmentation at high
spatio-temporal-spectral resolution through end-to-end network
training on large-scale samples [14–16].

High spatial resolution (i.e., sub-meter to meter-level spatial reso-
lution) imagery provides rich information on shape, texture, and
structure for land-cover segmentation [17–19]. Hyperspectral imagery
(i.e., having a spectral resolution of ≤20 nm and covering the visible to
near-infrared range) can collect information across the entire electro-
magnetic spectrum [20], and its fine spectral diagnostic capability is an
effective means of distinguishing between land-cover materials. As
sensor technology advances, some datasets with hyperspectral and high
spatial resolution (H2SR) are now available [21,22], which can
comprehensively utilize rich high spatial-spectral information for
land-cover segmentation. However, the above single-date remote
sensing data are susceptible to the effects of weather changes, resulting
in missing data and significant radiation differences [23]. In contrast,
multi-temporal remote sensing data can dynamically monitor
land-cover changes and provide information on land phenology and
seasonal changes, which will effectively complement high-resolution
observations. The fusion of low-temporal and medium-spatial resolu-
tion observations (e.g., Landsat imagery) with high-temporal and
low-spatial resolution ones (e.g., MODIS imagery) can provide
medium-spatial resolution and high-temporal records. However, the
medium-spatial resolution imagery it provides lack the detailed texture
information in high-spatial-resolution images [24,25], leading to infe-
rior accuracy for land-cover segmentation. While PlanetScope is capable
of obtaining high spatio-temporal resolution observations from small
satellites, the commercial satellite data incurs significant data acquisi-
tion costs, particularly with increasing time series data. When there is a
certain degree of reduction in the spatial resolution requirement (i.e., a
spatial resolution of 10–20 m), open-access Sentinel and Landsat satel-
lites can provide more denser temporal sequences, richer spectral in-
formation, and more stable observations. In general, there is currently
no data with high spatio-temporal-spectral resolution acquired from the
same observation platform simultaneously. Therefore, to fully leverage
the advantages of spatio-temporal-spectral information for land-cover
segmentation, it is of great value to develop modal fusion technology
to integrate remote sensing images from multiple observation platforms
[26–28]. This study releases an open-source spatio-temporal-spectral
multi-modal remote sensing dataset to explore this issue. This dataset
consists of (1) airborne H2SR imagery with a 1 m spatial resolution, 249
spectral bands, and a spectral resolution of ≤5 nm, and (2)
multi-temporal Sentinel-2 imagery from the same year with a 10 m
spatial resolution, 10 spectral bands, and temporal numbers of 31.

Meanwhile, from a technical perspective, despite substantial ad-
vancements in the field of high-resolution land-cover segmentation [29,
30], certain limitations persist. These limitations primarily revolve
around two aspects: (1) The existing fusion mainly refers to
spatio-temporal and spatial-spectral fusion [31], and most of the fusion
strategies are overly concerned with the spatial information; (2) Current
fusion and interpretation strategies are mainly for data with small
spatial resolution differences (e.g., 2–4 times differences) [32–34], and
few fusion strategies focus on data with large scale differences (e.g., no
<10 times differences, see Fig. 1) [35]. When dealing with the latter
cases, it often struggles to integrate global contextual information from
medium spatial resolution images and edge information from
high-spatial-resolution images [32,36,37].

Recently, deep learning has made significant progress and emerged
with UNet [38], and other networks. These data-driven deep learning

methods provide new ideas for improving the accuracy of
high-resolution land-cover segmentation. Due to the characteristics of
H2SR imagery, rich in spectral and spatial features, is typically captured
by deep spatial-spectral network structures and multi-scale pyramidal
bottleneck residual structures [34,39–41]. While deep structures help
extract sematic information, they gradually degrade resolution and are
prone to vanishing gradients or explosions. Multi-scale network struc-
tures perform feature fusion at each stage, facilitating better gradient
flow between high-resolution and low-resolution branches. This miti-
gates to some extent the common problem of gradient vanishing in deep
networks [42]. Nevertheless, frequent cross-scale connections in
multi-scale networks can lead to multiple compressions and re-
constructions of features, potentially degrading feature details and
consistency. As an alternative for CNNs, transformer structures have
emerged as an option for improving hyperspectral imagery segmenta-
tion by modeling long-range dependencies [43]. However, transformer
models typically require substantial computational resources and
extensive training data to learn global structural information. In
contrast, depth-wise separable convolutions [44] (DSCs) effectively
capture correlations, textures, shapes, and other information among
individual hyperspectral bands, thereby improving the accuracy of
spatial-spectral networks [45]. The core idea behind the attention
mechanism is to emphasize important information through the alloca-
tion of weights while suppressing irrelevant data. In the field of remote
sensing interpretation, convolutional attention [46], self-attention [47],
and multi-head attention [48] have been introduced to enhance the
model’s ability to focus on key regions within image. Convolutional
attention is designed to handle 2D data, more effectively, thereby
improving the model’s local feature extraction capability. In
self-attention, query, key and value are all derived from the same input
sequence, allowing global dependencies within the sequence to be
captured. This mechanism is a core component of Transformer model.
On basis of self-attention, multi-head attention enables model to
compute attention in parallel across different subspaces, thereby
capturing more feature information and enhancing the model’s
expressive power.

Single-date images only provide information at a specific time,
cannot capture seasonal information, and are unsuitable for classifying
land cover with temporal variations (e.g., Cropland). In contrast, multi-
temporal imagery performs better in land-cover segmentation tasks.
Long Short-Term Memory (LSTM) models can mine time series changes
in multi-temporal imagery [49]. Moreover, ConvLSTM integrates the
strengths of both LSTM and CNN, primarily used to capture local
spatiotemporal information in multi-temporal imagery [50,51].

Fig. 1. Illustration of the fusion process for remote sensing images with
different spatial resolutions. The figure shows how H2SR images and MT images
are fused to match spatial sizes. For example, if the 1-meter resolution image is
300 × 300 pixels, the corresponding 10-meter resolution image at the same
location would be 30 × 30 pixels. The H2SR image maps to a feature size of 50
× 50 pixels (2500 pixels), while the corresponding MT image maps to a feature
size of 5 × 5 pixels (25 pixels). The pixel colors in the figure are for illustrative
purposes only and have no practical significance.
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Conversely, visual transformers excel at mining global spatiotemporal
information through self-attention mechanisms [52]. Thus, it is mean-
ingful to simultaneously consider local and global spatiotemporal in-
formation by ConvLSTM and visual transformer modules in a suitable
way.

Currently, multi-modal fusion typically involves spatial-spectral
fusion and spatio-temporal fusion. Spatial-spectral fusion focuses on
combining the H2SR features of land covers [53], commonly expressed
through either direct fusion or attention-based fusion. In this context,
the direct fusion strategy is primarily achieved by concatenating (or
element-wise adding) spatial and spectral features [54]. Thus, it strug-
gles to fully consider the complementary features of spatial and spectral
characteristics. On the other hand, the attention-based works can assign
weights to spatial and spectral features, thereby achieving the beneficial
complementarity of local spatial and spectral characteristics [55].
Nonetheless, attention-based methods encounter challenges in effec-
tively integrating multiscale spatial and spectral information.

Spatio-temporal information refers to remote sensing data capturing
the Earth’s surface across spatial and temporal domains. It includes
geospatial distribution (e.g., location, shape, size, spatial relationships)
and temporal dynamics (e.g., phenological changes, semantic changes
over time) [56]. Spatio-temporal fusion seeks to explore the spatio-
temporal information to strengthen the understanding of land cover
features. Conventional spatio-temporal fusion methods typically start by
dimensionality reduction of multi-temporal images, followed by stack-
ing or weighted combination with high-spatial-resolution images [57].
However, the dimensionality reduction operation often leads to the loss
of temporal dynamic information. Moreover, deep learning-based
spatio-temporal fusion often employs a dual-stream network structure,
fusing spatial-stream features with temporal-stream features in a similar
manner like the direct fusion, to capture spatio-temporal information
[58,59]. Similarly, these methods struggle to simultaneously consider
both global and local spatio-temporal information. Local
spatio-temporal information refers to the “shallow” spatial and temporal
dynamics of adjacent time images, such as the texture of land parcels
and spectral differences between adjacent period, whereas global
spatio-temporal information involves the entire time series and spatial
information. Taking farmland as an example, before the sowing season it
may appear as bare ground, whereas presents spectral variations ac-
cording to the growing states of crops (e.g., sowing, tasseling, plucking,
flowering, and fruiting). Global spatio-temporal information describes
the spectral curve of the growth cycle of farmland, whereas local
spatio-temporal information aids to accurately locate crop positions and
understand the spectral differences between adjacent moments. Addi-
tionally, since multispectral temporal images typically comprising a
series of multispectral images (e.g., multispectral Sentinel-2 images),
existing methods overlook the exploration of spectral information in
multispectral temporal images [60].

Existing research on multi-modal fusion has not fully addressed the
challenges of STSF, especially for fusing H2SR images with multi-
temporal data. Current strategies mainly focus on fusing images with
similar resolutions (e.g., 2–4 times difference), overlooking techniques
for large-scale resolution differences (e.g., 10 times) [61–64]. Direct
fusion methods (e.g., concatenation) often fail to integrate rich temporal,
spectral, and spatial details effectively, while attention fusion methods,
which rely on spatial and channel attention, struggle with resolution
inconsistencies across sensors, limiting their ability to leverage com-
plementary information in cross-resolution fusion.

To address the challenges associated with multi-modal fusion in high
resolution land-cover segmentation, this paper proposes a spatio-
temporal-spectral deep fusion network (called STSNet), which aims to
fully exploit the advantages of high spatio-temporal-spectral resolution
observations provided by multi-modal remote sensing imagery in land-
cover segmentation. Specifically, STSNet contributes in the following
aspects:

(1) To capture spatial-spectral information from the H2SR image, we
design a multi-scale encoder that performs cross-scale connec-
tions only at the beginning and the end stages of the network.
This design avoids frequent cross-scale connections with com-
pressions and reconstructions of features while enabling the
fusion of high-level semantics with low-level detailed features. In
addition, the spectral gated module is integrated into the multi-
scale spatial-spectral encoder to enhance the diagnostic capa-
bility of hyperspectral data.

(2) To capture spatio-temporal information from the dense time se-
ries Sentinel-2 images, we propose an encoder that combines
spectral convolution with a spatio-temporal transformer block.
The block employs ConvLSTM to extract local spatio-temporal
information and 3D self-attention to mine global spatio-
temporal information.

(3) From the perspective of spatio-temporal-spectral fusion (STSF),
the newly proposed cross-resolution module aims to mitigate the
information loss caused by large spatial disparities in multi-
modal remote sensing images. It adjusts the importance of fea-
tures from each modality branch (e.g., spatial-spectral and spatio-
temporal features) at different resolutions, adaptively regulating
their contribution to land-cover interpretation.

The remainder of the paper is organized as follows. Section 2 pre-
sents the proposed method. Section 3 describes the study area and
datasets used. Section 4 evaluates performance of the proposed work,
using the released multi-modal dataset and two separate open-source
datasets (a H2SR image, and a set of multi-temporal Sentinel-2 im-
ages). Finally, Section 5 concludes the paper. For reader convenience,
commonly used acronyms in this paper are summarized in Table 1.

2. Methodology

To fully explore the spatio-temporal-spectral features of multi-modal
data, this paper proposes a cross-spatial resolution spatio-temporal-
spectral deep fusion network (STSNet) for high-resolution land-cover
segmentation. The overall framework comprises the following compo-
nents (see Fig. 2):

① the multi-scale spatial-spectral encoder module (see Section 2.1
for details) aims to effectively mine rich hyperspectral features and
high spatial features at different scales;
② the spatio-temporal encoder module (see Section 2.2 for details)
introduces a spatio-temporal transformer block to parallelly extract
global and local spatio-temporal after a spectral convolution;
③ the cross-resolution fusion module (see Section 2.3 for details)
fuses the spatio-temporal-spectral complementary information from
the multi-modal images with different spatial resolutions;
④ the multi-scale decoder module merges the output features of ③
and the multi-scale spatial-spectral encoder features and then yields

Table 1
Acronyms and definitions.

Acronyms Description

SOTA State-of-the-art
H2SR Hyperspectral and high spatial resolution
STSF Spatio-temporal-spectral fusion
CNN Convolutional neural networks
DSC Depth-wise separable convolution
LSTM Long Short-Term Memory
MT Multi-temporal
MLP Multilayer Perceptron
ConvLSTM Convolutional Long Short-Term Memory
MP Max Pooling layer
AP Average Pooling layer
3D W-MSA Multi-head self attention modules with 3D regular windowing
3D SW-MSA Multi-head self attention modules with 3D shifted windowing
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the final segmentation result. Firstly, 1 × 1 convolution is employed
to ensure that the number of channels for features on each scale is the
same. Then, fractional convolution [65] is applied to interpolating
the multi-scale features to the highest resolution. Fractional convo-
lution is a type of convolution operation that allows the convolution
kernel to slide in fractional steps on the input feature. It is used to
scale up the input feature map and is a variant of regular convolu-
tion. Last, the unsampled features are element-wise added, and the
channel number of the final feature is adjusted to the target number
of semantic class using a 1 × 1 convolution layer.

2.1. Multi-scale spatial-spectral encoder

Traditional spatial-spectral segmentation networks still employ
spectral dimension reduction techniques to balance the contributions of
the hyperspectral feature and the spatial feature [54,66] This often leads
to insufficient exploration of the subtle spectral information. On the
other hand, existing networks that focus on multi-scale feature extrac-
tion [67–69] lack exploration of the correlation and complementarity
between multi-scale features. To address these issues, a multi-scale
spatial-spectral encoder module is proposed to explore the multi-scale
high spatial and hyperspectral characteristics of the land-covers in a
tighter way. The encoder module comprises depth-wise separable con-
volutions (DSCs), spectral attention, and multiple convolutional blocks.

It adopts a four-branch parallel structure, each branch generates
features down-sampled by a factor of 2 based on the size of the features
from the previous branch. Each branch initially employs DSCs to process
information between and within spectral bands, effectively capturing
local spatial and spectral information. In the highest resolution branch
spectral gated module is applied to weight different bands, thereby
aggregating high spatial-spectral features. Specifically, adaptive average
pooling layer and adaptive max pooling layer automatically calculate
the size and stride of pooling layers based on the input and output (I/O)
feature map sizes, thereby improving the model flexibility. The adaptive
average pooling layer helps capture global spectral features, while the
adaptive max pooling layer highlights local important features.
Combining these two pooling layers leverages the advantages comple-
mentarity of global and local features. The formula for spectral gated
module is as follows.

FSA AA = δ(MLP(AAP(Fx))) (1)

FSA AM = δ(MLP(AMP(Fx))) (2)

Spectral weights = FSA AA ⊕ FSA AM (3)

FSA = Fx ⊗ Spectral weights (4)

where δ represents sigmoid function, AAP represents adaptive average
pooling layer, AMP represents adaptive max pool layer, FX represents
input features, FSA AA represents the features after adaptive average
pooling layer, FSA AM represents the features after adaptive max pooling
layer, FSA represents the final output features weighted by spectral gated
module, ⊗ represents element-wise multiplication, and ⊕ represents
element-wise addition.

Cross-scale connections involve up-sampling the feature maps of
low-resolution branches to the same resolution as the high-resolution
branches at each stage of the network, and then fusing them by pixel-
wise addition. We observed that in existing high-resolution networks,
frequent cross-scale connections lead to multiple compressions and re-
constructions of features, resulting in information loss [70]. This is
particularly disadvantageous for H2SR imagery. To address this, per-
forming two cross-scale connections at the beginning and end stages of
network helps achieve a better balance in the fusion of spatial-spectral
information. In the first cross-scale connection, the network can cap-
ture diverse spatial-spectral information at different scales, enhancing
the richness of feature representation. In the second cross-scale
connection, the network can integrate local and global spatial-spectral
information more effectively. As shown in Fig. 6, this encoder pro-
duces spatio-spectral features at four scales. The highest semantic level
feature (with lowest spatial resolution) being down-sampled 32 times on
the original image is denoted as FST∊RB×C×H×W, where B, C, H, W de-
notes the batch-size, number of channels, height and width.

2.2. Spatio-temporal encoder

Existing spatio-temporal segmentation networks can be broadly
categorized into two primary types: (1) those focusing on local spatio-
temporal information [50,71,72] and (2) those emphasizing global
spatio-temporal information [52,73,74]. However, these two ap-
proaches struggle to simultaneously consider global and local
spatio-temporal information, leading to a certain loss of temporal or
spatial information. Therefore, this paper proposes a novel
spatio-temporal encoder module (Fig. 3), which consists of spectral
convolution, 3D patch partition, linear embedding, and spatio-temporal
transformer block.

Meanwhile, it is also noted that existing spatio-temporal fusion
networks presents relatively less consideration to spectral information
extraction. To address this, we employ a 3D spectral convolution to

Fig. 2. Illustrates the overall framework of STSNet. It consists of①multi-scale spatial-spectral module (light green area), including DSCs, spectral gated module, and
convolutional blocks. Each convolutional block is composed of three layers of 3 × 3 convolutions, BatchNorm layers, and ReLU layers; ② spatio-temporal encoder
module (refer to Fig. 5 below for details): This module includes spectral convolutions, 3D patch partition, linear embedding, and spatio-temporal transformer blocks;
③ cross-resolution fusion module (refer to Fig. 6 below for details); and ④ multi-scale decoder (light yellow area).
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extract spectral features from multi-spectral Sentinel-2 images (see the
yellow box in Fig. 3(a)). The initial feature shape of the input image is
(B,T1,D1,H1,W1), where B, T1, D1 H1, W1 denote batch-size, temporal
dimension, spectral dimension, height and width, respectively. After
spectral convolution, the feature shape resizes into (B,T1,D2,H1,W1),
where D2 represents the spectral dimension after spectral convolution.
Spectral convolution refers to a convolution layer performed for the
spectral dimension in multispectral Sentinel-2 images. We utilize skip
connections to fuse shallow with deep details, enhancing the utilization
of spectral information. Meanwhile, to alleviate the issue of spatio-
temporal information loss, a spatio-temporal block is designed. Firstly,
the 3D patch partition divides the spatio-temporal feature into distinct
blocks, where each block encapsulates temporal, spatial, and spectral
information (see the light blue box in Fig. 3(a)). The shape of the par-
titioned feature is (B,D2,T1

2 , H1
2 , W1

2 ). Subsequently, the linear embedding
conducts a linear transformation on the output features of the 3D patch
partition to extract more sophisticated feature representations (see the
light pink box in Fig. 3(a)). The feature shape resizes into
(B,D3,T1

2 , H1
2 , W1

2 ), where D3 represents the spectral dimension after linear
embedding.

After the linear embedding, two spatio-temporal transformer blocks
(see the light turquoise box in Fig. 3(a)) are used to mine global and local
spatio-temporal information. The size of the output features of the first
spatio-temporal transformer block become (B,D4,T1

2 , H1
2 , W1

2 ), where D4

denotes the number of channels. The Patch Merging layer is in the
middle of the two spatio-temporal transformer blocks (see the light sky
blue box in Fig. 3(a)), which is used to down-scale the spatial and
temporal dimensions, and the feature shape is resized into
(B,D4,T1

4 , H1
4 , W1

4 ). After that, through the convolutional layer (the first
light green box in Fig. 3(a)), the output features of the second spatio-
temporal transformer block are further adjusted, as their size is con-
verted to (B,2D4,T1

2 , H1
2 , W1

2 ). The second spatio-temporal transformer
block is connected with the output features of the first transformer block
in the form of short cut. The output features are passed through the
second convolutional layer (the second light green box in Fig. 3(a)) in a
similar manner, and the feature shape is adjusted to (B,D2,T1,H1,W1).
After dimension transformation, the feature shape is adjusted to (B,D2 ×

T1,H1,W1). Finally, the features are fed into a 2D convolutional layer
with a convolutional kernel of 1 × 1 (the light orange box in Fig. 3(a)) to
generate the segmentation result, and the feature shape is adjusted to (B,
C,H1,W1), where C denotes the dimension of the output features.

To mine multi-scale local and global spatio-temporal information,
the spatio-temporal transformer block (Fig. 3(b)) is designed, including
Layer Normalization, ConvLSTM, 3D W-MSA, 3D SW-MSA, and MLP.
Layer Normalization is used to normalize the inputs in each feature
dimension, which helps accelerate model convergence and improve the

generalization ability of the model. 3D W-MSA and 3D SW-MSA effec-
tively reduce the computational complexity by introducing the concepts
of window and shifted window, respectively, thereby more thoroughly
accounting for the spatial and temporal correlation in the data.
ConvLSTM aims to mine the local spatio-temporal features, while the
MLP primarily facilitates nonlinear mapping and augmentation of the
input features to improve model representation.

ConvLSTM utilizes convolutional operations and internal memory
cells to extract local spatio-temporal information from multi-temporal
images. The formula for ConvLSTM is as follows:

it = σ(Zii ∗ xt +Zhi ∗ ht− 1) (5)

ft = σ
(
Zif ∗ xt +Zhf ∗ ht− 1

)
(6)

Ct = ft∘Ct− 1 + it ∗ tanh
(
Zig ∗ xt +Zhg ∗ ht− 1

)
(7)

ot = σ(Zio ∗ xt +Zho ∗ ht− 1) (8)

ht = ot∘tanh(Ct) (9)

where it, ft, ot represent outputs of input gate, forget gate, and output

gate at time t, t∊
[

1, T1
2

]

, respectively. Zii and Zhi are weights for input

gate. Zifand Zhf are weights for forget gate. Zig and Zhg are weights for
memory cell. Zio and Zho are weights for output gate. σ denotes sigmoid

function and ∘ denote the Hadamard product. xt∊RB×D3×
H1
2 × W1

2 ,

ht∊RB×D4×
H1
2 × W1

2 , Ct∊RB×D4×
H1
2 × W1

2 represents input feature, hidden
state, memory cell at time t, respectively, where D4 is the number of
channels in the hidden state. When the channel numbers of xt and ht− 1
do not match (i.e., D4 ∕= D4), employ a 1 × 1 convolutional layer to
adjust the channel numbers of xt to match that of ht− 1. the convolution
operation * processes xt to capture spatio-spectral information. Ct
responsible for storing and conveying spatio-temporal information.
Through the coordinated interplay of the input gate, forget gate, mem-
ory cell, and output gate, the hidden state ht can adeptly capture spatio-
temporal information. The output (h1, h2, h3 ⋯ hT1

2
)

∊RB× T1
2 × D4 × H1

2 × W1
2 of ConvLSTM is composed of hidden states.

3D W-MSA that calculate self-attention [75,76] (see formula 10)
within a 3D window (The three dimensions of temporal, height, and
width) is employed to address the inability of interaction between
various windows, thereby extracting global spatio-temporal
information.

Attention(Q,K,V) = SoftMax
(
QKT

̅̅̅
d

√

)

V (10)

Fig. 3. Spatio-temporal encoder module. (a) Overall structure. (b) Spatio-temporal transformer block.
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where Q, K, and V represent the query, key, and value matrices,
respectively. d denotes the dimension of query/key. The output features
(h1, h2, h3 ⋯ hT1

2
) after ConvLSTM undergoes three independent linear

transformations to obtain Q, K, and V, respectively. Q and K are com-
bined to calculate the distribution of attention weights (see formula 10),
where Q reflects the significance of the current time and K acts as a
reference forQ. This weight distribution is then utilized for the weighted
combination of V, extracting global information by computing weights
across the entire scope.

2.3. Cross resolution fusion of spatial-spectral modal features and spatio-
temporal modal features

There is significant noise and resolution disparity between remote
sensing data from different sensors, making direct fusion methods (e.g.,
concatenation or addition operations) challenging [77]. To amplify
valuable features and suppress irrelevant ones, a cross-resolution fusion
module (see Fig. 4) is formulated to alleviate spatial resolution differ-
ences among multi-modal data.

Considering the substantial resolution disparity between H2SR image
and dense time series Sentinel-2 images, we achieve spatio-temporal-
spectral cross-modal integration in the form of channel attention using
the encoding features at the highest semantic levels of both modalities.
First, we spatially resample the encoder features of the spatio-temporal
modality to the same spatial dimensions as the semantic features of the
spatial-spectral modality, denoted as FST∊RB×C×H×W. The specific
calculation for spatio-temporal-spectral integrated fusion is shown in
formula (11).

FSTS = FSS ⊕
(
α×

( (
FSS ⊗WMLPSS

)
⊕
(
FST ⊗WMLPST

)))
, where α

= SRTT
/
SRST (11)

Here, FSTS∊RB×C×H×W represents the fused features. The adjustment
coefficient α balances the importance of the spatial-spectral features and
the spatio-temporal features, determined by the ratio of spatial resolu-
tion pixels of spatial-spectral image (SRTT) to that of spatio-temporal
images (SRST), with smaller value indicating greater spatial resolution
differences.WMLP SS∊RB×C×1×1 andWMLP ST∊RB×C×1×1 are the weights of
the two modalities.

The cross-modal attention in this paper consists of Sigmoid function
(σ), Max Pooling layer (MP), Average Pooling layer (AP), shared
convolution [78] (φ), and MLP. Specifically, we employ MP and AP
separately in the spatial dimension to capture channel attention on each
modality. Considering that features from each modality may contribute
differently to land-cover segmentation, shared convolution is used to
simultaneously process the attention of each modality, and

Concatenation operation (Concat) conducted for preliminary fusion of
spatio-temporal-spectral features, as formulated in Eq. (12):

WSC STSF =Concat(φ(AP(σ(FSS))),φ(MP(σ(FSS))),φ(AP(σ(FST))),
φ(AP(σ(FST))))

(12)

Then, with the characteristic that capture complex relationships and
feature interactions between channels [79,80], MLP is employed to
effectively compressing and integrating information across different
modalities. Subsequently, the weights through MLP are split into
equal-sized WMLP SS and WMLP ST .

3. Study area and data

3.1. Study area

The study area is located in the southern part of Shenyang City,
Liaoning Province, northeast China (122◦33′ - 122◦52′, 41◦12′ - 41◦25′).
With a total area of 227.79 km2, the research area falls within the
temperate humid continental climatic zone (see Fig. 5). Characterized
by windy springs, rainy summers, it has an average frost-free period of
171 days.

3.2. Data

We have released an open-source dataset combining hyperspectral
and high spatial resolution data with multi-temporal data (named WHU-
H2SR-MT). To our knowledge, this is currently the largest dataset
available for spatio-temporal-spectral interpretation. This dataset serves
not only to validate the effectiveness of the algorithms presented in this
paper but also to contribute to the research community in this field.
Additionally, we use two separate open-source datasets (a H2SR image,
and a set of multi-temporal images) to verify the effectiveness of the
proposed multi-scale spatial-spectral encoder (see Section 2.1 for de-
tails) and spatio-temporal encoder (see Section 2.2 for details),
respectively.

The H2SR images were acquired in September 2020, with a spectral
range between 391 nm and 984 nm, comprising 249 bands. The image
was preprocessed by relative radiometric calibration and atmospheric
correction. The spectral resolution of each band is ≤5 nm.

Multi-temporal Sentinel-2 images for 2020 were acquired for the
experimental area. First, Fmask [55], a widely used cloud removal
technique, was applied to each Sentinel-2 image. This operation assigns
a null value to pixels affected by clouds or cloud shadows, ensuring clear
and reliable spectral data for further analysis. Then, monthly averaging
has been performed for each pixel, thereby obtaining a multi-temporal
multi-spectral Sentinel-2 images, resulting in a total of 31 Sentinel-2

Fig. 4. Cross-resolution fusion module. B, C, H, W denotes the batch-size, number of channels, height and width for the input spatial-spectral features.
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images (see Fig. 6) after cloud removal operations. Ten land-cover
relevant bands (B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12) [81] were
selected, and resampled the bands with coarser spatial resolution (B5,
B6, B7, B8a, B11, B12) to 10 m.

The spatio-temporal-spectral dataset consists of the H2SR images and
the multi-temporal Sentinel-2 images. The land cover reference label
was derived from the land cover project completed by the Ministry of
Natural Resources of China in 2020. All labels were manually collected
and validated through field survey. First, we aligned the H2SR images
using the coordinate system and projection: WGS_1984_UTM_Zone_51
N. Later, the multi-temporal Sentinel-2 images were downloaded using
the vector range of the H2SR images. Firstly, each image is spatially
aligned with the manually collected land-cover labels and uniformly
cropped into patches of size 300 m × 300 m, with an 80 m spatial
overlap. A total of 2531 pairs of samples were generated, with each pair
consisting of one H2SR patch, a set of 31 Sentinel-2 patches, and the
corresponding land-cover label patch. This dataset comprises eight land-
cover categories (Fig. 7). The dataset has eight land-cover categories:
paddy field, dry farmland, forest land, grassland, building, highway,
greenhouse, and water body. The dataset was divided into training,
validation, and test sets with a ratio of 6:1:3. We named the entire multi-
modal dataset WHU-H2SR-MT, with the H2SR subset called WHU-H2SR,
and the multi-temporal subset called WHU-MT.

4. Results and discussions

4.1. Experimental settings

To fully validate the proposed network, in addition to the dataset in

the experiment areas, we utilized two open-source datasets: one with
spatial-spectral information and the other with spatio-temporal
information.

(1) AeroRIT dataset [21] consists of a H2SR image captured by the
Headwall Micro E sensor with a spatial resolution of 0.4 m and
372 spectral bands. Currently, it is open-source and includes 51
spectral bands, with a size of 1973 × 3975 pixels and wave-
lengths ranging from 397 to 1003 nm. This dataset comprises five
land-cover categories (Fig. 8). This dataset is divided into
training, validation, and test sets with a ratio of 6:2:2.

(2) Sen4AgriNet dataset [82] consists of 180,000 pairs of Sentinel-2
patches. Each pair comprises image patches from 12 time-series,
with each patch including 13 spectral bands. The patch size is 61
× 61 pixels, and the spatial resolution is 10 m. From this dataset,
we selected seven land cover categories (Fig. 9). The dataset is
divided into training, validation, and test sets with a 6:2:2 ratio.

Model training: All experiments were conducted using the PyTorch
framework and on a server equipped with two NVIDIA GeForce RTX
3090 GPUs. During the experimental training, the initial learning rate
was set to 0.001, the Adam optimizer [83] was used, the cross-entropy
loss function was applied, and the batch size was set to 8. The model
was trained for 45 epochs on WHU-H2SR-MT dataset and 20 epochs on
AeroRIT and Sen4AgriNet datasets.

Performance assessment: To quantitatively evaluate the segmenta-
tion accuracy, we selected the following metrics: intersection over union
(IoU), F1-Score (F1), overall accuracy (OA), and mean IoU (MIoU)
[84–86]. These metrics have values ranging between 0 and 100 %, with

Fig. 5. The geographical location and distribution of the study area.

Fig. 6. Number of multi-temporal images available in each month of 2020.
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higher values indicating better performance. In addition, we added the
number of parameters and training time per epoch.

IoU =
TP

FN+ FP+ TP
(13)

Recall =
TP

FN+ TP
(14)

Precision =
TP

FP+ TP
(15)

F1 − Score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(16)

OA =
TP+ TN

FN+ TN + FP+ TP
(17)

mIoU =
1

k+ 1
∑k

i=0

TP
FN+ FP+ TP

(18)

Where k is the number of land cover category, and TP, FP, TN, and FN
denote the number of true-positive, false-positive, true-negative, and
false-negative pixels in each category.

4.2. Performance of multi-scale spatial-spectral encoder

To evaluate the effectiveness of the multi-scale spatial-spectral
encoder, we combined it with a multi-scale decoder for segmentation.
Seven SOTA spatial-spectral segmentation networks were selected for
comparison: RSSAN [34], DFFN [39], DPRN [40], HRNet [42], FreeNet

[41], FTUNetFormer [87], H2Former [88], applied to the segmentation
of H2SR images. A brief description of the characteristics of the
compared methods is provided below:

RSSAN: It is a popular spectral-spatial feature learning for hyper-
spectral image segmentation, and it imported spectral and spatial
attention modules into a standard CNN with five 2D convolutional
block.

DFFN: On the basis of standard CNN, it introduces residual learning
to construct a deeper network, which is composed of three residual
blocks.

DPRN: On the basis of DFFN, it employs a pyramidal bottleneck re-
sidual structure to comprehensively extract spatial-spectral features. It is
noted that, although the spatial detailed information obtained by the
pyramidal bottleneck residual structure is better than the above two
networks, it is still at risk of over-smoothing in dealing with pixel-wise
segmentation.

HRNet: It emphasizes multi-scale feature fusion through multi-
resolution network architecture to ensure the high spatial resolution
interpretation. However, its frequent cross-scale connections often lead
to multiple compressions and reconstructions of features, and it ignores
hyperspectral characteristics. Thus, our proposed work reduces the
number of cross-scale connections and utilizes depth-separable convo-
lution to further capture spatial and spectral features in an efficient
manner.

FreeNet: Inspired by auto-encoder structure of Unet [38], it consists
of an encoder equipped with on spectral attention and a decoder module
for pixel-wise segmentation. Whereas, we design a multi-branch struc-
ture that begins with depth separable convolution to simultaneously
extract multiscale spectral and spatial features, and incorporate spectral
attention to enhance the capability to explore spectral information.

Fig. 7. WHU-H2SR-MT. The first line represents WHU-H2SR, the second line represents WHU-MT, the third line represents the associated semantic annotations.
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FTUNetFormer: This model utilizes Swin Transformer structure as
encoder and employs a UNet-like decoder, enabling the modeling of
both global and local spatial-spectral information.

H2Former: This model integrates convolution, multiscale channel
attention, and Transformer components through hybrid strategies to
enhance its ability to capture multiscale long-distance dependencies and
local spatial information.

(1) Experiment 1: WHU-H2SR
Table 2 presents the quantitative segmentation results of the

spectral-spatial fusion networks. It is noted that the proposed
multi-scale spectral-spatial encoder-based work achieves the

highest OA and mIoU. The increments in OA and mIoU relative to
the compared algorithms range from 0.53 % ~ 9.40 % and 0.65 %
~ 16.76 %, respectively. The results indicate that the proposed
multi-scale spectral-spatial encoder module has a significant
advantage over other spectral-spatial fusion methods. Although
the parameters of the proposed encoder are the fourth-largest, its
training cost is the second most efficient.

As seen in the cases of Fig. 10, RSSAN, which ignores multi-
scale spatial information, leads to noticeable noise for all cate-
gories. From Cases 4 and 5 of Fig. 10, HRNet demonstrates good
accuracy in the forest land and grassland but exhibits mis-
classifications for dry farmland and greenhouse. It is obvious
from Case 1, 3 and 4 that due to multiple down-sampling oper-
ations that cause spatial information loss, DFFN and DPRN tend
to misclassify the greenhouse land as buildings, while all cases of
Fig. 10 suggest that FreeNet exhibits misclassifications in the dry
farmland, highway and water bodies. From Cases 1 and 3 in
Fig. 10, both FTUNetFormer and H2Former exhibit poor perfor-
mance in local feature extraction, leading to misclassifications of
building and greenhouse boundaries.

(2) Experiment 2: AeroRIT
To verify the generality of the multi-scale spatial-spectral

encoder, we conducted tests on the AeroRIT open dataset. As
depicted in Table 3, our proposed method achieved the highest
OA and mIoU compared to other spatial-spectral fusion networks.
Our method achieved performance improvements ranging from
0.40 % ~ 3.24 % in OA and 3.14 % ~ 10.10 % in mIoU.

In Case 3 of Fig. 11, DFFN, DPRN, HRNet and FTUNetFormer
have apparent omissions in cars. While in Case 1 and Case 5,
RSSAN, DFFN, DPRN, FreeNet, FTUNetFormer and H2Former
exhibit clear misclassifications in roads. In Case 4 of Fig. 11,

Fig. 8. AeroRIT dataset. The purple dashed box contains the true color (R:7, G:15, B:25) map and the red dashed box contains the corresponding semantic labels.

Fig. 9. Sen4AgriNet dataset. The purple dashed box contains the multi-
temporal Sentinel-2 patches, and the red dashed box contains the correspond-
ing semantic annotations.
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Table 2
Comparison between the spatial-spectral fusion networks on WHU-H2SR.

Method RSSAN DFFN DPRN HRNet FreeNet FTUNetFormer H2Former Ours

Paddy field IoU 81.94 90.21 89.15 89.58 90.53 87.06 89.80 91.64
F1 90.01 94.85 94.26 94.50 95.03 93.08 94.63 95.63

Dry farmland IoU 66.31 82.04 79.26 79.12 80.48 77.05 78.53 81.01
F1 79.67 90.14 88.43 88.35 89.19 87.04 87.97 89.50

Forest land IoU 26.45 54.82 53.36 51.69 50.22 48.47 50.76 53.50
F1 40.42 70.81 69.57 68.15 66.86 65.29 67.34 69.70

Grassland IoU 4.26 25.99 25.35 27.32 25.94 25.91 23.60 24.71
F1 8.17 41.22 40.45 42.91 41.20 41.15 38.18 39.62

Building IoU 54.25 69.10 61.08 69.17 68.87 66.31 66.83 68.44
F1 70.30 81.73 75.69 81.78 81.57 79.74 80.12 81.27

Highway IoU 26.74 38.18 33.24 30.62 38.26 39.11 16.06 37.30
F1 41.69 55.26 49.89 46.88 55.31 56.23 27.68 54.33

Greenhouse IoU 30.13 39.21 44.40 57.00 60.16 49.27 54.64 59.35
F1 46.26 55.85 61.41 72.61 75.10 66.02 70.67 75.40

Water body IoU 45.90 53.54 52.10 52.82 49.73 54.11 44.59 53.38
F1 62.82 69.74 68.49 69.13 66.41 70.22 61.68 70.05

#Parameters(M) 0.13 0.53 8.66 29.69 2.69 33.41 33.93 22.81
Training time per epoch(min) 10.25 9.16 9.17 8.88 9.25 9.51 9.82 8.92
OA 77.50 86.25 85.05 86.09 86.37 84.33 85.00 86.90
mIoU 41.91 56.63 54.75 57.17 58.02 55.91 53.11 58.67

Fig. 10. Visualization of segmentation results of different the spectral-spatial fusion networks on WHU-H2SR. Misclassifications are highlighted with red circles.

Table 3
Comparison between the spatial-spectral fusion networks on AeroRIT.

Method RSSAN DFFN DPRN HRNet FreeNet FTUNetFormer H2Former Ours

Water IoU 75.69 63.60 73.97 71.08 77.68 77.82 55.62 68.40
F1 86.16 79.60 85.03 75.10 87.44 87.53 71.48 81.17

Cars IoU 19.72 27.88 24.34 32.76 22.95 29.27 20.85 48.37
F1 32.89 43.19 38.57 47.43 37.34 45.28 34.51 65.18

Vegetation IoU 97.22 95.41 95.42 97.04 97.61 96.84 97.39 97.55
F1 98.59 97.65 97.66 98.66 98.79 98.40 98.68 98.76

Roads IoU 75.64 74.42 78.05 84.57 80.59 79.39 81.76 86.16
F1 96.11 85.34 87.67 92.57 89.25 88.51 89.96 92.57

Buildings IoU 82.65 73.45 83.05 86.70 86.62 80.16 89.03 87.39
F1 90.47 84.70 90.74 93.57 92.83 88.99 94.20 93.27

#Parameters(M) 0.13 0.53 8.66 29.69 2.69 33.41 33.93 22.81
Training time per epoch(min) 0.91 5.34 1.02 4.42 1.11 3.01 3.35 1.16
OA 93.81 93.20 94.19 96.04 95.05 94.69 95.31 96.44
mIoU 70.19 67.47 70.96 74.43 73.09 72.70 68.93 77.57
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RSSAN and DFFN also present commissions in buildings, while
HRNet, FreeNet, FTUNetFormer and H2Former omit buildings.
Compared to WHU-H2SR, AeroRIT has a smaller size, therefore
the required time for this experiment is shorter.

(3) Ablation experiment of multi-scale spatial-spectral encoder
Our proposed multi-scale spatial-spectral encoder performs

two cross-scale connections at the beginning and end stages of the
network, which avoids frequent cross-scale connections that lead
to multiple compression and reconstruction problems of the
features. Meanwhile, we integrate a spectral gated module into
the encoder to enhance the diagnostic capability of hyperspectral
data. Overall, experimental results demonstrate that our multi-
scale spatial-spectral encoder achieves higher performance with
a lower computational cost (mIoU: 58.67 %, Parameters: 22.81
M) compared to the mainstream multi-scale network HRNet
(mIoU: 57.17 %, Parameters: 29.69 M).

Further, we conducted thorough ablation experiments to assess the
impact of these key components. We employed a multi-branch structure
composed of the convolutional blocks as the baseline. When using the
baseline for segmentation, the mIoU is the lowest (see Table 4). The
incorporation of DSCs and spectral gated module separately resulted in a
noticeable improvement in mIoU. When both are used in combination,
the mIoU reaches its highest value. It is indicated that introducing DSCs
and spectral gated module into multiscale spatial-spectral encoder is

essential. DSCs effectively captures spectral and spatial information,
while spectral gated module explores global and local significant fea-
tures in spectral bands.

The key hyperparameter in STSNet is the number of channels (C).
When the number of channels is set to (32,32,64,128), the mIoU of the
spatial-spectral fusion network is 55.91 %, and the number of parame-
ters is 0.72 M. As the value of C increases, both the number of param-
eters and the overall accuracy increase (see Table 5). Considering both
the accuracy and efficiency of the model, C is set as (249, 300, 512, 512)
for the following experiments in this study.

4.3. Performance of spatio-temporal encoder

To assess the effectiveness of the proposed spatio-temporal encoder,
we connected it with a 1 × 1 convolution layer, which adjusts the
number of channels to the target number of semantic categories. We
selected five SOTA spatio-temporal fusion networks as comparative al-
gorithms: 3DUnet [73], ConvLSTM [51,89], FPN-ConvLSTM [50],
ConvGRU [90], and TSViT [52], and, for the segmentation of the
multi-temporal images.

3DUnet: The model follows the Unet structure, with the encoding
branch using 3D convolutions to process both spatio-temporal features.

ConvLSTM: This model is a LSTM based recursive neural network,
and it replaces the linear layers with spatial convolutions.

FPN-ConvLSTM: This model utilizes a pyramid structure to learn
spatial information and then employs ConvLSTM to extract time-series
information.

ConvGRU: On the basis of ConvLSTM, this model introduces a
variant of Gated Recurrent Unit (GRU) to replace the LSTM block.

Fig. 11. Visualization of segmentation results of different spectral-spatial fusion networks on AeroRIT. Misclassifications are highlighted with white circle.

Table 4
Multi-scale spatial-spectral encoder module ablation experiments on different
datasets.

Dataset Spectral gated module DSCs mIoU

WHU-H2SR 53.17
✓ 55.17

✓ 57.82
✓ ✓ 58.67

AeroRIT 71.08
✓ 71.59

✓ 74.33
✓ ✓ 77.57

Table 5
Segmentation accuracy and the number of channels C.

Hyperparameter C mIoU #Parameters(M)

(32,32,64,128) 55.91 0.72
(64,64,128,256) 57.22 2.84
(128,128,256,512) 58.06 11.04
(249,300,512,512) 58.67 22.81
(249,512,512,1024) 58.75 43.71
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TSViT: This model is based on the visual transformer, enhancing
segmentation capabilities by utilizing temporal positional encoding and
class tokens.

(1) Experiment 1: WHU-MT
Table 6 presents the quantitative segmentation results of

various spatio-temporal fusion networks. Our proposed method,
which utilizes the spatio-temporal encoder, achieves optimal
segmentation performance, with OA and mIoU reaching 85.93 %
and 53.88 %, respectively. Compared to other comparative al-
gorithms, our method obtains an increase of 1.46 %ཞ11.83 % and
2.73 %ཞ13.22 % in terms of OA and mIoU, respectively. These
experimental results highlight the remarkable superiority of the
proposed spatio-temporal encoder module.

From Case1, 3 and 4 of Fig. 12, it is seen that all compared
networks misclassify the greenhouse to other classes. In Case2 of
Fig. 12, 3DUnet and TSViT misclassify dry farmland as buildings.
And in Case5, water bodies are misclassified as forest land by
ConvLSTM and TSViT. The improved segmentation results ach-
ieved by our spatio-temporal encoder. The main reasons for this
superiority can be primarily attributed to the following factors:
the spectral convolution, focusing on the spectral information of
multi-temporal data, and the utilization of ConvLSTM and 3D
self-attention within the spatio-temporal transformer block ex-
tracts both local and global information in the multi-temporal
Setineal-2 images. This approach can to some extent reduce the
loss of spectral, temporal, and spatial information, thereby
improving segmentation accuracy.

(2) Experiment 2: Sen4AgriNet
To furtherly validate the performance of the spatio-temporal

encoder, we selected the Sen4AgriNet open-source dataset for
testing. Table 7 presents the quantitative segmentation results of
the spatio-temporal fusion networks on Sen4AgriNet. As seen
from this table, our proposed work demonstrates superior per-
formance. Compared to the comparative algorithms, our work
achieved an OA gains ranging from 0.53 % ཞ 2.73 % and 0.39 %
ཞ 5.07 % in mIoU. The core component of TsViT is the Vision
Transformer (ViT) [91], a standard transformer module that
learns global features and prefers large-scale data training. In
contrast, our proposed multi-scale hierarchical spatio-temporal
transformer can simultaneously learn local-global spatio-tem-
poral features with reliable performance even if the training
sample is limited. Sen4AgriNet is a large-scale open-source
dataset with over 180,000 Sentinel-2 images, which is much
larger in scale compared to WHU-MT. Thus, the overall accuracy
of TSViT was more evident on Sen4AgriNet compared to
WHU-MT.

In Case 2 and 4 of Fig. 13, 3DUnet presents good accuracy for
wheat, barley and potatoes, but poor performance for other

categories (especially maize). In Case1, FPN-ConvLSTM, Con-
vGRU, and TSViT also omit maize. ConvLSTM and
FPN-ConvLSTM misclassified maize as potatoes in Case 2,
3DUnet and ConvGRU presents errors for barley and maize in
Case 3, while ConvLSTM and TSViT omit rice in Case 5. The
primary reason for these misclassifications lies in the insufficient
integration of temporal and spatial information by 3DUnet,
ConvLSTM, ConvGRU, and TSViT.

(3) Spatio-temporal-spectral characteristics in multi-temporal mul-
tispectral Sentinel-2 images

Considering the spatio-temporal-spectral characteristics inherent in
multi-temporal multispectral Sentinel-2 images, we propose a spatio-
temporal encoder that combines spectral convolution and spatio-
temporal transformer block. The architecture of the spatio-temporal
encoder adopts 3DSwinT [76], which is a hierarchical multi-scale
structure. In each layer of the structure, we originally propose the
spatio-temporal transformer block, which combines ConvLSTM with 3D
self-attention to construct a transformer structure to exploit both global
and local spatio-temporal information. Table 8 compares the proposed
transformer with the SOTA 3DSwinT (i.e., baseline listed in the first line
of the table). It compares and analyzes the performance of each
component, demonstrating the superiority of our proposed approach.

When use only the baseline for segmentation, mIoU shows the lowest
value. Subsequently, with the introduction of the spectral convolution
and the spatio-temporal transformer block, the mIoU significantly im-
proves. When combined, mIoU reaches its highest level. On the one
hand, as Sentinel-2 images contain rich spectral information, spectral
convolution can deeply extract the spectral features. On the other hand,
compared to existing spatio-temporal fusion networks, the proposed
spatio-temporal transformer block explores spatio-temporal information
from both local and global perspectives, ensuring the improvement of
segmentation accuracy.

4.4. Performance of cross-resolution fusion module

To assess the effectiveness of our proposed spatio-temporal-spectral
cross-resolution fusion module, we selected five SOTA fusion strate-
gies for comparison: Direct module [92], MSE module [37], AFFB
module [93], FFM module [94], and DPFN module [95] for accuracy
comparison. The test data used is WHU-H2SR-MT.

Direct module: Directly concatenates different modal features.
MSE module: Concatenates different modal features initially, obtains

squeezed features through a global average pooling layer, acquires new
feature mappings through channel-wise multiplication, adds the feature
mappings to the spatial branch, obtains fused feature maps, and finally
achieves multimodal fusion.

AFFB module: Performs element-wise summation, multiplication,
and maximization operations on different modal features and then

Table 6
Comparison between the spatio-temporal fusion networks on WHU-MT.

Methods 3DUnet ConvLSTM FPN–ConvLSTM ConvGRU TSViT Ours

Class IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

Paddy field 70.27 82.54 90.18 94.83 69.45 81.97 90.71 95.13 68.73 81.47 91.54 95.58
Dry farmland 67.04 80.27 79.31 88.46 66.43 79.83 79.25 88.43 63.30 77.52 80.65 89.29
Forest land 44.99 62.06 47.59 64.49 40.32 57.47 45.79 62.81 36.80 53.80 48.93 65.71
Grassland 22.11 36.20 21.94 35.99 19.07 32.04 20.36 33.82 16.51 28.35 25.30 40.37
Building 57.41 72.94 58.48 73.80 58.82 74.08 59.45 74.57 52.95 69.24 62.01 76.55
Highway 15.98 27.55 8.66 15.94 14.47 25.28 7.62 14.13 11.23 20.19 15.88 27.40
Greenhouse 47.41 64.32 54.73 70.75 43.25 60.38 55.61 71.47 40.24 57.39 55.66 71.48
Water body 43.90 61.01 48.30 65.14 41.56 58.72 48.84 65.63 35.55 52.46 51.12 67.65
#Parameters(M) 1.55 0.02 0.76 0.02 8.76 6.33
Training time per epoch(min) 0.91 0.93 22.61 0.72 1.18 1.35
OA 76.74 84.47 76.10 84.39 74.10 85.93
mIoU 46.13 51.15 44.17 50.95 40.66 53.88
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concatenates the obtained feature maps through stacking.
FFM module: Utilizes a cross-attention to globally exchange infor-

mation between two modalities, and upscales output feature to highest
spatial resolution through channel mixing.

DPFN module: Utilizes separate convolutional layers to extract in-
formation between two modalities and then concatenates the generated
feature maps through stacking.

Table 9 displays the segmentation results of different fusion strate-
gies, demonstrating that our fusion strategy outperforms others.
Particularly, mIoU is improved by 8.08 % ཞ 9.69 %. As seen from the
cases in Fig. 14, the segmentation results of our proposed method are
closer to the reference label. MSE, FFM and DPFN perform poorly on
greenhouse in Case 1 and 3, MSE, AFFB and FFM noticeably misclassify
dry farmland in Case 4, Direct misclassifies dry farmland as grassland in
Case 2, and Direct, AFFB, FFM, and DPFN present inferior performance
on highway. The main reasons are as follows: (1) WHU-H2SR-MT has
inconsistent spatial resolutions, with WHU-H2SR having a spatial reso-
lution of 1 m and WHU-MT having a spatial resolution of 10 m, resulting
in a significant difference in data resolution. The use of direct fusion

strategies (e.g., concatenation) is difficult to form the complementary
advantages of multimodal features. (2) Existing fusion strategies are not
particularly designed for spatio-temporal-spectral feature fusion. In
contrast, the newly proposed cross-resolution module aims to mitigate
the information loss caused by large spatial disparities in multi-modal
remote sensing images. It adjusts the importance of features from each
modality branch (e.g., spatial-spectral and spatio-temporal features) at
different resolutions, adaptively regulating their contribution to land-
cover interpretation. This module improves accuracy by over 8 % in
mIoU compared to other fusion strategies.

4.5. Modalities performance analysis

Table 10 presents the segmentation results for different modalities.
Specifically, H2SR-VNIR represents the segmentation result of the image
obtained by merging the spectral bands of WHU-H2SR based on the band
configuration of Sentinel-2 imagery, H2SR denotes the segmentation
result using WHU-H2SR (i.e., the high-spatial and hyperspectral image),
H2SR-10 denotes the result of the data by downscaling the spatial

Fig. 12. Visualization of segmentation results of different spatio-temporal fusion networks on WHU-MT. Misclassifications are highlighted with red circle.

Table 7
Comparison between the spatio-temporal fusion networks on Sen4AgriNet.

Methods 3DUnet ConvLSTM FPN–ConvLSTM ConvGRU TSViT Ours

Class IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

Wheat 94.94 97.41 94.10 96.96 93.17 96.47 94.53 97.19 92.20 95.94 95.78 97.84
Maize 93.92 96.87 93.36 96.56 91.75 95.77 91.39 95.50 88.06 93.65 94.54 97.19
Rice 99.95 99.97 99.86 99.92 99.82 99.91 99.89 99.95 99.93 99.96 99.90 99.95
Barley 89.21 94.30 87.71 93.45 85.52 92.20 86.74 92.90 83.62 91.08 91.23 95.41
Grapes 99.49 99.74 98.50 99.24 98.87 99.44 98.25 99.12 97.98 98.98 99.08 99.54
Rapeseed 95.84 97.87 94.45 97.15 90.67 95.10 93.31 96.54 88.19 93.72 96.39 98.16
Potatoes 96.55 98.25 92.56 96.13 93.09 96.42 93.18 96.47 87.16 93.14 95.74 97.82
#Parameters(M) 1.55 0.02 0.76 0.02 8.76 6.33
Training time per epoch(min) 280 156 793 249 366 537
OA 96.86 96.24 95.51 96.14 94.66 97.39
mIoU 95.70 94.36 93.27 93.90 91.02 96.09
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resolution of WHU-H2SR from 1 m to 10 m (i.e., the spatial resolution of
Sentinel-2 imagery), MT denotes the result using WHU-MT (i.e., the
multi-temporal Sentinel-2 images), H2SR-VNIR-MT denotes the result
using the fusion of WHU-VNIR and WHU-MT, and H2SR-MT denotes the
results using the fusion of WHU-H2SR and WHU-MT. We replaced the
original multi-temporal Sentinel-2 images (spatial resolution: 10 m)
with multi-temporal Landsat 8 images (spatial resolution: 30 m) to
explore the adaptability of the cross-resolution fusion module to a
broader range of resolution changes. H2SR-Landsat denotes the result
using the fusion of WHU-H2SR and WHU-Landsat (i.e., the multi-
temporal Landsat 8 images). Through comparing the above results, the
following phenomena can be observed:

1) In the case of single modality, WHU-H2SR (with both high spatial-
spectral resolution) performs best, and the high spatial resolution
H2SR-VNIR and the multi-temporal WHU-MT have their own

Fig. 13. Visualization of segmentation results of different spatio-temporal fusion networks on Sen4AgriNet. Misclassifications are highlighted with red circle.

Table 8
Spatio-temporal encoder module ablation experiments on two datasets.

Dataset Spectral convolution ConvLSTM 3D self-attention mIoU

WHU-MT 44.78
✓ 52.97
✓ ✓ 53.29
✓ ✓ 53.42
✓ ✓ ✓ 53.88

Sen4AgriNet 95.20
✓ 95.53
✓ ✓ 95.61
✓ ✓ 95.67
✓ ✓ ✓ 96.09

Table 9
Comparison between the fusion modules on WHU-H2SR-MT.

Methods Direct MSE AFFB FFM DPFN Ours

Class IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1

Paddy field 70.46 82.67 70.30 82.56 69.80 82.21 70.24 82.52 70.06 82.39 92.78 96.25
Dry farmland 67.98 80.94 67.74 80.77 67.48 80.58 68.45 81.27 67.92 80.90 82.46 90.39
Forest land 49.98 66.65 49.65 66.35 49.86 66.54 49.02 65.79 46.95 63.90 54.97 70.94
Grassland 25.28 40.36 25.89 41.14 23.09 37.51 26.20 41.52 23.13 37.57 26.29 41.58
Building 63.61 77.76 61.97 76.52 64.81 78.65 64.61 78.50 64.75 78.60 68.64 81.41
Highway 36.39 53.36 40.29 57.43 35.31 52.19 40.31 57.46 35.40 52.29 38.79 55.89
Greenhouse 47.91 64.78 48.59 65.40 41.09 58.25 46.18 63.19 46.13 63.14 59.33 74.41
Water body 50.17 66.82 44.06 61.17 48.89 65.66 48.20 65.05 47.24 64.17 54.53 70.58
#Parameters(M) 21.89 22.02 22.19 25.84 87.75 28.71
#FLOPs(G) 56.10 56.12 56.22 56.51 81.92 56.13
Training time per epoch(min) 10.15 10.21 10.58 11.13 12.61 10.30
OA 78.13 77.87 77.89 78.18 77.95 87.52
mIoU 51.47 51.06 50.04 51.65 50.20 59.73
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strengths. For example, agricultural crops (including paddy field, dry
farmland, greenhouse) prefer time-series information, while build-
ings and highways prefer spatial characteristics. Comparing multi-
spectral with hyperspectral data, i.e., H2SR-VNIR vs H2SR, hyper-
spectral characteristics provides stable accuracy gains for both arti-
ficial surfaces and agricultural crops. It is noteworthy that when
downscaling the spatial resolution from 1 m to 10 m (i.e., H2SR vs
H2SR-10), the loss of spatial information leads to a sharp decrease in
the segmentation accuracy of each category, demonstrating the
importance of meter-level spatial characteristics for land cover
interpretation. When multi-modal data are available, with the aid of
the newly proposed cross-resolution fusion module, both the fusion
of the H2SR with multi-temporal Sentinel-2 (H2SR-MT) and the
fusion of H2SR with multi-temporal Landsat-8 (H2SR-Landsat)
outperform H2SR. Specifically, H2SR-MT with higher spatial resolu-
tion is slightly superior to H2SR-Landsat. This demonstrates that the
proposed cross-resolution fusion module has significant advantages
in fusing images with large spatial resolution differences.

2) For each land-cover category, the importance of features decreases in
the order of meter-level spatial information, multi-temporal infor-
mation to nanometer-level hyperspectral information. Moreover, it
can be seen that the two artificial land types, highway and building,

rely more on spatial characteristic, and highway cannot be effec-
tively recognized with a spatial resolution of 10 m.

4.6. Applicability of different modal images

In terms of modality, we compare the segmentation result of each
single-modal image (as shown in Table 10), including H2SR, a spectral-
synthetic image H2SR-VNIR (merging the hyperspectral bands of H2SR
according to the spectral configuration of Sentinel-2 imagery), a spatial-
synthetic data H2SR-10 (downscaling H2SR to the spatial resolution of
Sentinel-2), and the multi-temporal Sentinel-2 images (called MT).
Based on the experimental results, the following observations can be
obtained:

When only a single modality data is available, H2SR shows the most
outstanding performance for all classes, which indicates that the joint
spatial-spectral information has a significant advantage in land cover
interpretation task. When only high-spatial multi-spectral modality
(H2SR-VNIR) is available, the interpretation results for artificial surfaces
(including buildings, highways) are still good. When only the hyper-
spectral modality (H2SR-10) is available, the accuracy for all categories
shows a significant drop, indicating the importance of high spatial in-
formation. On the basis of multi-spectral information, the inclusion of
temporal information (i.e., MT) is beneficial for agricultural land

Fig. 14. Visualization of segmentation results of different spatio-temporal-spectral fusion networks on WHU-H2SR-MT. Misclassifications are highlighted with
red circle.

Table 10
Comparison of different modalities segmentation results.

Paddy field Dry farmland Forest land Grassland Building Highway Greenhouse Water body mIoU OA

Single-modal data H2SR-VNIR 88.45 78.57 54.29 22.97 63.45 29.25 52.79 47.79 54.70 84.76
H2SR 91.64 81.01 53.50 24.71 68.44 37.30 59.35 53.38 58.67 86.90
H2SR-10 86.65 73.67 44.97 19.29 58.69 12.35 42.99 44.23 47.83 82.15
MT 91.54 80.65 48.93 25.30 62.01 15.88 55.66 51.12 53.88 85.93

Multi-modal data H2SR-VNIR-MT 90.88 79.48 53.20 23.70 65.79 32.78 49.65 46.72 55.30 85.94
H2SR-Landsat 92.14 81.82 55.44 24.45 68.24 38.32 57.47 52.80 58.84 87.28
H2SR-MT 92.78 82.46 54.97 26.29 68.64 38.79 59.33 54.53 59.73 87.52
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(including paddy fields, dry farmlands, and greenhouses) as well as
natural surfaces (including grassland and water bodies). Considering
interpretation ability and data accessibility, it can be said that the multi-
temporal Sentinel-2 images have more potential for large scale tasks,
while high-spatial and hyperspectral image is more beneficial for the
tasks requiring high accuracy.

Comprehensive agricultural area monitoring and management in-
formation is provided by the spatio-temporal-spectral fusion method in
the field of agriculture. Fine spatial information is delivered by high
spatial resolution data, which accurately identifies detailed features in
agricultural fields. Rich spectral information is provided by hyper-
spectral data, allowing detailed spectral features for each pixel to be
identified, thus enabling precise identification and quantification of the
physiological characteristics, nutritional status, and diseases of different
crops. In addition, multi-temporal data facilitate the monitoring of the
entire growth cycle of crops from sowing to harvesting, enabling the
identification of crop characteristics at different growth periods and the
analysis of crop growth through multi-temporal data. Comprehensive
and refined farmland monitoring and management are enabled by
STSNet, which enhances the efficiency and effectiveness of agricultural
production and offers powerful data support and decision-making
assistance for modern agriculture.

5. Conclusion

In this paper, we propose a land cover segmentation network, named
STSNet, which performs cross-resolution spatio-temporal-spectral deep
fusion. First, in the multi-scale spatial-spectral encoder, STSNet employs
DSCs to capture spatial and spectral information separately and uses
spectral gated module to enhance the analysis and discrimination per-
formance of hyperspectral images. The encoder employs a multi-scale
structure and cross-scale connection approach, ensuring effective
interaction among multi-scale features. Two cross-scale connections are
performed at the beginning and the end of the network, avoiding
frequent cross-scale connections that involve compressions and re-
constructions of the features. This design preserves the interrelated and
complementary information of the features, facilitating the balanced
fusion of spatial-spectral information and enhancing the accuracy of
spatial-spectral fusion segmentation. Second, STSNet considers the
spatial, temporal, and spectral characteristics of multi-temporal
Sentinel-2 images in the spatio-temporal encoder module. To this end,
a spatio-temporal transformer block is developed, which extracts both
global and local spatio-temporal information from Sentinel-2 images.
Additionally, spectral convolution is employed to extract spectral in-
formation. Lastly, to achieve comprehensive fusion of spatio-temporal-
spectral multi-modal images with different spatial resolutions, the
newly proposed cross-resolution module effectively mitigates challenges
such as information loss in the process of multi-modal data fusion.
Specifically, an adjustment coefficient (α) is designed to regulate the
importance of features extracted by each modal branch at different
spatial resolutions. This mechanism adaptively adjusts the contribution
of each modality’s features to land cover interpretation.

To better evaluate STSNet, we have open-sourced a multi-modal
dataset called the WHU-H2SR-MT, which consists of H2SR images with
multi-temporal images. To our knowledge, this is currently the largest
spatio-temporal-spectral multi-modal interpretation dataset. Experi-
mental results demonstrate that our multi-scale spatial-spectral encoder
module, spatio-temporal encoder module, and cross-resolution fusion
module outperform existing mainstream algorithms overall.

In future research, we will explore methods for fusing spatio-
temporal-spectral-angle remote sensing images with high spatial reso-
lution. By introducing multi-view images, the spatial structure of fea-
tures can be captured more comprehensively, effectively overcoming
occlusion and distortion issues that may occur in a single view.
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