5338

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 10, OCTOBER 2015

Efficient Superpixel-Level Multitask Joint
Sparse Representation for Hyperspectral
Image Classification

Jiayi Li, Student Member, IEEE, Hongyan Zhang, Member, IEEE, and Liangpei Zhang, Senior Member, IEEE

Abstract—In this paper, we propose a superpixel-level sparse
representation classification framework with multitask learning
for hyperspectral imagery. The proposed algorithm exploits the
class-level sparsity prior for multiple-feature fusion, and the cor-
relation and distinctiveness of pixels in a spatial local region.
Compared with some of the state-of-the-art hyperspectral clas-
sifiers, the superiority of the multiple-feature combination, the
spatial prior utilization, and the computational complexity are
maintained at the same time in the proposed method. The pro-
posed classification algorithm was tested on three hyperspectral
images. The experimental results suggest that the proposed al-
gorithm performs better than the other sparse (collaborative)
representation-based algorithms and some popular hyperspectral
multiple-feature classifiers.

Index Terms—Classification, hyperspectral imagery, multitask
learning, sparse representation.

I. INTRODUCTION

YPERSPECTRAL images (HSIs), spanning the visible

to infrared spectrum with hundreds of contiguous and
narrow spectral bands, are favored by subtle discriminative
spectral characteristics, as well as spatial information [1]. Due
to the fine spectral differences between various materials of
interest, HSIs support improved target detection and classifi-
cation capabilities, and have important applications in various
fields, such as the military [2], precision agriculture [3], [4],
and mineralogy [5]. Supervised hyperspectral classification that
labels each pixel in the image, which is determined by a given
training sample set from each class, is an important task for
the subsequent processing and analysis. The framework of
supervised classification consists of two procedures: 1) discrim-
inative feature acquisition and 2) classifier design.

1) To obtain the meaningful features for classification, tech-
niques in both the spectral and spatial domain have been
studied in recent years. Techniques, such as spectral
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band selection based on trivariate mutual information and
clonal selection [6], particle swarm optimization [7], di-
mensional reduction based on sparse graph discriminant
analysis [8], independent component analysis [9], dis-
criminative metric learning [10], linear spectral unmix-
ing, and manifold learning [11], have been widely utilized
to fully exploit the spectral discriminability. On the other
hand, the spatial feature construction, which was first
studied in high spatial resolution processing and analysis
[12], [13], has also been utilized in HSI classification,
in techniques such as the 3-D wavelet feature [14], the
gray-level cooccurrence matrix [13], and morphological
analysis [15]. Furthermore, some multiple-feature fusion
approaches with state-of-the-art performance have also
been proposed to combine the complementary features
and enhance the discriminability [16]-[18].

2) The lack of samples [19], the Hughes phenomenon [20],
and the high computational burden caused by high-
dimensional signal processing [21] are inevitable obsta-
cles for designing HSI classifiers. One of the most widely
used discriminative classifiers is the support vector ma-
chine (SVM) [20], [22], which aims to find an optimal
separating hyperplane between two classes to solve the
binary classification problem. Considering the hyperspec-
tral nonlinear separability and the spectral—spatial prior,
some variations of SVM, such as relevance vector ma-
chines [23] and semisupervised transductive SVM [24],
have also been introduced to solve the hyperspectral
classification task. Another discriminative hyperspectral
classifier is multinomial logistic regression (MLR) [25],
[26], which predicts the probabilities of the different
possible outcomes of categorically distributed dependent
samples, given a set of independent training samples.
Some useful priors, such as composite kernels [27]-[29],
sparsity regularization [30], [31], and spatial constraint by
Markov random fields [25], [32], have also been utilized
in these kinds of classifiers.

A classifier named sparse representation classification (SRC)
[33] has attracted great attention for supervised HSI classifi-
cation [34] in recent years. Based on a collaborative repre-
sentation (CR) [35] mechanism, where the training samples
that are located close to the unlabeled pixel contribute most to
the representation of the unlabeled pixel, while the rest of the
training samples act as collaborative assistants, SRC can deal
with the “lack of samples” problem [21] for high-dimensional
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signal recognition. Further studies in sparse representation [14],
[19], [21], [36]-[39] have also been implemented and have
shown excellent performances. Zhang et al. [36] extended the
joint sparsity model in [40] with a nonlocal spatial prior. A
CR mechanism and a local constraint were emphasized in [19],
[41], which are believed to be more useful than a sparse con-
straint with a general dictionary. Zhang et al. [38] also utilized
CR for image-set-based face recognition, by modeling the test
query images and the whole training dictionary as a convex
hull to take the set-to-set CR, and labeling the coefficient
vector according to the similar decision rule in the original
SRC. By not only exploiting the correlation and distinctiveness
of the sample images in the query set but also reducing the
computational burden caused by the redundancies in the query
set, this novel CR-based framework has shown a desirable
recognition performance.

For HSIs, it is natural that spatial similarity and redun-
dancy exist in the scene, which can link the HSI classifica-
tion with the aforementioned novel set-to-set CR-based work.
In this paper, we propose a superpixel-level multitask joint
SRC (SMTIJSRC) algorithm, which exploits the joint sparsity
prior for the multiple-feature fusion, and the correlation and
distinctiveness of pixels in a spatial local region for the HSI
classification. The algorithm is implemented in the following
steps. First, several complementary features of the HSI are
extracted. Second, superpixels, which can be regarded as small
local regions with an adaptive shape and size [42], [43], are
partitioned from the whole scene. Third, the multiple-feature
joint sparse linear regression model is extended in a set-to-set
CR manner to obtain the coding coefficient vector for the sub-
sequent classification. The proposed method aims to enhance
the discrimination of pixels by combining the complementary
information of different features and highlighting the major
patterns of pixels within a spatial region in a multitask learning
fusion to achieve an improved classification result. Experiments
with several HSIs confirm the effectiveness of the proposed
SMTIJSRC algorithm.

We next discuss the relationship between the proposed
SMTISRC classification method and the other relevant CR-
based methods. For the multiple-feature-based approaches,
Li et al. [21] investigated the distinctiveness and similarity of
the different features in a model with two f5-norm-induced
constraints, whereas Yuan et al. [39] exploited the invariant
similarities between various features with an ¢; o-norm in-
duced by a sparse constraint. Although the ¢s>-norm leads to
less computational complexity than the sparsity-induced norm,
the iteration process in [21] calls for multiple matrix inverse
calculations, which is time consuming when dealing with a
large-scale training sample set case. Meanwhile, the multitask
£1,9-norm in [39] utilizes the accelerated proximal gradient
(APG) method [44] to accelerate the convergence speed, which
should be faster than the method in [21], in practice. For the
proposed approach optimized by an alternating minimization
method [45], iterating two convex subproblems can ensure the
convergence of the whole objective function. One subproblem
can be solved by the efficient multitask ¢; 2-norm, and the other
one has a closed-form solution. For the approaches that utilize
a spatial prior, most of the current studies have defined a fixed-
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size local region for each test pixel and then simultaneously
represented the neighboring pixels (weighted or equal) in the
region to classify the test pixel [19], [21], [36], [40]. Although
some improvements have been achieved by these techniques,
the following issues should still be addressed. First, by in-
volving the neighboring pixels, the computational burden is
increased by several times over that of the single-pixel-based
approach, as each pixel is repeatedly regarded as a collaborative
assistant for its surrounding pixels. Second, the motivation be-
hind treating the neighboring pixels as collaborative assistants
refers to a smoothing filter by the use of the average pattern of
the features in the fixed region, which will inevitably result in
some oversmoothing [21]. For the proposed approach based on
superpixel labeling, there is no redundant representation calcu-
lation for classifying each pixel, as we regard each superpixel as
a nonoverlapping pure parcel. With consideration of the homo-
geneity and compactness, the superpixel covers the perceptual
uniform region with an adaptive shape and structure. Compared
with the aforementioned methods that utilize a spatial prior, the
proposed superpixel-level sparse (collaborative) representation
can adaptively exploit the correlation and distinctiveness of
representative pixels in the superpixel, which maintains the
discriminative representation for the pixel set. In addition, the
proposed approach can be reduced as in [39], for the case of
there being only one pixel for each superpixel, and can be
reduced as an instance in [38], for the case of only a single
feature being involved.

The rest of this paper is organized as follows: Section II
presents the proposed framework for HSI classification. The
experimental results of the proposed algorithm are given in
Section III. Finally, Section IV concludes the paper with some
concluding remarks.

II. PROPOSED FRAMEWORK OF SMTJSRC

Here, we first utilize the superpixel segmentation to partition
the whole hyperspectral scene into several superpixels, and we
then label each superpixel with the uniform multitask learning
approach.

A. Segmentation and Superpixel Distance Definition

The remote sensing image analysis literature can be divided
into the pixelwise processing approaches and the object-
oriented approaches, and the classical pixelwise approaches
often suffer from the “salt-and-pepper” phenomenon. In recent
years, researchers of the first category of approaches [19], [21],
[25] have smoothed the thematic map with the help of neigh-
boring pixels, but this comes with the risk of oversmoothing,
particularly when dealing with a complicated spatial structure.
Although the later object-oriented approaches can alleviate the
“salt-and-pepper” phenomenon by the use of spatial segmenta-
tion [46], the optimal segmentation scale is difficult to obtain,
as the scale difference of the land cover is often complicated. In
this paper, the superpixel containing several pixels in a local re-
gion is an intermediate concept between these two approaches.
Superpixels in a hyperspectral scene are defined as pure percep-
tual uniform parcels, and a land-cover object is composed of
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Fig. 1. Procedure of the superpixel segmentation and the hull-based superpixel-
to-superpixel distance.

several adjacent superpixels. In this way, an oversegmentation
procedure is utilized in the superpixel acquisition step.

The utilized superpixel segmentation method in this paper is
based on graph partitioning and the entropy rate [42], which
favors compact and homogenous nonoverlapping clusters, and
has an efficient computational complexity approximated as
O(|V]log |V|), where V refers to the number of pixels in the
scene. The only free parameter 7' (the number of superpixels)
controls the segmentation scale of the scene. More details of
the segmentation mechanism can be found in [42]. For the
proposed approach, the first principal component (PC) of the
HSI is extracted, which maintains the most important infor-
mation of the whole scene, and is utilized as the base image
for the superpixel segmentation. As shown in Fig. 1, with
the oversegmentation, a desirable superpixel with comparable
scale and adaptive shape can avoid the oversmoothing problem
described in [21], which is further discussed in the following
experimental section.

As shown in Fig. 1, a parcel belonging to the grass class can
be clustered as a superpixel, and denoted by Y = {y1,...,¥;,

.+, Yy}, where y; € R%. d is the dimension of the feature, and
g is the number of pixels in the parcel. The hull of set Y is
defined as H(Y) = {>_ a;y;}. Usually, > a; =1 is required
to be bounded as follows:

H(Y) = {ZaiyﬂZai =1,0<q < T}. (1)

If =1, H(Y) is a convex hull, and if 7 <1, H(Y) is
a reduced convex hull [47]. Both cases are referred to as a
“convex hull” in the following. In a full HSI scene, another
superpixel belonging to the building class can also be denoted
as a sample set Z = {z1,...,2;,..., 2}, where z; € R%, and |
is the number of pixels in the building superpixel. The distance
between two superpixels is defined by modeling each set as a
convex set, as follows:

ming p HZ a;y; — Z biz;

sty a;=1,0<a, <73 bi=1,0<b; <7 (2

2
2
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If there is no intersection between the two sets (as shown in
Fig. 1), it can be observed that (2) denotes the distance between
two support hyperplanes, which is equivalent to the distance
measured by SVM [20]. That is to say, minimizing the distance
can be transformed into maximizing the margin between the
two convex hulls. If there are intersections, the associated
classifier, which is related to soft-margin SVM and v—SVM
[48], should be sensitive to the location of the samples and
outliers. A more detailed discussion of this issue can be found
in [48] and [49]. For a hyperspectral superpixel, it is believed
that the oversegmentation procedure usually ensures that there
is no intersection between superpixels of different classes.

B. Superpixel-Level CR Classification

The superiority of the CR-based hyperspectral classifiers
[34], [41] is due to the utilization of the similar training samples
from different classes to represent the test pixel. In view of this,
it is natural to inherit such a mechanism in the superpixel CR
classification framework.

Suppose that we have M distinct classes, then we set D; €
RNi § =1,..., M as the ith subdictionary whose columns
are the N; training samples from the ith class, and N = ), N;.
It is believed that each D; can model a convex set for a specific
class. The collaborative dictionary D, which is made up of
all the subdictionaries {Di}i:L,_, M, and is concatenated as a
uniform convex set, maps each hyperspectral pixel into a high-
dimensional space corresponding to the dictionary. To classify
the unlabeled superpixel Y, we model each of Y and D as a
hull, i.e., Ya € R% and Db € R%, where a and b are coefficient
vectors. The CR model of the convex hull of the superpixel Y
can then be expressed as follows:

Ya:[lel,...,Dibi7...,D]V[bM]:Db+5 (3)
where b; represents the coefficient subvector over the ith sub-
dictionary D;, and ¢ is the random noise.

As described in [34], the CR vector contains discriminative
information, to some degree, and can be used to perform the
subsequent classification task. This is the motivation behind
representing the convex hull of the unlabeled superpixel Y as
a weighted composite of dictionary D, whereas the coefficient
vector a can be regarded as the weight to construct the convex
hull of the superpixel. The collaborative vector b and the pixel
weight a can be easily obtained by solving the following
optimization problem:

ming; ||[Ya — Db|? st Zai =1 4)

where we set Y a; = 1 to avoid the trivial solutiona = b = 0.
By minimizing the distance between Ya and Db, the un-
expected interruption in both the superpixel Y and the dic-
tionary D will be assigned with a very small representation
coefficient. As with SRC, the simplest method to find its
label is by the least squares method, which can be expressed
as class(Y) = argmin; ||[Ya — D;b;||%. However, in practice,
some light disturbance may be misclassified to class j(j # )
as || Ya—D;b;||3>|'Ya—D;b;||3, which leads to an unstable
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Fig. 2. Schematic illustration of the SMTJSRC algorithm for HSI classification. Multiple modalities of the features are first extracted for the whole hyperspectral
scene. A dictionary set and a superpixel set both containing multiple features are then constructed. Each coefficient vector is represented as a linear combination
of the corresponding training feature dictionary. To preserve the invariant similarities between various features, a multitask joint sparsity norm, which enforces
the joint selection of a few common classes of training samples to represent a test superpixel over each feature and each instance, is introduced. Meanwhile,
the practical instance of the convex hull can be simultaneously learned with the bounded coefficient (known as the pixel weight in this framework). Finally, the
classification decision is made, according to the reconstruction error of the individual class.

classification result [41]. To alleviate this problem, a regular-
ization term can be considered to generate a more stable model
for the superpixel CR as follows:

i — Db||?s.t. =1
min|[Ya —Db[3 st Y a; = L laly, <41, [, <6
&)

where /,,, {; can be the ¢;- or {3-norm, with regard to the
different instances of the general model in (5). In theory, the
£y,-norm represents the distribution of the image noise, and
the £4-norm refers to the prior of the coefficient. d; and d2 are
two bound constants to constrain the convex hulls.

For classification, the class of the superpixel Y can be deter-
mined by minimizing the residual r; (i.e., the error between Y a
and the linearly recovered approximated result from the training
samples in the ith class) as follows:

class(Y) = min

min 7, (Ya)= min
=1,...

i=1,...,M

Compared with the pixelwise joint CR-based approach in-
corporating neighboring pixels [19], [40], [41], superpixel-level
CR has the following differences. First, the former approach
utilizes |[Y — D;B;||% (where each column of B refers to the
coefficient vector associated with the pixels in Y'), which means
the residual of the average vector of Y, and it acts as a smooth-
ing filter in practice. Meanwhile, for the proposed superpixel-
based approach, the coding step can adaptively utilize the
convex combination of the pixel set Y, which reflects the
centroid of this parcel with a more stable feature representation.
Second, it is redundant to repeatedly take one pixel into the
coding step of its surrounding pixel labeling process, and the
proposed superpixel-level approach is more efficient, as there
are no overlapping parcels in the segmentation step. Finally,
it is also noted that the utilized superpixel based on overseg-
mentation extracts more adaptive pure parcels with comparable
scales, whereas the pixelwise joint CR-based approaches with a
fixed neighborhood may get into problems with neighborhoods
containing several different kinds of land cover.

C. Multitask Learning Algorithm for Superpixel-Level
CR Classification

Designing a classifier that combines multiple features (e.g.,
spectral, texture, and shape) to improve the classification accu-
racy is natural, as one single feature can only depict the HSI
from one perspective. Since none of the feature descriptors will
have the same discriminative power for all classes, the multitask
learning approach can further fuse the complementary discrim-
inative abilities of the different features by simultaneous use
of the specific learned convex hull of each feature. A visual
illustration of the classification scheme for an HSI with the
proposed SMTISRC algorithm is shown in Fig. 2.

Considering each feature as a modality, (3) can be extended
as follows:

Y'a' = [Diby,...,D/b},..., D}, b}y,] = D'b' + ¢

Y¥aX =[DEb, ... . DFBE, ... DI bY] = DEbE + X

(7

where the convex sets of the multiple different features
{YF*}r—1. i are extracted from the different perspectives of
the unlabeled hyperspectral superpixel, and their corresponding
subdictionaries {Dk}k:17,,_, x are constructed with the features
of the same training samples. K is the number of modalities.
{ak}k:L_”K, {bk}k:lymyK, and {sk}k:L_wK are the pixel
weight set, the collaborative coefficient set, and the random
noise set, respectively.

To make the representation step stable, the multitask-learning-
based framework also utilizes regularizations to extend (5) as
follows:

K
min{ak,bk} Z HYkak — Dkbk‘lg
k

sty af =1,[la*|ls, <01, [bF|le, <02, k=1,..., K. (8)
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To combine the discriminative abilities of the multiple fea-
tures for classification, a joint learning procedure is utilized
for (8) by imposing a class-level sparsity-inducing term on
{bk}k:h_? . Similar to the motivation behind SRC, it can
be useful to jointly select a few common classes of training
samples to represent a test convex hull over each feature. That
is to say, the desired representation vectors for the multiple
features should share certain class-level sparsity patterns. Given
the optimal superpixel convex hull Y*a*, the CR coefficient
vector b* can be rewritten as b* = [b% ... b%], in which
bl consists of the components of b* restricted on class i.
We stack all the CR vectors together, and B; = [b}, ..., bX]
denotes the representation coefficients associated with classi
across the different features. Inspired by the sparsity constraint
utilized in SRC and the role of the multiple features, the class-
level joint sparsity-inducing term [the ¢,-norm in (8)], which
applies the ¢y-norm across the ¢5-norm of B;, can be shown as
H [”B]_HF, ey ||B]W||F]||O Since the éo—norm problem is NP-
hard, convex relaxation ||[||B1||F,- - -, || Bl #]|l1, which still
encourages the test superpixel convex hull set to be sparsely
reconstructed by the most representative classes in the training
set, is also workable. Considering the superpixel constructed
before, it is believed that pixels in the parcel will be homoge-
nous and similar. In view of this, the ¢5-norm regularization
is available to make the problem stable, and with a light
computational complexity. We can rewrite the regularized mul-
titask learning model in (8) as its Lagrangian formulation, as
follows:

K
minga gy Y [Y*aF — DF6* |3 + XA p + 5l|Bll1.2
k

st. A=[a',...,a®],B=[b',...,b5],

dlaf=1,k=1,. K )

where \ and 7 are positive constants to balance the data fidelity
term and the regularizations.

To solve the proposed problem, we use the alternating mini-
mization method, which is very efficient and effective in solving
multiple variable optimization problems [45]. The Lagrange
function of (9) can be reorganized as follows:

k
K
+ M|Allp+7IBll2+) (7 ea"~1) (10)
k

where {7*} k=1,... Kk 18 the Lagrange multiplier set, (o, ®) is the
inner product, and e is a row vector whose elements are 1. As a
convex optimization problem with two variables, A and B
can be solved by alternating the optimization with the two
corresponding subproblems, until the solutions converge to a
minimum.
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For the first subproblem, we optimize A by fixing B, and the
optimization of (10) becomes

L(a*,7%) = [[Y*a* — D*6" |3 + Alla” |5 + (", ea® — 1)
st.k=1,...,K (11

where

OL k

— =ea’ —1 (12)

Ok

oL K~k k k k T k kpk

?:2Y (Y¥a" — %) + 20a” + ye’, st x"=D"b".
(13)

According to (12) and (13), there is a closed-form solution to
(11) as follows:
p_ 2(ept —1)

_ k_ ok kT

VT T eQRer W TP —0.57%Q"% (14)

where Q;, = (Y¥'Y* + \)~!and p;, = Q. Y "

For the second subproblem, we optimize B by fixing A, and
the optimization of (10) becomes

K
ming Z ||s’c - Dkkaz +7|Bll12 st st =Y*ak
k

15)

The problem of (15) is known as the multitask joint covariate
selection model [50] in sparse learning, and can be efficiently
solved with several iterations by the APG method [39]. As
discussed in [45], the alternating minimization approach for
such a general convex problem will converge to the correct
solution, as both subproblems are convex. It is notable that
running (15) until convergence is not necessary for the best
classification performance. Indeed, a satisfactory classification
accuracy can be obtained within a few hundred iterations. This
can be partially explained by the fact that the objective of
SMTIJSRC is to minimize the reconstruction error of a test
convex hull set. In practice, it is desirable to set a bound of the
iteration times for the proposed alternating optimization prob-
lem as a “convergence condition.” As in the multitask learning
approaches [21], the label of the unlabeled superpixel is then
determined by the minimal total residual as follows:

K

: k_k kpk||2

class(Y) = arg ,Jmin, kz::l [Y*a® — Alb; ||2 . (o6

The computational burden for the proposed SMTISRC algo-
rithm is as follows. The running time for the first subproblem
is O(Kd2,,,), where dy,. is the maximum of the dimension of
the multiple features, as Q and its inverse can be precomputed.
For the second subproblem, L, is the average iteration times
utilized to solve (15), and it takes O((2L1 + 1) Kdpax) [39]. It
is also notable that the computational load of (16) is negligible
in the superpixel multitask learning procedure. Finally, Lo is the
average iteration times for the alternating optimization, and the
computational cost for labeling the whole hyperspectral scene
is O(TLy((2L1 + 1) Kdpax + Kd2,,.) + |V |log|V]).

max
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Fig. 3. Classification results for the Indian Pines image: (a) SVM-VS, (b) SVM-CK, (c) GCK-MLR, (d) MNFL, (e) MTISRC, (f) SVM-VS-P, (g) SVM-CK-P,
(h) GCK-MLR-P, (i) MNFL-P, (j) MTJSRC-P, (k) JCRC-MTL, (1) SMTLJSRC, (m) reference set, and (n) false-color image (R: 57, G: 27, B: 17).

The implementation details of the proposed SMTJSRC algo-
rithm for HSI classification are shown in Algorithm 1.

Algorithm 1: The Framework of the Proposed Algorithm for
HSI Classification

Input: 1) A HSI containing training samples
2) Regularization parameters A and 7, and number of

superpixels T’

Step 1: Segment the whole scene into 7" superpixels

Step 2: Extract multiple features and construct the multi-
task dictionary from the image

Step 3: For each test superpixel in the hyperspectral scene:

Initialize B(®), and t - 0

While not meeting the convergence condition:

Step 3.1: Fix B() and update A(*+1) by (14).

Step 3.2: Fix A(*1 and update B+ by (15).

Step33:t+t+1

End while

End For
Output: A 2-D matrix which records the labels of the HSI

III. EXPERIMENTS
A. Data Set Description

Three hyperspectral data sets collected by different instru-
ments were used in the experiments. The first scene was gath-
ered by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor on June 12, 1992, over the Indian Pines test
site in Northwestern Indiana, and consists of 145 x 145 pixels

and 224 spectral reflectance bands in the wavelength range
of 0.4-2.0 pm. The false-color composite of the Indian Pines
image is shown in Fig. 3(a). We also reduced the number
of bands to 200, by removing bands covering the regions of
water absorption: [104-108], [150-163], and 220. The spatial
resolution for this image is about 20 m. This image contains
ten ground-truth classes, and the numbers of the reference data
and the corresponding visual map are shown in Table I and
Fig. 3(b), respectively. This data set is the most widely used
data set for testing the accuracy of hyperspectral classification
algorithms. It is a challenging task, since some of the classes
are highly mixed with quite similar spectral signatures.

The second scene was acquired by the Reflective Optics
Systems Imaging Spectrometer (ROSIS) sensor over Pavia
University, in northern Italy. It consists of 610 x 610 pixels and
115 spectral reflectance bands. We selected 103 of the bands
and cut a patch sized 610 x 340. The false-color composite
of the Pavia University image is shown in Fig. 4(a). The
geometric resolution of this image is 1.3 m. This image contains
nine reference classes, and details of the quantities and the
corresponding visual map are shown in Table II and Fig. 4(b),
respectively.

The final image was a part of an airborne hyperspectral data
flight line over the Washington DC Mall, which was acquired
by the Hyperspectral Digital Image Collection Experiment
(HYDICE) sensor, and was provided with the permission of
the Spectral Information Technology Application Center of
Virginia, who was responsible for its collection. The sensor sys-
tem used in this case measured the pixel response in 210 bands
in the 0.4-2.4-pm region of the visible and infrared spectrum.
Bands in the 0.9- and 1.4-pm regions, where the atmosphere is
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TABLE I
REFERENCE INFORMATION, CLASSIFICATION ACCURACY (%), AND RUNNING TIME (IN SECONDS) FOR THE INDIAN PINES IMAGE WITH THE TEST SET
CLASS SVM-  SVM- SVM- SVM-  GCK-  GCK- MNFL MNFL ~ MTJS MTJS JCRC- SMTL
Name Num. VS VS-Pp CK CK-P MLR  MLR-P -P RC RC-P MTL  JSRC

Corn-notill 1428 58.01 69.89 5493 70.63 65.37 71.93 55.63 65.97 6321 7556 6841  81.15
Corn-mintill 830 61.60 71.84 63.50 80.23 8255 9135 64.17 73.67 7937  91.44 87.13  87.15
Grass-pasture 483 7890 83.64 8345 8579 85.33 86.66 86.70 87.78 8590  85.37 89.05  89.09
Grass-trees 730 91.13 9799 9139 97.81 90.74  96.49 92.39 95.17 97.64 9931 9432 99.42
Hay-windrowed 478 98.35 99.81 98.01 99.79 99.55 99.79 99.59 99.79 99.98  99.79 99.96  99.85
Soybean-notill 972 69.66 77.80 6720 73.93 79.16  84.96 71.87 79.46 77.15  83.42 8298  84.11
Soybean-mintill 2455 63.15 70.74 65.03 78.72 74.17 81.38 73.19 82.07 7547  84.45 8228  87.21
Soybean-clean 593 59.55 7741 5750  79.69 86.16  97.62 75.61 91.25 8340  96.84 9209  96.84
Woods 1265 86.58 87.54 8632 8945 93.16  95.82 88.07 89.45 85.67  88.90 9024  91.22
Bldg-grass-trees 386 81.81 9423 79.68 93.80 94.65 97.61 82.45 93.38 91.06  94.15 97.15 9734
71.14  79.10 71.07  82.06 81.19 87.04 75.56 82.81 79.99  87.28 85.06  89.15

_ Z
R R i [

0A +3.52  +£530 +£3.05 +4.70 +2.95 +2.44 +4.20 +541 +290 £3.27 +226 £2.30
P 0.669 0.760 0.667 0.793 0.784 0.851 0.719 0.802 0.770  0.853 0.828  0.875
+0.040 +0.059 +0.035 +0.054 +0.034 +0.028 +0.047 +0.061 +0.033 +0.037 +0.026 +0.026

Time 0.837 1.047 0.710 00911 4.332 4.570 0.325 0.614 19958 20.193 91.940 1.551

Asphalt
I Meadows
" Gravel
B Trees
I Metal sheet

I srick
Shadows

Fig. 4. Classification results for the Pavia University image: (a) SVM-VS, (b) SVM-CK, (c) GCK-MLR, (d) MNFL, (e¢) MTJSRC, (f) SVM-VS-P, (g) SVM-CK-P,
(h) GCK-MLR-P, (i) MNFL-P, (j) MTISRC-P, (k) JCRC-MTL, (1) SMTLIJSRC, (m) reference set, and (n) false-color image (R: 102, G: 56, B: 31).
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(IN SECONDS) FOR THE PAVIA UNIVERSITY IMAGE WITH THE TEST SET

TABLE 11
REFERENCE INFORMATION, CLASSIFICATION ACCURACY (%), AND RUNNING TIME

5345

CLAsS SVM-  SVM-  SVM- SVM-  GCK-  GCK- . MNFL  MTJS  MTIS JCRC- SMIL

No. Name Num. | VS VS-P  CK CK-P MLR MLR-P P RC RC-P MTL  JSRC
1 Asphalt 6631 | 7995 8699 8495 9290 9005 9320 90.69 9543 8861 9623 9376 96.10
2 Meadows 18649 | 74.81 7998 7644 7864 6606 7732 8886  91.07 9331 9454 9404 9574
3 Gravel 2099 | 7820 8786  91.80 98.56 9406  98.58 9227  96.18 9521 9657 9645 97.77
4 Trees 3064 | 9497 8948 9583 9224 9338 8491 9384 8631 9542 9139 9285 92.16
5 Metal sheet 1345 | 99.49 9858  99.35 9835 9971 9880  99.66 9844 9990  98.80  99.99 99.22
6 Bare soil 5029 | 7582 8179 6709 6971 7341  89.08 96.64  98.96 9638  99.97 9821 99.86
7 Bitumen 1330 | 9586  98.03 9595 9871 9487 9886 99.86 9970 9945  99.59  99.90  99.56
8 Brick 3682 | 80.77 8930 8782 9266 9141  97.02 9144 9519 9538 9812 9736 97.43
9 Asphalt 6631 | 9978 9237  97.99 9415  98.66  85.18 8037  78.84 98.05 9438 9853 89.43
on 7982 83.09 8157 8453 7881 8522 9129 9317 9386 9591 9527 96.36

4238 4280 419 423 £3.16 459 4237 4244  £196  £181  £196 +1.46

; 0743 0784 0764 0801 0735 0814 0887 0911 0920 0946 0938  0.952

£0.027 0033 £0.052 +0.053 +0.037 +0.054 0.030 +0.031 £0.025 +0.023 +0.025 +0.019

Time 616 1015 251 520 3625 4212 08903 418 19372 196.86 443.02 20.49

Fig. 5. Classification results for the Washington DC image: (a) SVM-VS, (b) SVM-CK, (c) GCK-MLR, (d) MNFL, (e) MTISRC, (f) SVM-VS-P, (g) SVM-CK-P,
(h) GCK-MLR-P, (i) MNFL-P, (j) MTJSRC-P, (k) JCRC-MTL, (1) SMTLIJSRC, (m) reference set, and (n) false-color image (R: 63, G: 52, B: 36).

opaque, have been omitted from the data set, leaving 191 bands.
The data set contains 250 scan lines, with 307 pixels in each
scan line. The false-color composite of the Washington DC im-
age is shown in Fig. 5(a). This image contains seven reference
classes, as shown in Table IV. This data set is challenging due
to its complicated spatial distribution.

B. Experimental Setting

The goal of the experiments was to investigate the effec-
tiveness of the proposed multiple-feature fusion algorithm for
the classification of hyperspectral data sets. For the multiple-
feature extraction, we utilized three meaningful and widely
used features for HSI analysis: 1) the spectral value feature;
2) the Gabor texture feature; and 3) the extended morphological
attribute profile (EMAP) feature. For each data set, the detailed

parameter settings of each spatial feature followed the specific
guidelines [15], [21].

Based on these multiple features, a number of state-of-the-
art multiple-feature fusion algorithms in the literature were
taken as benchmarks, as illustrated in Table III, in detail. In
addition, superpixel segmentation, as described in Section II-A,
was utilized as a postprocessing step for each classifier that
does not utilize a spatial prior, for a fair comparison [51].
It should be noted that all the SVM-related algorithms were
implemented with the help of the LibSVM [52] package, which
utilizes C++ software to speed up the process. For each data set,
we randomly selected ten pixels for each class as the training
samples, and the rest as the test samples from the reference data
to validate the performances. The range of the regularization
parameters for the tenfold cross-validation was from 1071 to
1072, and the number of superpixels was empirically varied
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TABLE III
CLASSIFICATION APPROACHES IN THE COMPARISON FOR SECTION III-C

Acronym Description in short Linear/nonlinear Spatial  prior Manngr . of multiple-feature
or not combination
Standard SVM with a radial basis function (RBF) kernel, where
SVM-VS VS denotes the approach that stacks multiple features into an  Nonlinear No Vector stacking
“incremental” feature
SVM with RBF kernel, where CK denotes a composite kernel, . .
SVM-CK as in [27] (MLR) Nonlinear No Composite kernel
GCK-MLR MLR W].th a generalized composite kernel (GCK) to combine Nonlinear No Generalized composite kernel
the multiple features [27]
MNEL A regularization-free multiple-feature learning method based on Nonlinear No Vector stacking
MLR [18]
. . . Sparse (collaborative)
Class-level sparsity constraint on the representations across . . .
MTLISRC multiple features, which is also named SRC-MTL in [21] Lincar No Ir:srr:is:;tatlon-based multi-task
Assuming both similarity for labeling and dissimilarity for the Neighborhood  Sparse (collaborative)
JCRC-MTL  pixel description between multiple features, as well as some Linear contextual representation-based multi-task
contextual prior in the spatial domain [21] smoothing learning
. . . Sparse (collaborative)
SMTLIJSRC The proposed superpixel-based algorithm, which can be scen as Linear Superpixel representation-based multi-task

MTLJSRC when each superpixel has been degraded into pixels

learning

Addition: For the first five algorithms that do not utilize a spatial prior, the superpixel segmentation, as in Section II.A, can be utilized as a
post-processing step. Taking “SVM-VS™ as an example, we label the associated approach as “SVM-VS-P”.

TABLE IV
REFERENCE INFORMATION, CLASSIFICATION ACCURACY (%), AND RUNNING TIME
(IN SECONDS) FOR THE WASHINGTON DC IMAGE WITH THE TEST SET

CLAss SVM-  SVM-  SVM-  SVM-  GCK-  GCK- oo MNFL  MTJS  MTJS  JCRC-  SMTL

No. Name Num | VS VS-P  CK  CK-P MLR MLR-P P RC RC-P  MTL  JSRC
T Water 625 | 9515 9654 9354 9330 9540 9483 9771 9745 9818 9785 9810  98.21
2 Road 952 | 87.60 8946  93.68 9434 9480 9549 9567  96.87 9423 9563 9522  96.58
3 Roof 780 | 86.09  87.06 8321 8410 8148 8301 8214 8275 8382 8442 8469  86.5I
4 Trail 754 | 8410  83.66 9203 9152 90.99 9090 9551 9527 9497 9579  89.95  93.01
5 Shadow 764 | 9260 9182 9706 9556 9570 9479 9667 9576  97.14 9629 9023  97.59
6  Grass 725 | 9076  90.69 9355 9369 9757  97.65  92.06  92.17 9641 9671 9499 9731
7 Tree 745 | 9736 9590 9649 9524 9893 9782 9936 9857 9736 9631 9624  97.89
OA 9027 9052 9276 9254 9347 9346 9408 9409 9442 9461 9267 9522

1249 4245 198  £1.92 082 086 177  £159  £304 267 502  £191

p 0886 0889 0915 0913 0924 0923 0931 0931 0935 0937 0914  0.944

£0.029 +0.029 0023 0022 +0.010 0010 0021 +0.019 =036 0031 +0.059 =0.022

Time 222 6.63 1.26 5.54 751 1178 039 477 5852 6278 12953 2530

from /100 to W/10, where W is the total number of pixels
in the scene. The parameter settings for the other benchmark
classifiers were also selected by tenfold cross-validation from
a reasonable range. The classification accuracy values were
averaged over ten runs for each classifier to reduce the possible
bias induced by the random sampling. In the quality evaluation
tables, the overall accuracy (OA) is the ratio between the
correctly classified test pixels and the total number of test
samples. The kappa coefficient (k) is a robust measure of the
degree of agreement, and the classification accuracy of the
different classifiers with the test set for each class can be found
in the corresponding columns. All the experiments, except for
the SVM-related work, were carried out using MATLAB on a
personal computer with a single 17-3770K 3.50-GHz processor
and 32.0 GB of RAM.

C. Experimental Results

The thematic maps of the various classifiers are visually
shown in Figs. 3-5. For the test pixels, the average individual

labeling accuracy for each class, the average OA with the
associated standard deviation, and the average kappa coefficient
(k) with the standard deviation for the different classifiers are
shown in Tables I, II, and IV, respectively. The average running
times for the labeling of all the pixels in the scene are shown in
the bottom line of the quantitative evaluation tables.

It can be observed in Table I that the proposed SMTLJSRC
method yields the best accuracy and the most stable per-
formance. For these multiple-feature-based classifiers, it can
be first observed that the inferior accuracy of SVM-VS and
SVM-CK suggests the limitations of the pixel-based classifi-
cation methods without a spatial prior. With the postprocessing
step, the corresponding classification results are significantly
improved, which indicates the superiority of the segmentation
over the neighborhood smoothing for such a homogenous
scene. That is to say, for such a homogenous image with subtle
spectral differences between classes, it is believed that the spa-
tial prior, which is utilized to stabilize the signal and alleviate
the “salt-and-pepper” phenomenon, is highly effective, as both
the quantitative evaluation and the thematic map indicate.
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For the three representation-based classifiers using spatial pri-
ors, including the neighborhood smoothing, the postprocessing,
and the proposed approach, it can be observed that JCRC-MTL
suffers from the “oversmoothing” problem, whereas the other
two methods can maintain the edge information in most cases.
Compared with the proposed approach, the postprocessing-
related subfigures suffer from blockwise misclassification, as
the pixelwise classifier cannot undertake major correction in a
local region. For the running time comparison, it can be seen
that MNFL is the fastest and that SVM-VS, SVM-CK, and
the proposed SMTISRC classifiers are comparable but a bit
slower than the former, and the other classifiers are the slowest.
Overall, it is concluded that the proposed SMTLJISRC is more
efficient than the other two representation-based classifiers,
with superior classification accuracy at the same time.

As both the Pavia University image and the Washington DC
image are hyperspectral and high-spatial-resolution remote
sensing images, the classification results with these multiple-
feature-based classifiers show some similarities. First, the spa-
tial features are more meaningful for this kind of remote sensing
data, and can effectively improve the classification result. Based
on the complementary multiple features, different learning ap-
proaches for utilizing these features can significantly affect the
discriminability. For both hyperspectral data sets, the VS-based
classifiers are generally inferior to the others, whereas the pro-
posed superpixel-level sparse representation-based multitask
learning mechanism shows the best performance, which is
consistent with the classification results of the Indian Pines
image. However, there are still some individual issues for these
two hyperspectral and high-spatial-resolution images. For the
Pavia University image, utilizing the contextual information
with a regular pattern (i.e., stacking neighboring pixels to the
test pixel together with an equal weight) is still useful, as
each parcel in the scene covers tens of pixels at the least. The
optimal neighborhood size of JCRC-MTL for classifying the
Pavia University image is 3 x 3 (as fully analyzed in [21]),
and the “oversmoothing” problem is not significant. In view of
this, JCRC-MTL is superior to MTLJSRC, and is comparable to
MTLIJSRC-P with this image. However, for the Washington DC
image, the spatial structure of each parcel is more complicated,
and the contextual prior utilized in JCRC-MTL imports some
pixels in different classes as “fake assistance,” which reduces
the discriminability, as shown in Table IV. Meanwhile, as the
desired size of superpixels in the Washington DC image is
small, the running time of the proposed approach is somewhat
longer than for the MLR-related approach, due to the compli-
cated spatial structure. For both data sets, it is still suggested
that the proposed spatial-prior-related algorithm shows a more
efficient and superior performance.

D. Analysis of Superpixel-Related Issues

Here, the superiority of the superpixel CR and the rela-
tionship between the computational cost and the superpixel
segmentation scale is analyzed.

Fig. 6 presents the effect of the superpixel size on the perfor-
mance of the proposed method. Considering the complicated
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Fig. 6. Classification results versus different superpixel scales for the
Washington DC image.

TABLE V
CLASSIFICATION APPROACHES IN THE COMPARISON FOR
THE ANALYSIS OF THE ROLE OF THE SUPERPIXEL CR

ISCRC-VS

1) Same segmentation step.
Similarity 2) Same classification rule as  2) Same classification rule as

SMTLJSRC JCRC-MTL

1) It relaxes the class-level 1) Stacking pixels in the

sparsity constraint in (9) with a segmentation parcel as a set, it is
a matrix form of MTLISRC,
which can be found in [39], and
each pixel contributes equally in
the classification step
2) Pixel set joint representation
based multi-task learning

MTLIJSRC-C
1) Same segmentation step.

Acronym

non-sparsity Ez norm induced

regularization, and the details
can be found in [38]

2) Vector stacking multiple
features of a superpixel

3) Each feature is separable,
and there is no interaction
between features

Dis-
similarity

spatial structure, the Washington DC image was utilized here to
demonstrate the relationships. The experimental setting was the
same as before, and the parameters were set by cross-validation.
In this figure, the horizontal axis indicates the number of super-
pixels in the scene, the vertical axis shows the corresponding
average running time for ten independent trials, and the color of
each dot shows the associated average OA. As shown in Fig. 6,
with the growth in the number of superpixels in the scene, the
running time increases, and more superpixels become pure. For
the classification accuracy, the plot rises quickly and reaches a
maximum point and then remains relatively stable with only a
tiny fluctuation. That is to say, while a desirable classification
accuracy calls for oversegmentation of the scene, there is some
tradeoff between the number of superpixels in the scene and
the computational cost, which is due to the complexity of the
land-cover distribution.

Although the oversegmentation is effective, it is believed that
both mixed superpixels and pure superpixels can exist in the
hyperspectral scene, in practice, where the former are made
up of several classes of pixels, and the latter consist of pixels
from a single class. To allow a comparison with the proposed
algorithm, two benchmark classifiers were utilized, and a brief
introduction to them can be found in Table V.

To demonstrate the performance of the proposed classi-
fier, some representative superpixels under different scales
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Fig. 8. Normalized residuals for each class for two superpixels in the Pavia University image. Detailed locations and labels of the involved pixels are shown in
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class 6, and limited pixels belonging to class 5. The lower subfigures represent a pure superpixel, which belongs to class 9. (b) ISCRC-VS for the mixed
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pure superpixel, and (g) SMTLISRC for the pure superpixel.

(i.e., we manually set the undersegmentation and overseg-
mentation cases) for each HSI were extracted as examples.
For the residual-related subfigures in Figs. 7-9, the horizontal
axis indicates the class number, the vertical axis shows the
corresponding residual of the algorithms, and the green dotted
line refers to the smallest normalized residual of the classes. In
each figure, the upper subfigures represent a mixed superpixel,
and the lower subfigures represent a pure superpixel. All the
parameters of these classifiers were optimized by tenfold cross-
validation.

For the examples in the homogenous Indian Pines image, the
upper superpixel is a mixture of corn-notill pixels (the first
class) with rare highly mixed pixels without label in the ref-
erence map, and the superpixel belonging to class 4 is a pure

grass-trees pixel. As the corn-notill pixels dominate the mixed
superpixel, labeling it as neither class 2 nor class 10 is more
appropriate. It is shown in Fig. 7(b)—(d) that the proposed
algorithm and MTLJSRC-C can successfully fulfill the label-
ing task, whereas the ISCRC-VS method fails. For the pure
instance, similar results can also be found in Fig. 7(b)—(d).
The performances of the superpixels in the Pavia University
data set are similar to those of the superpixels in the Indian
Pines image. In view of the residual distribution, the superiority
of the proposed approach is more significant. That is to say,
compared with the other two classifiers, it is believed that both
the class-level sparsity for multiple features and the superpixel
CR can improve the performance of the sparse (collaborative)
representation-based classifier.
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Fig. 10. Classification accuracy versus the regularization parameters of the proposed approach, with the three HSIs: (a) parameter A and (b) parameter 7.

To sum up, several conclusions can be made from the clas-
sification results of the three hyperspectral data sets. First, in
view of the recognition accuracy, it is believed that the proposed
superpixel-level sparse representation-based multitask learning
is more effective than the other multiple-feature combination
techniques. The spatial prior that is utilized in the superpixel
segmentation approach is more stable and superior than the con-
textual prior used in the current pixel representation-based
multitask learning classifiers. Second, for the time complexity
issue, it can be seen that the proposed superpixel-oriented
approach is approximately comparable to the MLR-related
multiple-feature learning approach, and is much more efficient
than the pixel-level representation multitask learning approach.
Note that, as the SVM-related classifiers were implemented
with the help of the LibSVM [52] package, which utilizes
C++ software to speed up the process, they should not be

included in the comparison, for fairness. Third, there is some
tradeoff between the computational cost and the scale of the
segmentation, which is closely related to the complexity of the
land cover.

E. Parameter Analysis

The final subsection examines the effect of the parameters
on the classification performance of the proposed algorithm,
with the three HSIs. We fixed the other parameters as the
corresponding optimal and focused on one specific parameter
at a time. The experiments for A and 1 were repeated ten times
using different randomly chosen training sets to reduce the
possible bias induced by the random sampling. The horizontal
axis shown in each subfigure in Fig. 10 is the value range of the
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corresponding parameter, while the vertical axis shows the OA
(%) of the different data sets.

In Fig. 10(a), it can be observed that the performances of all
the hyperspectral data sets are stable with some small variations
as the regularization parameter A increases. Since A makes a
tradeoff between the data fidelity term and the prior term of
the superpixel adaptive representation, it is demonstrated that
the proposed algorithm is quite robust to this parameter over a
wide range of values.

In Fig. 10(b), the experimental results for all the data sets
generally improve slowly as the regularization parameter 7
increases, and then begin to decrease after the maximum value.
It is found that once 7 exceeds a certain threshold, the final
class-level sparsity term will dominate the optimization, and the
discriminative power of the classification rule that minimizes
the representative residual of a single class will be weakened,
as the data fidelity term may work in vain.

IV. CONCLUSION

In this paper, we have proposed an efficient SMTISRC
algorithm for hyperspectral imagery. In the proposed approach,
an HSI superpixel is represented by an adaptive combination
of the pixels in a parcel, and class-level sparsity is utilized to
simultaneously integrate the multiple features into a uniform
classification framework. The main advantage of the proposed
SMTLISRC is that the superiorities of the multiple-feature
combination approach, the spatial prior utilization, and the
computational complexity can be maintained at the same time.
The extensive experimental results clearly indicate that the
proposed method can achieve competitive classification results.

However, the proposed multitask learning framework could
still be further improved in certain aspects. For instance, the
segmentation step is independent of the following multitask
learning, and the current framework only considers a linear
model. Therefore, our future work will focus on how to build
a uniform framework to simultaneously cover the nonlinear
segmentation, extraction, representation, and recognition tasks.
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