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 A B S T R A C T

Recent advances in deep learning have enhanced crop classification, yet current research still underutilizes the 
hierarchical information of crop types, limiting classification accuracy. As categories are subdivided, the sample 
imbalance intensifies, posing a challenge to fine classification of crops. To address this, we propose the Class
Semantic Guided Hierarchical Segmentation Framework (SemHi framework) for satellite image time series 
(SITS) crop classification. This framework effectively leverages the hierarchical information in the class system 
and outputs classification results at each level in an end-to-end manner. The SemHi framework comprises 
four modules: (1) The backbone that learns the spatio-temporal features; (2) The label embedding module, 
a core component that guides the feature learning through the fusion of hierarchical structure and textual 
representations; (3) The prototype distance measurement module to enhance class separation and reduce 
within-class variation; (4) The hierarchical logic regularization module, which enables multi-granularity crop 
predictions and strengthens the hierarchical logic between them. The validation results on the public crop 
classification dataset show that the SemHi framework with multi-dimensional fusion of spatio-temporal-text 
information significantly improves the performance of all state-of-the-art (SOTA) networks on fine-grained 
classes, with an overall accuracy improvement of 0.48% to 13.86%. Furthermore, experiments on a remote 
sensing classification dataset demonstrate the framework’s generality and potential for broader applications in 
remote sensing tasks.
1. Introduction

The world’s growing population, rapid urban expansion, and climate 
change present challenges to agricultural and uncultivated lands. Crop 
mapping is helpful in making agricultural decisions to promote the 
harmonious development of local agricultural economies and ecolo-
gies (Futerman et al., 2023; Li et al., 2024).

Remote sensing has unique advantages such as fast revisit, low cost 
and the consistency and comparability of the generated crop distribu-
tion maps, which has become a popular and effective means of crop 
classification and mapping (Bueno et al., 2023). From a methodological 
perspective, remote sensing-based crop classification includes tradi-
tional machine learning and deep learning (DL) approaches. Traditional 
models, such as Random Forest (RF) and Support Vector Machine 
(SVM), rely on handcrafted spectral indices (e.g., NDVI, NDWI) to 
extract features from time-series imagery (Hu et al., 2021; Hao et al., 
2015; Shang et al., 2015), but face challenges in complex farmland en-
vironments, diverse study areas and crop types due to the lack of spatial 
information. In contrast, DL models automatically extract multi-scale 
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and multi-modal features, reducing reliance on handcrafted features 
while achieving strong generalization capabilities on large-scale remote 
sensing datasets (Zheng et al., 2024). Currently, deep learning methods 
in crop classification mainly fall into two categories: methods that com-
bine temporal and spectral characteristics, and methods that compre-
hensively consider spatial–temporal-spectral characteristics. The first 
category utilizes the temporal and spectral features of single pixels to 
map them into the semantic space of crop classes. The second category 
uses satellite image time series (SITS) to learn features, further inte-
grating spatial information to achieve better crop classification. Rep-
resentative state-of-the-art (SOTA) works include convolutional neural 
networks, such as UNet3D and UNet3Df (Tarasiou et al., 2022), convo-
lutional recurrent neural networks, such as ConvSTAR (Turkoglu et al., 
2021) and ConvGRU (Rußwurm and Körner, 2018), ViT-based net-
works (Dosovitskiy et al., 2020), such as Temporo-Spatial Vision Trans-
former (TSViT) (Tarasiou et al., 2023) and Swin UNEt Transformer(Swi-
nUNETR) (Tang et al., 2022). Compared to the first category, the 
second utilizes the fusion of spatial, temporal, and spectral features to 
https://doi.org/10.1016/j.jag.2025.104471
Received 18 November 2024; Received in revised form 15 February 2025; Accepte
vailable online 22 March 2025 
569-8432/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/ ). 
d 6 March 2025

icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/jag
https://www.elsevier.com/locate/jag
https://orcid.org/0009-0000-1353-2610
https://orcid.org/0000-0003-1691-9743
mailto:zjjerica@whu.edu.cn
mailto:jiangjie@bucea.edu.cn
https://doi.org/10.1016/j.jag.2025.104471
https://doi.org/10.1016/j.jag.2025.104471
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jag.2025.104471&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


X. Li et al. International Journal of Applied Earth Observation and Geoinformation 139 (2025) 104471 
capture a more comprehensive understanding of crop growth dynamics. 
Overall, although deep learning is widely used in crop classification, 
these methods fall short in incorporating the fusion of textual semantics 
and hierarchical structures within the crop classification system. This 
limits their capacity to capture nuanced crop relationships and prevents 
them from achieving a top-down understanding of the semantics and 
hierarchy of crop species.

Hierarchical Multi-Label Classification (HMC) is an effective learn-
ing paradigm that embeds priori knowledge of class hierarchy and 
can interpret multi-level semantics in an integrated manner. Recently, 
a number of studies (Wang et al., 2022; Sulla-Menashe et al., 2019; 
Kang et al., 2024) have shown that the utilization of hierarchical infor-
mation, namely Hierarchical Multi-Label Image Classification (HMIC), 
is of great help in improving image classification. According to the 
utilization of hierarchical information, HMIC methods based on deep 
learning usually adopt two approaches, designing new network struc-
tures or new loss functions. The first approach attempts to directly 
embed class hierarchy information in the network structure, usually 
using multiple branches to output all predictions from coarse to fine (Li 
et al., 2020a). However, this approach is relatively complex, causing 
the training process to be less flexible, and classification errors at 
high levels can propagate to the lower levels (Sinha et al., 2018). 
The other approach embeds hierarchical constraints of classes into the 
optimization objective by constructing a specific loss function (Chen 
and Qian, 2022), in order to obtain prediction results at different 
levels. These methods avoid the extensive experimentation and tuning 
required to build complex multi-branch networks. Based on this, we 
adopt the second approach, i.e., optimizing the global training logic by 
designing multiple loss functions to ensure that the prediction results 
match the class hierarchy.

Existing HMIC studies in remote sensing heavily rely on rule-
based designs and prior knowledge, primarily using traditional machine 
learning methods such as support vector machines (SVM) and decision 
trees, etc (Jiao et al., 2019). In contrast, HMIC approaches with deep 
learning are limited due to the high computational costs of segmenta-
tion tasks and the complexity of designing pixel-level hierarchical loss 
functions. Additionally, existing remote sensing image interpretation 
often embeds semantic hierarchy from the perspective of images, 
lacking exploration of semantic hierarchy structures in class systems 
(i.e. natural language). Moreover, due to the limitation of sample 
distribution along the hierarchy, the number of samples at the fine level 
is much less than that at the coarse level (Chen and Qian, 2022). Given 
the challenges in fine-grained crop classification, especially with sam-
ple imbalance and complex class hierarchies, we propose a framework 
that leverages spatio-temporal-text fusion. This fusion combines spatial 
patterns, temporal dynamics, and textual knowledge of crop classes, 
providing a more robust approach to capturing detailed semantic 
relationships. We also introduce metric-based prototype learning (Goel 
et al., 2019) to correct errors caused by large intra-class variance and 
small inter-class differences in features.

In summary, conventional DL methods overlook the hierarchical 
structure of classification systems, while DL methods for HMIC are 
not well-suited for segmentation tasks and do not incorporate textual 
semantics. Therefore, we propose an innovative framework integrat-
ing spatio-temporal-text information with feature enhancement and 
multi-level output. Six SOTA networks, including SwinUNETR, TSViT, 
ConvGRU, ConvSTAR, UNet3Df and UNet3D, are used as backbone 
models. The main contributions of this work are as follows:

(1) The Class Semantic Guided Hierarchical Segmentation Frame-
work (SemHi framework) is proposed, integrating and utilizing crops’ 
spatio-temporal information and class hierarchy. This framework
adapts to various semantic segmentation networks, providing crop 
predictions at all granularity levels for each pixel in accordance with 
their logical relationships.

(2) Considering the hierarchical characteristics of crop classes, we 
propose the label embedding module. This module encodes the hier-
archical structure and text of crop classes to obtain hierarchy-aware 
2 
label representation. Then this representation is brought closer to the 
deep features derived from encoder, to facilitate the class semantic and 
structure guidance for the network.

(3) To improve the separability of crops in fine-grained classes, 
we propose the prototype distance measurement module to measure 
the distance between prototypes of deep features extracted by network 
decoder and make features more separable after each iteration through 
loss functions.

2. Methodology

We aim to adapt different networks suitable for HMIC tasks and 
use hierarchical structures to generate features and predictions that 
conform to logical relationships, thereby improving the segmentation 
performance. Based on this goal, we propose the SemHi framework 
for crop classification. In this section, a detailed introduction to the 
composition of proposed framework is provided (Fig.  1).

The proposed SemHi framework consists of the semantic segmen-
tation backbone network (left column of Fig.  1) for fusing spatial 
and temporal features, the label embedding module (A), the prototype 
distance measurement module (B), and the hierarchical logic regular-
ization module (C). During training, the input includes images, class 
hierarchy, and labels (I, II, III in Fig.  1), but in inference, only images 
and class hierarchy are needed to output multi-level classification 
results.

2.1. Backbone

The SemHi framework can adapt to various DL semantic segmenta-
tion models. Given Transformer’s adaptability to large-scale data, we 
select SwinUNETR as the backbone. As shown in Fig.  2, we retain 
three of the four original SwinUNETR stages due to the small input 
size, outputting the encoder deepest feature S, decoder deepest feature
F, and the classification probability map P. The SwinUNETR encoder 
utilizes (S)W-MSA (Liu et al., 2021) to compute time-space-spectral self-
attention, capturing long-range dependencies. Given an input image of 
C × T × H × W, where C, T, H and W represent the number of bands, 
time sequence, height and width of image, respectively, the encoder 
extracts hierarchical features with the resolution of C𝑚 × T/2𝑚 × H/2𝑚 ×
W/2𝑚, where 𝑚 ∈ {1,2,3}. C1, C2 and C3 are 96, 192, 384, respectively. 
These include high-resolution shallow features and low-resolution deep 
features, enhancing hierarchical crop representation and classification 
performance (Zhao et al., 2017). The SwinUNETR decoder, based on 
the U-Net skip connection structure (Ronneberger et al., 2015), fuses 
shallow features via deconvolution, reconstructing F while preserving 
the original input spatial size C′ × T × H × W, where C′ = C1 + C.

2.2. Label embedding module

In the HMIC tasks, it is necessary to abstract and integrate concepts 
of different levels into the network, i.e. hierarchical encoding (Ma 
et al., 2022). Hierarchical encoding typically organizes data samples 
(such as words or images) into a high-dimensional space, where feature 
distances represent their semantic similarity (Nickel and Kiela, 2017). 
Usually, natural language has a high degree of summarization and 
conciseness, with the most intuitive semantic information (Kowsari 
et al., 2017). For instance, in a system consisting of coarse-grained 
classes like grains and fruits, as well as fine-grained classes like rice and
apple, people can realize that the correlation between grains and rice
is stronger, while the correlation between grains and fruits or apple is 
weaker. From this, we refer that encoding the class name and hierarchy 
structure could guide crop classification. Therefore, we embed the class 
text information and hierarchical structure information on the labels 
into the process of feature extraction by the backbone network to assist 
in classification. Our label embedding module is shown in Fig.  3.
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Fig. 1. Structure of the proposed SemHi framework. The image (I) has three outputs after passing through the left-side backbone which are encoder deepest feature 𝑆, decoder 
deepest feature 𝐹 and classification probability map 𝑃 . 𝑆, 𝐹 , 𝑃 corresponds to the label embedding module (A), prototype distance measurement module (B), and hierarchical 
logic regularization module (C). The number 1–3 on label (III) indicates the class hierarchy from coarse to fine, corresponding to the light to dark colors in the class hierarchy 
(II). Blocks of the same color in B represent similar feature and different colors represent different types of feature. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
Fig. 2. SwinUNETR Backbone. (a) The structure of SwinUNETR. (b) 3D Patch Embedding which is used to divide the input image into small patches and encode them. (c) 
SwinUNETR block mainly composed of Layer Norm (LN), (Shifted) Window Multi-head Self-Attention ((S)W-MSA), and Multilayer Perceptron (MLP). (d) 3D Patch Merging, used 
to reduce the size of feature maps. The purple arrows represent inputs and outputs. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
The inputs of the label embedding module are the class hierarchy 
and fine-grained label. For the class hierarchy represented by a tree, 
3 
we encode it by name embedding and spatial embedding. Firstly, we 
use a BERT encoder (Devlin et al., 2019) to encode the names of all 
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Fig. 3. The structure of the label embedding module, including class hierarchy processing and label processing. First, class hierarchy is processed by encoding the hierarchy 
structure and class name separately to obtain spatial_emb and name_emb. Then, they are fused through a cross-attention layer to obtain the embedded classes. Next, fine-grained 
label is processed by replacing each pixel value with embedded classes. Finally, the replaced 3D label passes through an average pooling layer to obtain the embedded label feature 
as the output of this module. Bold represents input or output.
class nodes (e.g. N1 to N9) and obtain the embedded name information 
(name_emb ∈ R𝑛×𝑑) as the node feature. 𝑛 represents the number of all 
nodes in the class hierarchy, and 𝑑 represents the length of the word 
vector output by BERT. Secondly, we encode the hierarchy structure 
to get the embedded spatial information (spatial_emb ∈ R𝑛×𝑛) which 
is composed of a distance matrix (𝑀𝐷 ∈ R𝑛×𝑛) and an edge matrix 
(𝑀𝐸 ∈ 𝑎×𝑛×𝑛). 𝑎 represents the maximum number of different nodes 
on branches of two classes, and also represents the maximum length 
of class name. In Fig.  3 the darker the blue color on 𝑀𝐷, the farther 
the distance between the two nodes is, and the gray color on 𝑀𝐸
indicates that there is no connection between two nodes. We then fuse 
the 𝑛𝑎𝑚𝑒_𝑒𝑚𝑏 and 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑒𝑚𝑏 through a cross-attention layer to obtain 
the embedded classes Fig.  4.

The above embedding processes can be defined as: 
𝐶𝑒 = CrossAttention(𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑒𝑚𝑏, 𝑛𝑎𝑚𝑒_𝑒𝑚𝑏) (1)

𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑒𝑚𝑏 = 𝑀𝐷 + (
𝑎
∑

𝑖=1
𝑀𝐸 (𝑖))∕𝑎 (2)

𝑛𝑎𝑚𝑒_𝑒𝑚𝑏 =
𝑎
∑

𝑖=1
Concat(BERT(𝑛𝑜𝑑𝑒_𝑡𝑒𝑥𝑡)) (3)

Where 𝐶𝑒 ∈ R𝑛×𝑑 represents the embedded classes which encodes 
all class nodes into features containing class name and hierarchical 
structure information. Subsequently, the vectors of all class names from 
BERT encoder are concatenated. 𝑀𝐷 stores the distance between any 
two nodes and 𝑀  records the edge information passed from one node 
𝐸

4 
to another. Taking N4 and N6 nodes in Fig.  3 as an example, the 
distance from N4 to its parent node N1, from N1 to N2, and from N2 
to N6 is 1. Therefore, the distance between N4 and N6 nodes is 3 and 
the corresponding vector 𝑚𝑑

4,6 = 3 in 𝑀𝐷. The edge information passing 
from N4 to N6 is N4 to N1, N1 to N2, and N2 to N6, and hence, the 
corresponding vector 𝑚𝑒

4,6 = [4, 1, 2, 6, 0, 0, 0, 0, 0, 0] in 𝑀𝐸 , with a length 
of 𝑎. 𝑀𝐷 and 𝑀𝐸 are both symmetric matrices.

In label processing, the pixel values of the fine-grained label of size 
H × W are replaced by the vector of the corresponding class in 𝐶𝑒. As 
a result, the two-dimensional label is embedded into three-dimensional 
representations (RH×W → R𝑑×H×W). Afterwards, it is sampled through 
an average pooling layer, with the same down-sampling factor of the 
encoder deepest feature 𝑆 to obtain the embedded label feature as the 
output of the module, represented by 𝐸 ∈ R𝑑×H′×W′ , with H′ × W′ as 
the spatial size of 𝑆: 
H′ = H∕2m,W′ = W∕2m (4)

Where m represents the down-sampling factor of the encoder.
The rationale for selecting the BERT encoder is discussed in Sec-

tion 4.3.

2.3. Prototype distance measurement module

Fine-grained classes have significantly fewer samples than coarse-
grained ones, increasing sample imbalance and weakening model learn-
ing. Accordingly, we propose the prototype distance measurement 
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Fig. 4. Cross attention calculation process of 𝑛𝑎𝑚𝑒_𝑒𝑚𝑏 and 𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑒𝑚𝑏. This module 
mainly consists of linear layers, matrix multiplication operations (MatMul), a scaling 
step (divided by √𝑑) and a softmax activation function. Q, K, V are the outputs of 
three linear layers, representing the Query, Key, and Value in the Attention mechanism.

module to enhance feature separability. For the deep features of de-
coder, pixel feature vectors with the same label can be regard as 
positive samples, while those with different labels are negative samples. 
After feature extraction and aggregation through the backbone, positive 
samples should be as similar as possible, while negative samples should 
be further apart in the representation space. Assuming that there are 𝑘
samples in a batch of data, with corresponding decoder deepest features 
and fine-grained labels are 𝐹𝑖 ∈ RC′×H×W(𝑖 = 1,… , 𝑘), 𝑌𝑖 ∈ RH×W(𝑖 =
1,… , 𝑘), where C′ represents the number of channels. The mean feature 
vector with a label of 𝑗 (𝑗 = 1,… , 𝑁) on the decoder deepest feature 
𝐹𝑖 is presented by 𝑓 𝑗

𝑖 ∈ R𝐶 (𝑖 = 1,… , 𝑘). Then, the set {𝑓 𝑗
1 ,… , 𝑓 𝑗

𝑘} is 
further averaged to obtain the feature prototype of class 𝑗, denoted by 
𝑓 𝑗 .

We consider the mean feature vector of the same class in 𝐹  as 
positive samples and the prototype of different classes in 𝐹  as neg-
ative samples. For example, the set of positive samples for class 𝑗 is 
{𝑓 𝑗

1 ,… , 𝑓 𝑗
𝑘}, and the set of negative samples is {𝑓 1,… , 𝑓𝑁}, which 

includes the prototype of feature vectors for all classes except for 𝑓 𝑗 . 
After obtaining the sets of positive and negative samples, the intra-class 
distance and inter-class distance of each class can be calculated. We use 
Euclidean Distance to measure the similarity between feature vectors: 

𝑑𝑗𝑖𝑛𝑡𝑟𝑎 =
1

𝑘 − 1

𝑘−1
∑

𝑖=1

√

(𝑓 𝑗
𝑖 − 𝑓 𝑗

𝑖+1)
2 (5)

𝑑𝑗𝑖𝑛𝑡𝑒𝑟 =
1

𝑁 − 1

𝑁
∑

𝑗′=1,𝑗′≠𝑗

√

(𝑓 𝑗′ − 𝑓 𝑗 )2 (6)

Where 𝑑𝑗𝑖𝑛𝑡𝑟𝑎 represents the intra-class distance of class 𝑗 and 𝑑
𝑗
𝑖𝑛𝑡𝑒𝑟

represents the inter-class distance between class 𝑗 and other classes.
After obtaining the intra-class distance and inter-class distance of 

each class, the constraints of the loss function can be further used 
to cluster similar features and disperse different features, thereby im-
proving the separability of deep features in the decoder. The overall 
structure of the prototype distance measurement module is shown in 
Fig.  5, which illustrates the above processes using two samples and four 
classes as example.
5 
2.4. Optimization objectives

The SemHi Framework has four main optimization objectives.
(1) Guide the encoder deepest feature 𝑆 to fuse class hierarchy and 

text information through the label embedding module, achieving the 
embedding of hierarchical concepts.

(2) Improve the separability of the decoder deepest feature 𝐹
through the prototype distance measurement module.

(3) Output classification results for each level in an end-to-end 
manner.

(4) Ensure that the classification results of each level conform to the 
hierarchical logical relationship.

For the first objective, the mean square error is used to guide 𝑆 to 
align with the embedded label feature 𝐸. 𝑆,𝐸 ∈ 𝑑×H′ ×W′, where 𝑑
represents the length of the word vector output by BERT and H′, W′

represent the height and width, respectively. The vector 𝑠𝑖 and 𝑒𝑖 in 𝑆
and 𝐸 (𝑠𝑖, 𝑒𝑖 ∈ R𝑑) can be calculated as follows: 

𝐿𝑒𝑚𝑏 =
1
𝑘

𝑘
∑

𝑖=1
(𝑠𝑖 − 𝑒𝑖)2 (7)

Where 𝐿𝑒𝑚𝑏 represents embedding loss, 𝑘 represents the number of 
samples. The optimization objective is 𝑓 ∶ 𝑠𝑖 → 𝑒𝑖, which guides the 
two features to be as similar as possible.

For the second objective, we obtain the intra-class distance 𝑑𝑖𝑛𝑡𝑟𝑎 =
{𝑑1𝑖𝑛𝑡𝑟𝑎,… , 𝑑𝑁𝑖𝑛𝑡𝑟𝑎} and inter-class distance 𝑑𝑖𝑛𝑡𝑒𝑟 = {𝑑1𝑖𝑛𝑡𝑒𝑟,… , 𝑑𝑁𝑖𝑛𝑡𝑒𝑟} of 
𝑁 classes through the prototype distance measurement module in the 
expectation of reducing the 𝑑𝑖𝑛𝑡𝑟𝑎 and increasing the 𝑑𝑖𝑛𝑡𝑒𝑟. Therefore, 
we construct the prototype loss 𝐿𝑝𝑟𝑜: 

𝐿𝑝𝑟𝑜 =
1
𝑁

𝑁
∑

𝑗=1
(𝑑𝑗𝑖𝑛𝑡𝑟𝑎∕𝑑

𝑗
𝑖𝑛𝑡𝑒𝑟) (8)

For the third objective, the probability of all class nodes are ob-
tained after passing through the backbone network. Therefore, the 
probability map of each level is activated by simply masking other 
nodes from different levels. Assuming there are 𝐿 levels in total, for 
level 𝑙 (𝑙 < 𝐿), the probability map 𝑃𝑙 is [𝑃𝑁𝑙−1

,… , 𝑃𝑁𝑙
], where 

[𝑁𝑙−1, 𝑁𝑙] represents the class numbers of level 𝑙 from 𝑁𝑙−1 to 𝑁𝑙. After 
activating the classification probability map for each level, the cross 
entropy loss is calculated: 

𝐿𝑙
𝑐𝑒 =

𝑘
∑

𝑖=1

𝑁𝑙
∑

𝑗=𝑁𝑙−1

𝛼𝑗𝑌
𝑗
𝑖 log(𝑃 𝑗

𝑖 ) (9)

𝐿𝑐𝑒 =
1
𝐿

𝐿
∑

𝑙=1
𝐿𝑙
𝑐𝑒 (10)

Where 𝑌  represents the label, 𝑃  represents the classification proba-
bility, 𝑘 is the number of samples and 𝛼𝑗 is the weighting of class 𝑗, 
ensuring that each class contributes the same share in the total loss. 
𝐿𝑐𝑒 represents the overall cross entropy loss.

Afterwards, the final classification result for each level can be 
obtained: 
𝑌𝑙 = argmax[𝑃𝑁𝑙−1

,… , 𝑃𝑁𝑙
] (11)

Where 𝑌𝑙 indicates the classification result at level 𝑙, and argmax 
expresses the operation of taking the index value with the highest 
probability.

For the last objective, hierarchical logical regularization is con-
ducted to check the logical consistency of the predictions between 
levels. Specifically, assuming L=3, the predictions should satisfy 𝑌3 ⊆
𝑌2, 𝑌2 ⊆ 𝑌1, 𝑌3 ⊆ 𝑌1. Let 𝑠 = [0, 1, 2, 3] be the number of items that meet 
the requirements and its corresponding loss value is 𝑣 = [3.1, 2.1, 1.1, 0]. 
The hyper parameter 𝑣 is empirically determined. Due to variations 
in the numerical ranges of loss terms, we adjust 𝑣 so that the initial 
value of logical loss is of a similar order of magnitude as the other loss 
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Fig. 5. The structure of the prototype distance measurement module. Different colors represent different classes. Circles represent the feature space, with single arrows indicating 
feature vectors, red double arrows for intra-class distances, and blue double arrows for inter-class distances. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
terms. This keeps loss components at a consistent scale, and stabilizes 
the optimization process. The logical loss is constructed as follows: 

𝐿𝑙𝑜𝑔 = 1
H ×W

∑

𝑣𝑖𝑗 (12)

Where 𝑣𝑖𝑗 represents the loss value of pixel (i, j).
Finally, our overall loss can be expressed as: 

𝐿𝑜𝑠𝑠 = 𝜆1𝐿𝑒𝑚𝑏 + 𝜆2𝐿𝑝𝑟𝑜 + 𝜆3𝐿𝑐𝑒 + 𝜆4𝐿𝑙𝑜𝑔 (13)

Where 𝜆 represents the weight of each type of loss.

3. Datasets

In this study, we employ both scene classification and pixel-level 
segmentation datasets to evaluate the framework’s versatility and ap-
plicability across different task levels. The scene classification dataset 
is used to assess the framework’s performance on scene-level classi-
fication tasks, thereby validating its adaptability across varying task 
granularities. The two crop segmentation datasets aid in evaluating 
the framework’s fine-grained classification capabilities in segmenta-
tion tasks under a multi-level fusion of spatial, temporal, and hier-
archical information. By selecting datasets spanning multiple tasks, 
this study demonstrates the model’s task adaptability and structural 
generalization capacity. Additionally, we evaluate text encoder perfor-
mance within the label embedding module using the scene classifica-
tion dataset, whose lower resolution and simpler label structure offer 
a preliminary validation of the selection of text encoder. This design 
provides insights into the framework’s architecture under reduced data 
and computational demands.

3.1. Crop segmentation datasets

The Sen4AgriNet dataset (Sykas et al., 2021) comprises Sentinel-2 
patches from Spain and France. After sorting and integrating, we obtain 
33 class nodes, including 7 primary nodes, 20 secondary nodes, and 25 
tertiary nodes, following the principle that each level of classification 
includes all nodes of that level and leaf nodes of coarser levels. Fig.  6 
shows the label tree for all classes used in this dataset. Sen4AgriNet 
includes a total of 225,000 SITS samples with a size of 366 × 366, 
each containing 30–50 time acquisitions and 13 spectral bands. We 
crop samples into 61 × 61 and resample the time series to 12 (taking 
the median of monthly observations), and then divide the dataset into 
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training, test and validation sets in a 7:2:1 ratio. Fig.  7 shows the true 
color composite images and their tertiary labels of this dataset.

The ZueriCrop dataset (Turkoglu et al., 2021) contains Sentinel-2 
images from the Zurich and Thurgau regions of Switzerland in 2019, 
including 58 crop types, with 5 primary class nodes, 14 secondary class 
nodes, and 48 tertiary class nodes. Fig.  8 shows the label tree of the 
ZueriCrop dataset. This dataset includes a total of 116,000 SITS samples 
with a size of 24 × 24, each containing 71 time acquisitions and 9 
spectral bands. This dataset is also divided into the training, test, and 
validation sets in a 7:2:1 ratio. Fig.  9 shows the true color composite 
images and their tertiary labels of this dataset.

These two datasets have unique properties, which make them ideal 
for evaluating the SemHi framework. First, they cover crop-growing 
regions across three countries, testing the model’s generalization across 
geographic variations. Second, the datasets differ in size – Sen4AgriNet 
is larger, while ZueriCrop is smaller – allowing for robustness eval-
uation across different scales. Finally, both datasets feature complex 
hierarchical class structures, which are essential for our framework and 
increase the challenge of fine-grained classification.

3.2. RS scene classification dataset

The SemHi framework can be applied to various DL networks, 
demonstrating its potential as a generic framework. To test its gen-
erality, we also conducted experiments on a remote sensing image 
classification dataset RSI-CB (Li et al., 2020b), which consists of mul-
tiple remote sensing scenes. This dataset is also used for comparative 
experiments of text encoders. The RSI-CB dataset contains a total of 42 
scene types, including 7 primary class nodes and 35 secondary class 
nodes. Each fine-grained class contains 198 to 1331 remote sensing 
images. RSI-CB consists of multiple data sources, with 3 bands and a 
size of 256 × 256, and resolutions ranging from 0.3–3 m. Each image 
has a corresponding coarse-grained and fine-grained label. This dataset 
is also divided into the training, test, and validation sets in a 7:2:1 
ratio. Fig.  10 shows the hierarchical structure of the RSI-CB and the 
proportion of each fine-grained class.

4. Experiments and results

4.1. Implementation details

The SemHi framework is implemented using PyTorch with Adaptive 
Moment Estimation (Adam) algorithm as the optimizer and a batch size 
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Fig. 6. Hierarchical classification architecture of the Sen4AgriNet dataset.
Fig. 7. True color composite images and tertiary labels in the Sen4AgriNet dataset. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
Fig. 8. Hierarchical classification architecture of the ZueriCrop dataset.
of 8. Initial learning rate is set to 0.0001 at the beginning of training, 
and then use cosine annealing to adjust the learning rate and regularize 
it with a weight decay of 10−6. The weights of multiple optimization 
objectives are set as 𝜆1 = 2, 𝜆2 = 4, 𝜆3 = 1, 𝜆4 = 3. To simplify weight 
tuning, we adopt an empirical weight adjustment approach (Eigen and 
Fergus, 2015). Using one loss term as a reference, we scale others 
to a similar magnitude for initial balance in optimization. During 
training, loss values adjust dynamically, preventing any single loss from 
dominating optimization, leading to more stable training and faster 
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convergence. Considering the computation cost, training epoch is set 
to 20 for Sen4AgriNet, 60 for ZueriCrop and 30 for RSI-CB.

4.2. Evaluation metrics

For crop segmentation, performance is evaluated on a per-pixel 
basis using four different metrics, F1-score, overall accuracy (OA), 
Kappa coefficient, and mean intersection over union (MIoU). For scene 
classification, only F1-score, OA, and Kappa are used. F1-score is the 
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Fig. 9. True color composite images and tertiary labels in the ZueriCrop dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
Fig. 10. Hierarchical structure of the RSI-CB and the proportion of each fine-grained class. The right side displays samples of two coarse-grained classes and some of their 
fine-grained classes.
harmonic mean of precision and recall: 

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(14)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(15)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(16)

Where 𝑇𝑃  represents true positives, 𝐹𝑃  is false positives, 𝐹𝑁 is false 
negatives, 𝑇𝑁 is true negatives.

OA is the proportion of correctly classified pixels over the total 
pixels: 

𝑂𝐴 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

(17)

Kappa measures the agreement between predicted and ground truth 
while accounting for random chance: 

𝑘𝑎𝑝𝑝𝑎 =
𝑂𝐴 − 𝑝𝑒
1 − 𝑝𝑒

(18)

Where 𝑝  is the expected agreement by chance.
𝑒
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MIoU is the average IoU across all classes, defined as: 

𝑀𝐼𝑜𝑈 = 1
𝐶

𝐶
∑

𝑖=1

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

(19)

where 𝐶 is the total number of classes.
In addition to performance evaluation, we compare computational 

complexity using floating point operations (FLOPs), parameter count, 
and per-epoch training time to compare computational complexity. 
FLOPs measure the total number of arithmetic operations (multiplica-
tions and additions) performed during inference or training. Parameter 
count refers to the total number of trainable weights in the model, 
affecting memory usage. Per-epoch training time provides an intuitive 
comparison of computational cost in real-world scenarios.

4.3. Selection of text encoder

Text encoder plays a crucial role in transforming class names from 
natural language into a computer-recognizable programming language 
in the label embedding module. Six candidate text encoders are selected 
for comparison, including Bidirectional Encoder Representation from 
Transformers (BERT) (Devlin et al., 2019), Decoding-enhanced BERT 
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Fig. 11. Comparison of accuracy between six text encoders and baseline networks.
Table 1
Accuracy of the SwinT-F with different text encoder on the RSI-CB test 
set. The best results are highlighted in bold.
 Model OA (%) Kappa (%) 
 Baseline 97.64 97.56  
 -BERT 98.87 98.83  
 -DeBERTa 98.71 98.66  
 -RoBERTa 98.83 98.79  
 -GPT 98.81 98.77  
 -ELECTRA 98.75 98.71  
 -T5 98.81 98.76  

with disentangled attention (DeBERTa) (He et al., 2020), Robustly 
Optimized BERT (RoBERTa) (Liu et al., 2019), Generative Pre-Trained 
Transformer (GPT) (Radford et al., 2019), ELECTRA (Clark et al., 
2020), and Text-To-Text Transfer Transformer (T5) (Raffel et al., 2020). 
Considering the time cost, the experiments are conducted on the RSI-
CB dataset which is designed for classification tasks. Swin Transformer 
(SwinT) is selected as the baseline. Then, the SemHi framework is 
applied to obtain SwinT-F, after which the text encoder is sequentially 
replaced. Table  1 presents the accuracy results of the SemHi framework 
on fine-grained classes when different text encoders are applied.

From the Table  1, it can be observed that all text encoders can 
improve the classification accuracy of the baseline and BERT achieves 
the best performance. BERT adopts a bidirectional Transformer to 
model bidirectional context effectively. Additionally, it is pre-trained 
using the Masked Language Model (MLM) by predicting masked words. 
This enables BERT to learn rich contextualized representations, making 
it effective for words, phrases, and full sentences. RoBERTa and De-
BERTa improve BERT with optimized attention and training strategies 
but show limited benefits in this task, as crop class names are short 
and do not require complex dependency modeling. GPT’s unidirec-
tional design may hinder full contextual understanding. ELECTRA, 
using Replaced Token Detection (RTD) rather than MLM, relies more 
on complete contextual, reducing its effectiveness in learning deep 
contextual representations. T5, though highly generalizable, is designed 
for natural language generation (NLG), whereas our task focuses on text 
embedding.

We also visualized the f1-scores of all fine-grained classes for the six 
text encoders. Fig.  11 clearly demonstrates that, compared to the base-
line, SwinT-F consistently achieves superior fine-grained classification 
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accuracy regardless of the text encoder applied, with BERT showing 
more notable improvements. Therefore, BERT is selected as the text 
encoder. Then the SemHi framework is evaluated in the subsequent 
crop segmentation experiments.

4.4. Crop segmentation experiments

Six SOTA networks, including SwinUNETR, TSViT, ConvGRU, Con-
vSTAR, UNet3Df and UNet3D, is adopted and compared as the back-
bone of framework (suffix -F in Table  2).

For the Sen4AgriNet dataset ( Table  2), it is observed that all models 
under the SemHi framework perform better than their original versions. 
Our proposed framework shows the most significant improvement of 
accuracy at level 3. Even for ConvSTAR-F which has lower accuracy, 
these three metrics are about 5% better than ConvSTAR.

Fig.  12 shows the prediction results at level 3 class for a set of 
samples. From Fig.  12(a)–(d), it can be seen that the wrong part 
within the black circle is significantly less than that within the red 
circle, which means the networks under our SemHi framework have 
significantly fewer erroneous predictions than the SOTA versions. In 
addition, our SemHi framework predictions have less noise and more 
complete crop parcels, indicating it can obtain clearer crop boundary 
features, and suppress confusion of edge classes. We also compare the 
network performance and computational complexity under the SemHi 
framework (suffix -F) with different networks on the ZueriCrop dataset 
(Table  3). Consistent with the results of the Sen4AgriNet, all networks 
perform better under our SemHi framework. In addition, as shown in 
Table  3, the FLOPs and parameters of the baselines and frameworks 
remains nearly identical, but training time differs. Under the same 
hardware conditions, the training time per epoch for the proposed 
framework is 1.25 to 1.82 times that of the baselines. Fig.  13 shows 
the prediction results of ZueriCrop test samples.

Furthermore, for the two datasets, the networks under the SemHi 
framework with the best performance are different, namely
SwinUNETR-F and UNet3D-F. This may be attributed to the large 
amount of data in the Sen4AgriNet, which is about 70 times that 
of ZueriCrop, while SwinUNETR-F based on self-attention mechanism 
can show advantages over convolution in processing larger amounts 
of data (Dosovitskiy et al., 2020). Therefore, SwinUNETR-F performs 
better on the Sen4AgriNet.
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Table 2
Accuracy of the proposed SemHi framework on the Sen4AgriNet test set. The best results are highlighted in bold.
 Model Level 1 (%) Level 2 (%) Level 3 (%)
 OA Kappa MIoU OA Kappa MIoU OA Kappa MIoU  
 SwinUNETR 92.18 87.79 79.17 86.61 84.42 67.16 83.33 80.83 60.73 
 TSViT 89.65 84.20 74.72 84.24 81.71 63.80 80.75 77.96 57.77 
 UNet3D 91.12 86.03 77.47 85.74 83.57 68.19 85.56 83.39 66.56 
 UNet3Df 92.32 88.09 80.72 86.14 83.78 68.28 85.92 83.75 65.14 
 ConvGRU 88.43 82.63 71.07 82.56 79.10 59.73 71.58 67.54 46.17 
 ConvSTAR 89.88 84.38 73.53 82.07 79.26 61.17 76.91 73.58 52.86 
 SwinUNETR-F 92.64 88.53 80.66 86.72 84.60 69.10 86.63 84.61 67.98 
 TSViT-F 89.74 84.23 74.89 84.85 82.40 64.08 84.78 82.46 63.59 
 UNet3D-F 91.21 86.46 77.82 86.36 84.19 68.27 86.08 83.98 66.18 
 UNet3Df-F 93.01 89.03 81.23 86.52 84.38 68.72 86.40 84.35 67.28 
 ConvGRU-F 88.90 83.04 72.11 82.64 79.88 60.27 82.46 79.82 59.40 
 ConvSTAR-F 88.76 82.82 70.79 82.30 79.52 60.61 81.99 79.32 58.80 
Fig. 12. The prediction results of four test images in Sen4AgriNet. For the samples (a)–(d), the leftmost column displays the labels of level 3 classes, each column on the right 
represents different networks. The red circles represent the significant prediction errors of the compared method, and the black circles represent the errors from the SemHi 
framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Accuracy, FLOPs, parameters, and per-epoch training time of the proposed SemHi framework on the ZueriCrop test set. The best accuracy results are highlighted in bold.
 Model Level 1 (%) Level 2 (%) Level 3 (%) FLOPs (G) Para. (M) Time (min) 
 OA Kappa MIoU OA Kappa MIoU OA Kappa MIoU  
 SwinUNETR 90.86 82.92 52.16 79.38 72.03 40.34 64.73 55.86 24.46 359.83 6.74 11.10  
 TSViT 88.08 78.19 46.23 74.90 67.41 34.19 58.37 48.80 15.21 417.01 2.17 7.93  
 UNet3D 94.02 87.23 60.21 82.35 75.97 45.49 72.96 65.59 31.84 440.34 6.38 7.33  
 UNet3Df 93.84 88.07 64.35 81.32 76.15 48.74 72.78 65.44 30.77 440.34 6.38 7.58  
 ConvGRU 89.49 80.87 49.36 76.17 69.54 38.10 64.67 54.92 15.63 176.86 0.50 18.84  
 ConvSTAR 88.86 79.85 51.59 74.34 67.18 40.01 70.57 63.72 30.03 216.85 0.63 20.10  
 SwinUNETR-F 91.82 84.53 58.09 80.27 73.44 43.24 77.60 70.67 39.09 ↑0.001 ↑0.004 13.91  
 TSViT-F 90.26 81.82 50.30 75.02 67.46 38.18 72.23 64.80 28.56 ↑0.002 ↑0.004 14.32  
 UNet3D-F 94.34 88.95 60.77 82.79 76.33 45.54 80.46 73.88 32.45 ↑0.003 ↑0.002 13.33  
 UNet3Df-F 94.10 88.54 65.64 82.90 76.64 49.27 79.28 72.52 32.38 ↑0.003 ↑0.002 13.78  
 ConvGRU-F 89.77 81.28 50.88 77.62 69.69 38.36 75.08 67.00 26.41 ↑0.003 ↑0.004 28.62  
 ConvSTAR-F 89.41 80.71 52.35 75.90 68.75 40.38 73.02 65.93 30.81 ↑0.003 ↑0.003 29.25  
Fig. 13. The prediction results of four test images in ZueriCrop. For the samples (a)–(d), the leftmost column displays the labels of level 3 classes, each column on the right 
represents different networks. The red circles represent the significant prediction errors of the compared method, and the black circles represent the errors from the SemHi 
framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 4
Accuracy results of ablation experiments on the two datasets. The best results are highlighted in bold.
 Dataset Model Level 1 (%) Level 2 (%) Level 3 (%)
 OA Kappa MIoU OA Kappa MIoU OA Kappa MIoU  
 
Sen4AgriNet

Baseline 92.18 87.79 79.17 86.61 84.42 67.16 83.33 80.83 60.73 
 Baseline+L 91.98 87.58 78.88 86.53 84.38 68.02 86.40 84.35 66.83 
 Baseline+L+E 92.30 88.02 79.89 86.49 84.33 68.25 86.46 84.42 67.28 
 Baseline+L+E+P 92.64 88.53 80.66 86.72 84.60 69.10 86.63 84.61 67.98 
 
ZueriCrop

Baseline 90.86 82.92 52.16 79.38 72.03 40.34 64.73 55.86 24.46 
 Baseline+L 90.70 82.60 54.13 77.69 70.27 40.11 73.13 65.19 31.15 
 Baseline+L+E 91.45 83.86 56.74 79.03 71.68 41.44 75.92 68.37 32.70 
 Baseline+L+E+P 91.82 84.53 58.09 80.27 73.44 43.24 77.60 70.67 39.09 
Overall, the quantitative results indicate that with the deepening 
of classification levels and the refinement of crop classes, all networks 
show a trend of gradually decreasing accuracy. However, our SemHi 
framework can effectively improve the crop classification at the fine-
grained scale for all compared methods, verifying the effect of the 
proposed SemHi framework in hierarchical guiding.

4.5. Module performance experiments

To further investigate the rationality and necessity of the designed 
modules and optimization objectives, we use SwinUNETR as the base-
line network and add each module in sequence for module performance 
(i.e., ablation) experiments on the two datasets. Baseline+L adds the 
hierarchical logic regularization module on the basis of SwinUNETR. 
Baseline+L+E indicates addition of the label embedding module on 
the basis of Baseline+L. Finally, the prototype distance measurement 
module is added to Baseline+L+E to achieve the overall framework, 
i.e., Baseline+L+E+P. Table  4 shows the accuracy of different combina-
tions at different levels on the two datasets, where the ablation models 
share the same training parameter settings.

(1) Hierarchical logic regularization module. Results in Table  4 
indicate that Baseline+L improved the OA, Kappa, and MIoU for level 
3 classes on Sen4AgriNet and ZueriCrop. This indicates that the de-
signed logic loss can effectively utilize the information of coarse-
grained classes and reduce the confusion of fine-grained classes. How-
ever, there is a slight accuracy decrease of Baseline+L at level 1 and 
level 2 classes. This may result from using the hierarchical logic regular-
ization module alone. This module enforces consistency between fine-
grained and coarse-grained classifications, which may lead to adjust-
ments in low-probability predictions at the coarse level, slightly affect-
ing accuracy. Future work could explore adaptive weighting in logical 
loss computation, adjusting classification instance weights to maintain 
accuracy across hierarchical levels and improve overall balance.

(2) Label embedding module. Comparing the results of Baseline+L 
and Baseline+L+E in Table  4, it can be found that for Sen4AgriNet, 
Baseline+L+E improves the classification accuracy of level 1 and level 3 
classes. For ZueriCrop, Baseline+L+E raises the classification accuracy 
at all levels. In conclusion, the label embedding module effectively mit-
igates the bias of logical loss on coarse-grained and enhances classifica-
tion performance at each level. To further investigate the contribution 
of the name embedding and spatial embedding in label embedding 
module, we compared them using SwinUNETR as the baseline. As 
shown in Table  5, name embedding has greater importance than spatial 
embedding, and their combined effect outperforms each component 
individually.

(3) Prototype distance measurement module. From Table  4, it can 
be seen that for both datasets, Baseline+L+E+P has improved classifi-
cation accuracy at all levels. This indicates that the prototype distance 
measurement module can effectively strengthen the feature separability 
by aggregating and separating feature vector prototypes. Additionally, 
as shown in Table  5, Baseline+P yields less significant accuracy im-
provements across all levels compared to Baseline+L and Baseline+E, 
suggesting its relatively lower importance than the hierarchical logic 
regularization module and label embedding modules.
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It can be noticed that compared to the Sen4AgriNet dataset, the 
accuracy improvement on the ZueriCrop dataset is more significant. 
This may be due to the fact that ZueriCrop dataset has a more complex 
hierarchical structure and class system, and has a smaller amount 
of samples, leaving more significant room for classification accuracy 
improvement.

To further evaluate the proposed components, we analyze level 3 
classification results on ZueriCrop, as it shows the most significant 
improvement in accuracy. Using Gradient-weighted Class Activation 
Mapping (Grad CAM) (Selvaraju et al., 2017), we visualize learned 
feature regions through heatmaps for different ablation models (Fig. 
14). Visual analysis shows that Baseline struggles to focus on key 
feature regions. As modules are added, heatmaps exhibit darker, more 
defined regions aligned with labels. Baseline+L effectively recovers 
missing regions, indicating that hierarchical logic regularization re-
duces fine-grained classification confusion by enforcing logical con-
sistency. Baseline+L+E further enhances attention to key areas by 
leveraging hierarchical structure and class semantics. Baseline+L+E+P 
refines region boundaries, demonstrating that the prototype distance 
measurement module helps delineate crop boundaries by optimizing 
feature aggregation and separation. Overall, module comprehensive-
ness correlates with heatmap clarity, validating each component’s role 
in improving feature representation.

4.6. Framework generality experiments

To evaluate whether the SemHi framework has the potential for 
application in other tasks and domains, we test its applicability on 
the RSI-CB remote sensing scene classification dataset. Three com-
monly adopted classification networks – ResNet34 (He et al., 2016), 
ViT (Dosovitskiy et al., 2020), and SwinT (Liu et al., 2021) – are 
employed as the backbone. Then, the applicable components of the 
SemHi framework, namely the label embedding module and the hier-
archical logic regularization module, are integrated. It is important to 
note that, since RSI-CB focuses on scene classification and only involves 
the encoding process, the prototype distance measurement module 
based on decoder features is omitted. The comparison of accuracy 
results between the compared methods and the SemHi framework on 
fine-grained classes is shown in Table  6.

Table  6 shows that for fine-grained classes, the accuracy of all 
compared methods improves under the SemHi framework. Among the 
six networks, SwinT-F achieves the best performance. The performance 
improvements are due to the effective fusion of text-based label embed-
dings with scene-level spatial features, allowing the model to leverage 
both linguistic and visual cues for enhanced classification.

Unlike the Sen4AgriNet and ZueriCrop datasets, the RSI-CB dataset 
focuses on remote sensing image scene classification and has only a 
two-level hierarchical structure. These differences highlight two key 
points: (1) The SemHi framework is not only applicable to crop pixel-
level classification tasks (using SITS) but can also be applied to image-
level remote sensing classification tasks (using satellite images), demon-
strating a degree of task generalization. (2) From the perspective of 
hierarchical classification, the SemHi framework is adaptable to various 
hierarchical structures, capable of performing classification at different 
levels of granularity, thereby exhibiting structural generalization.
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Table 5
Comparison of accuracy among name embedding (Name), spatial embedding (Spatial), full label embedding module (E), logic regularization 
module (L), and prototype distance measurement module (P) on the ZueriCrop dataset. The best results are highlighted in bold.
 Model Level 1 (%) Level 2 (%) Level 3 (%)
 OA Kappa MIoU OA Kappa MIoU OA Kappa MIoU  
 Baseline+Name 87.65 77.66 51.09 78.37 70.49 37.06 73.02 64.66 31.08 
 Baseline+Spatial 84.81 73.43 46.36 74.08 66.03 34.62 72.81 64.47 30.29 
 Baseline+E 89.93 79.40 53.15 78.84 71.06 39.92 73.82 65.00 32.07 
 Baseline+L 90.70 82.60 54.13 77.69 70.27 40.11 73.13 65.19 31.15 
 Baseline+P 87.06 76.81 48.07 73.66 65.94 35.57 69.88 62.09 30.55 
Fig. 14. Grad CAM visualization heatmaps of ablation models on four fine-grained classes in the ZueriCrop dataset. The leftmost text indicating the visual class of the row, which 
is located by a white cross on the label.
Table 6
Accuracy of the proposed SemHi framework on the RSI-CB test set. The 
best results are highlighted in bold.
 Model OA (%) Kappa (%) 
 ResNet34 98.15 98.08  
 ViT 97.12 97.01  
 SwinT 97.64 97.56  
 ResNet34-F 98.55 98.50  
 ViT-F 98.02 97.95  
 SwinT-F 98.87 98.83  

5. Conclusions

In this study, we propose the Class Semantic Guided Hierarchi-
cal Segmentation Framework (SemHi framework), leveraging spatio-
temporal-text fusion for crop classification. This framework encodes 
the hierarchical structure and class text, aligning them with the spatio-
temporal features from encoder to achieve a comprehensive fusion 
of textual semantics and spatio-temporal characteristics. Additionally, 
we perform prototype distance measurement on the deep features 
extracted by the backbone decoder to enhance intra-class similarity and 
inter-class separability. Furthermore, a hierarchical logic regularization 
module is introduced to support multi-granularity predictions while 
ensuring logical consistency across levels.
13 
The SemHi framework excels on two public crop datasets with 
fine-grained classes, enabling coarse-to-fine classifications to meet di-
verse user needs. This framework has potential applications in crop 
structure optimization, yield prediction and farmland management, 
offering valuable data support for precision agriculture. Furthermore, 
the framework is highly scalable and sensor-agnostic, enabling broader 
applications such as forest type monitoring, ecological assessment, and 
land use classification. In summary, the multi-dimensional fusion of 
text, spatial, and temporal information across hierarchical levels is 
pivotal to our framework’s success, enhancing its adaptability and 
performance across diverse remote sensing tasks and exemplifying the 
power of information fusion for complex, hierarchical classification.
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