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Abstract—A nonlinear joint collaborative representation (CR)
model with adaptive weighted multiple feature learning to deal
with the small sample set problem in hyperspectral image (HSI)
classification is proposed. The proposed algorithm first maps every
meaningful feature of the image scene into a kernel space by
a column-generation (CG)-based technique. A unified multitask
learning-based joint CR framework, with adaptive weighting for
each feature, is then undertaken by the use of an alternating
optimization algorithm, to obtain accurate kernel representation
coefficients, which leads to desirable classification results. The
experimental results indicate that the proposed algorithm obtains
a competitive performance and outperforms the other state-of-the-
art regression-based classifiers and the classical support vector
machine classifier.

Index Terms—Classification, collaborative representation (CR),
hyperspectral image (HSI), Kernel method, small sample set.

I. INTRODUCTION

YPERSPECTRAL sensors, spanning the visible to the
infrared spectrum, measure the reflected solar signal at
hundreds (100 to 200+) of contiguous and narrow wavelength
bands (bandwidth between 5 and 10 nm). Hyperspectral imag-
ing can provide ample surface spectral information to identify
and distinguish spectrally similar (but unique) materials [1].
Compared with multispectral imagery, the hundreds of bands
with rich spectral information in hyperspectral images (HSIs)
allow better discrimination of similar ground-cover classes,
which can lead to a superior classification performance [2].
However, there are still some obstacles for the classification
of pixels in HSIs. One of the difficult and complex problems
is the lack of labeled training sets, as the low ratio between
the limited available training samples and the large number of
spectral bands [3] leads to a decrease in the discriminability
and generalization ability. The classification methods originally
developed for the labeling of low-dimensional datasets, i.e.,
multispectral images, generally perform poorly when applied
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to HSIs, particularly in the case of limited training samples.
Furthermore, the unstable spectral signature of the classes in the
spatial domain of the scene can lead to an incomplete descrip-
tion of the different ground-object classes. Considering the
practical cost of a land survey, some training samples are closed
in the spatial domain, and this kind of spatial autocorrela-
tion intrinsically violates the independent identically distributed
assumption of the samples. Due to the limited valuable training
information, many statistical learning-based classifiers do not
work well.

In order to deal with the above problems, various tech-
niques have been proposed to improve the classification result
in the small sample set case: 1) dimensionality reduction, which
reduces the dimensionality of the hyperspectral data to the
appropriate subspace without losing the original information
that allows for the separation of classes [4]; 2) active learning,
which builds an efficient training set by iteratively improv-
ing the model performance, has also been proposed for HSI
classification [S]-[7]; 3) semisupervised learning, by jointly
leveraging the labeled and unlabeled pixels in the hyperspectral
scene, it enriches the available information to improve the clas-
sification accuracy [8], [9]; 4) transfer learning, which makes
use of some existing meaningful and related labeled data from
other scenes to enhance the model discrimination, has shown
its potential in HSI classification [10]; 5) kernel methods, which
implicitly mine the high-order discriminative information of the
HSIs, have been widely used, and have performed well, due to
their insensitivity to the curse of dimensionality [11], [12]; and
6) the spatial prior knowledge of the HSI, such as the texture
structure [13], the neighborhood similarity [14], and so on, can
complement the spectral information of the training samples for
the classification.

Recently, Zhang et al. [15] proposed a novel linear collab-
orative representation (CR) approach to deal with the “lack of
samples” problem for high-dimensional object recognition. In
the CR-based classification procedure [ 16], the training samples
which are located close to the unlabeled pixel contribute most
to the representation of the unlabeled pixel, while the rest of
the training samples act as collaborative assistants. It has been
shown that the CR technique, which utilizes the entire set of
training samples, often leads to high computational efficiency
and state-of-the-art performance [17]-[19]. In our previous
work, the CR technique, which linearly combines the multiple
features via a multitask learning (MTL) approach to comple-
ment the class discriminability of each feature description, was
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Fig. 1. Schematic illustration of the proposed joint CR classification algorithm with adaptive weighted multitask learning. Given a HSI, multiple modalities of
the features are extracted. The multiple features are first constructed and then mapped into the CG kernel one by one. We then constructed the kernel dictionary
set with regard to the training labels. In the representation step, each kernel contextual matrix is represented as a linear combination of the corresponding training
kernel feature dictionary. To preserve the diversity, the different weights of the various features are also simultaneously estimated in the linear representation
procedure. Finally, the classification decision is made according to the weighted overall reconstruction error of the individual class.

applied to HSI classification [20], [21]. Nevertheless, it has
been noted that since hyperspectral datasets are not linearly
separable [2], [11], a linear regression representation-based
model may not cope well with such a nonlinear classifica-
tion problem. In addition, it is natural that different features
contribute different roles in the decision boundary construc-
tion, and even pixels in different locations should have specific
multiple feature arrangements. That is, treating each feature
equally, as in Li et al. [20], is less rational.

In this paper, we proposed a novel nonlinear kernel joint CR
classification method with adaptive weighted MTL (KJCRC-
AWMTL) for HSI via a column-generation (CG) kernel map-
ping technique [22], [23]. As in the visual illustration shown in
Fig. 1, the procedure of the proposed algorithm can be sum-
marized as follows. First, several meaningful features of the
HSI are constructed, and each original feature is mapped to
a new kernel space. Second, a multiple kernel feature dictio-
nary set is constructed from the training sample set. Third, for
each unlabeled pixel that is recognized, a kernel joint signal
set containing multiple kernel features is constructed with the
contextual information of the hyperspectral scene. Finally, after
the kernel dictionary set and the kernel signal set are obtained,
the multiple featured CR linear regression model is extended
in an adaptive weighted manner to the novel kernel version, to
obtain the coding coefficient set for the subsequent recognition.
Unlike, the well-used kernel trick that calls for the explicit inner
product structure of the solution [24], [25], the CG-strategy
is easy to implement and does not require the explicit struc-
ture in the regression analytical solution. The proposed method
deals with the nonlinear phenomenon of multiple features in
HSI classification, and achieves an improved performance.
Experiments with several HSI datasets that have been widely
used as public evaluation data, confirmed the effectiveness of
the proposed algorithm.

The rest of this paper is organized as follows. Section II intro-
duces the CR-based HSI classification method with the fixed
weighted multiple feature learning approach. Section III maps
the adaptive multiple feature learning framework into a non-
linear space, and proposes the corresponding kernel CR model
via CG for HSI. The experimental results of the proposed algo-
rithm with three hyperspectral datasets are given in Section IV.
Finally, the conclusion is presented in Section V.

II. CR WITH MULTIPLE FEATURE LEARNING

In this section, we first review the CR technique using only
the spectral feature for HSI, and we then shows the linear joint
CR-based classification method that integrates the multiple
features with a MTL approach.

A. CR

Suppose there are M distinct classes for a HSI, and N;
(¢ =1,..., M) training samples for each class. Every spectral
signal in this scene can be denoted as a B-dimensional vector,
where B refers to the number of bands of the HSI. In this way,
training samples from the ith class act as columns of a subdic-
tionary A; = [a; 1,...,a; n,] € RE*Ni which may not span
all of the ith class feature space in the small sample set case, and
an unlabeled pixel s, denoted as feature s € RZ, belonging to
the 7th class, can be written as a compact linear combination of
the training samples from the th class

ey

s=aj1a1+ - Fta;noNteE=Aa;t+e

where € is the random noise, and «; which is an unknown
N;-dimensional coefficient vector whose entries are the
weights of the corresponding items of A;, can be solved by
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a; = argmin,,_ ||s — Aai||§7 and utilized for the subsequent
classification. For HSI classification with limited training sam-
ples, the quantity of the training samples belonging to the
tth class is usually less than the spectral dimension, which
makes the coefficient vector unstable and affects the recognition
performance.

Instead of A;, Zhang et al. [15] utilized all the training sam-
ples to deal with the “lack of samples” problem, and they con-
structed an overcomplete collaborative dictionary A € RBXN
by stacking all the subdictionaries {A,,} _, ,,, where N =
>~ N;. In this way, the unlabeled ith class pix:el 's can be repre-
sented as a collaborative linear combination of all the training
samples as

s=Aa+e=Aja;+ - -+Ayoy +e¢

M 2
= Ao + Zj:l,j#i Ajaj +e€ 2
where the whole space constitutes a dominant subspace
spanned by A;, and the complementary subspace is spanned
by the rest of the training samples, which can be considered
as an external collaborative partner to the dominant subspace.
a € R is an unknown coefficient vector whose entries are the
weights of the corresponding items of A, and ¢ is the low-level
random noise.

B. Joint CR Classification With Multiple Feature Learning

In this section, the joint CR model with multiple feature
learning is introduced as an extended CR technique. The pro-
posed model contains two improvements: simultaneous mul-
tiple feature learning, and joint multiple neighborhood pixel
representation. We first present the multiple feature learning
approach, and we then extend the method into a multiple signal
framework.

It is widely acknowledged that to extract one optimal fea-
ture for all the classes is not realistic [26]. Rather than using
a single feature to describe each class, Zhang et al. [15] pro-
posed a method that combines multiple complementary features
to describe the classes. In this way, the small sample set prob-
lem in HSI classification benefits from a more comprehensive
description of each pixel, which is induced by the fusion of mul-
tiple features. As for the multiple feature case, suppose each
pixel has K features, then s* and A* are the signal and dictio-
nary of the kth feature, and o is the coding vector of s* over
AF. An unlabeled pixel described by all the K features can be
represented as

s'=Alaj + -+ A, + €'
: 3
s =Afaf + -+ Afaf; + .
For the multiple signal case, it is assumed that HSI pixels
in a small spatial neighborhood, which are highly correlated,
can be simultaneously approximated by the common training

pixels, while the training pixels are assigned in a different
set of coefficients. Here, we utilize the neighboring pixels

around the unlabeled pixel to make the representation more
robust. We simultaneously stack all the pixels in the neigh-
borhood patch centered at the hyperspectral pixel s., and
of size N,, to construct the joint signal feature matrix set
{Sk}kzl,...,K = {s’fs’§ . "356\/0 }k:17'._7K, which contains K
matrices sized I* x N, for each neighborhood patch, and can
be denoted as

S'=[slshsh ] =Y Alwlyw!

)
K _[K K __ .K7_ M K g K K
S* = [s{'s) sNO}—ZiZIAZ- v+

where W*, k =1,..., K is the set of the coding coefficient
matrix associated with the corresponding dictionary A, ¥k
is the subset of W* over the subdictionary A¥ (i = 1,..., M),
and XF is the random noise matrix set for the neighborhood
patch for the kth feature (k = 1, ..., K). Considering that dif-
ferent features can share some similarities as well as some
differences, the prior for this issue can be modeled as

K

>t et -

where W is the mean of all ¥*, and w” is the fixed weight for
the kth feature. Given the training pixels, W*(*=1-K) can be
calculated by the joint collaborative model with multiple feature
learning [20]

T 5)

2 2
K HSk_Ak'I’kHF"')‘HlI’kHF

K

¥* = arg min E
Wk

_ — 02
o\t k-

(6)

For i =1,..., M, the overall coding error for class i is
shown as r;

K e
o Ellak _ ARGk
I L »

where \ilf is the estimated regression matrix associated with
feature k and class . The label of the unlabeled pixel is then
determined by the minimal total residual

class (s.) = arg min {r;}. (8)

i=1,...,

III. KERNEL JOINT CR CLASSIFICATION VIA ADAPTIVE
WEIGHTED MULTIPLE FEATURE LEARNING

In this paper, two issues are taken into consideration. First,
HSI classification is usually a linearly inseparable problem [2],
and a higher feature space for mining the nonlinear separabil-
ity is often beneficial. Second, since different features will have
different levels of importance for building the overall coding
error in (7), an equal weight for each feature is unreason-
able, and a fixed weight with some predefined prior calls for
expensive expert knowledge. In view of this, we first map the
hyperspectral data into a kernel feature space via a CG tech-
nique [22] to make the problem linearly separable, and we then
extend the multiple feature learning into an adaptive weighted
framework.
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A. Proposed CG Kernel Method

The kernel method, which is an approach to deal with non-
linear problems, is to assume that we have some way of
measuring the similarity between pixels which does not require
preprocessing them into a feature vector format [27]. In the
proposed algorithm, we utilize the radial basis function (RBF)
k (x;,x;) with the chi-squared distance x? (x;,x;), which
reflects the relative difference between each subregion of the
original feature

K (wi7wj) = €xp (_X2 (w’uwj)/ﬂ) 3

LB (@b~ (1) O
52 4t 2, (b) + z; (b)

where x? (z;, z;) =

where x; is the feature of a pixel at location ¢ in a hyperspectral
scene, and  is set to the mean value of the pairwise chi-squared
distance, and is adaptive to the training set.

The utilized CG in this paper directly takes the signal in the
kernel space as a feature [23], which is similar to the simplified
CG strategy for CG-boost in multiple kernel learning [22]. We
denote s* € RBx as the kth feature of the pixel, and sﬁ c RN
as its representation in the kernel feature space. The CG kernel
CR of s* in terms of all the atoms of A* can be formulated as

sy = [n (a]f, s) R (aﬁ,,s)]T = Aﬁaﬁ

k(af,af) -+ k(a},al)
= - [alf,n e a?V,K]T
~——— —
k(af,al) -+ K (ak,ak) M
Ak
(10)

where the columns of A¥ are the representation of the training
samples in the kernel feature space, and a* is assumed to be an
N x 1 kernel representation vector.

B. Adaptive Weighted Multiple Feature Learning in Kernel
Space

For a hyperspectral dataset, assuming that there is no prior
for the different features, we regularize the different weights
based on the maximum entropy principle [18]

K
2

With the kernel method, the adaptive weighted version of
(6) can be extended to deal with such a kernel optimization
problem as

WrInw® > o.

(1)

{lIl k}—argmmz et
I —AE‘I”Z||F+A||‘I"ZH2F
) (12)
+rwk HlIlﬁ — QHF —|—’y(,u"”'ln(,u’“c

where W¥ is the mean matrix of the kernel coefficient set ¥,
and A and 7 are two positive regularization parameters. w"
and W¥ can be solved by alternating the optimization of the

objective function shown in (12) with the two corresponding
subproblems, until the solutions converge to a local minimum.
For the first subproblem, we optimize W by fixing the

weight w¥, and the optimization of (12) becomes
Sk — AFWF|T + X || EE
S S L I3 M
ot ek - B
(13)
We can obtain a closed-form solution fork =1,... K
k K
N i, - LJo) WU (14)
ZnKzl W Zn:l

where Pk:((A’,S)TA’rf + I()\—l—ToJ )) , WOk = pk (Ak) Sk,
Q= (I K w”P”)il, and " = T(oﬂ)Q/zf:l W,

For the second subproblem, we optimize the weights w”
by fixing the coefficient set ¥¥, and the optimization of (12)
becomes

k . K
w® = arg min E

(et || @ = B[} + 7w Ines”)
5)
and the weight for each feature can be updated by

T A} k=1 K

(16)

The formulation (12) is a nonconvex optimization problem,
which cannot find the globally optimal solution, to the best
of our knowledge. As both the subproblems are convex, the
alternating optimization is considered to ensure the solutions
converge to a local minimum [28].

wh = exp{—l - T ||\Il£ —

C. Final Classification Scheme for HSI

For an unlabeled pixel, once @Z and 0%, k=1,..., K are
estimated by (12), then the label is determined by the minimal
total residual
St — ALY,

K
class (s.) = argmin Zki oF ’ (17)

i=1,...,M =1

where \Ilk is the kernel coefficient matrix associated with
feature k and class 7.

To sum up, the implementation details of the proposed algo-
rithm for HSI classification are summarized in Algorithm 1.

D. Computational Complexity Analysis

The computational burden for the proposed algorithm is as
follows. The size of SE is N x N,, and the size of the kernel
dictionary Ak is N x N, where N is the size of the train-
ing sample set, and NN, is the number of pixels in the spatial
window. Luckily, the kernel mapping does not affect the per-
formance very much, as it can be computed offline. Supposing
that ¢ is the iteration number, then the whole computational
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Fig. 2. False color image (R: 55, G: 35, and B: 25) of the Houston University
image dataset.

complexity is O (q Zle 2(1+N,) NQ), as P* and Q are
predefined in each iteration.

Algorithm 1. Kernel Joint CR Classification with Adaptive
Weighted MultiTask Learning (KICRC-AWMTL) for HSI.

Input: 1) An HSI containing training samples
2) Parameters: regulation parameters A, 7, -y, spatial
size N,
Initialization:
1) Multiple feature extraction from the HSI
2) Construct the multiple feature dictionaries A*,
k=1,..., K and normalize the columns of A to have a unit
{5-norm
3) Map the dictionary into the kernel feature space A¥
4) Treat each feature with an equal weight
Main iteration:
For each unlabeled pixel s. in the HSI:
1) Map the features of s, to the kernel feature space and
construct the joint collaborative matrix S¥ in the feature space
2) Code S¥ over A¥ and obtain the coefficient matrices
\Tlﬁ, and adaptively weight &% via (12),and k = 1,..., K
3) Label the test pixel s. with (17)
End for
Output: A 2-D matrix which records the labels of the HSI

IV. EXPERIMENTS
A. Dataset Description

1) Compact Airborne Spectrographic Imager (CASI)
Dataset: Houston University Image: The first dataset used in
this study, acquired over the University of Houston campus
and its neighboring urban area, was distributed by the 2013
GRSS Data Fusion Contest. It contains 144 spectral bands in
the 380—1050 nm region, and 349 x 1905 pixels with a spatial
resolution of 2.5 m. Heavy shadows contained in the observed
data were removed, and a subregion sized 349 x 1300 was
retained for classification, as shown in Fig. 2. The reference
information of the 15 classes was provided by the 2013 IEEE
GRSS Data Fusion Contest for this subregion, and is shown in
Table I. This is an urban dataset, with most of the land cover
consisting of man-made objects. This dataset is challenging,
since some of the classes, such as the three kinds of grasses,
have quite similar spectral signatures.

2) Hyperion Dataset: Botswana Image: The second dataset
was acquired by the NASA Earth Observing-1 satellite over
the Okavango Delta, Botswana, on May 31, 2001. This dataset

TABLE I
15 REFERENCE CLASSES OF THE CASI HOUSTON UNIVERSITY IMAGE
DATASET
Class Class name Class Class Class name Class
no. size no. size
1 Healthy grass 1073 9 Road 1031
2 Stressed grass 810 10 Highway 382
3 Synthetic grass 697 11 Railway 114
4 Trees 1053 12 Parking Lot 1 1233
5 Soil 1242 13 Parking Lot 2 449
6 Water 325 14 Tennis court 428
7 Residential 978 15 Running track 660
8 Commercial 624 Total 11 099

Fig. 3. False color image (R: 80, G: 60, and B: 30) of the Botswana dataset.

TABLE II
14 REFERENCE CLASSES OF THE BOTSWANA HYPERION DATASET
Class Class name Class | Class Class name Class
no. size no. size
1 Water 270 8 Island interior 203
2 Hippo grass 101 9 Acacia woodlands 314
3 Floodplain grassesl 251 10 Acacia shrublands 248
4 Floodplain grasses2 215 11 Acacia grasslands 305
5 Reeds1 269 12 Short mopane 181
6 Riparian 269 13 Mixed mopane 268
7 Firescar2 259 14 Exposed soils 95
Total 3248

contains 242 spectral bands covering the 400-2500 nm por-
tion of the spectrum in 10 nm windows, and it covers a 7.7-km
strip at a 30-m spatial resolution. Uncalibrated and noisy bands
that cover the water absorption features were removed, with
145 bands remaining. The size of the dataset is 256 x 1476,
as shown in Fig. 3. We used 14 identified classes to reflect the
impact of flooding on vegetation in the study area, and the class
names and sizes are listed in Table II.

3) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
Dataset: Kennedy Space Center (KSC): This dataset, acquired
over the KSC, Florida, on March 23, 1996, is in 224 spec-
tral bands of 10 nm width, with a wavelength from 400 to
2500 nm, and covers 512 x 614 pixels, with a spatial resolution
of 18 m, as shown in Fig. 4. Low-SNR and water absorption
bands were removed, and 176 bands were used in this study. It
has been noted that discrimination of land cover for this dataset
is difficult, due to the similarity of the spectral signatures of
certain vegetation types, and the complicated land cover distri-
bution. The reference information for classification is shown in
Table II1.

B. Experimental Settings

For all the experiments with the three HSI datasets, limited
training samples were randomly selected from the reference
data, and the rest of the samples were set as test samples to eval-
uate the classification result. For classification with the Houston
University image dataset, 10 and 15 training samples per class
were, respectively, taken, while each case utilized 10 inde-
pendent trials to alleviate any possible bias, which was also
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Fig. 4. False color image (R: 57, G: 26, and B: 17) of the KSC dataset.

TABLE III
13 REFERENCE CLASSES OF THE AVIRIS KSC DATASET

Class no. Class name Class size
1 Scrub 761
2 Willow swamp 243
3 Cabbage palm hammock 256
4 Cabbage palm/oak hammock 252
5 Slash pine 161
6 Oak/broadleaf hammock 229
7 Hardwood swamp 105
8 Graminoid marsh 431
9 Spartina marsh 520
10 Cattail marsh 404
11 Salt marsh 419
12 Mud flats 503
13 Water 927

Total 5211

undertaken in the following experiments with the other two
datasets. For the experiments with the KSC dataset, the two
cases were five training pixels per class and 3% of the pixels
of the whole reference label map. For the Botswana dataset,
3% and 5% of the reference data were, respectively, selected
as training data. The training sample sizes of all the experi-
ments were quite limited, which is a challenge for the following
classification task.

In the quality evaluation tables, the overall accuracy (OA)
is the ratio between the correctly classified test pixels and
the total number of test samples. The kappa coefficient is
a robust measure of the degree of agreement, and the clas-
sification accuracies using the different classifiers with the
test set for each class can be found in the corresponding
columns. The average running times of the repeated trials for
each multiple feature related classifier were also recorded.
The optimal parameter settings for every trial of each algo-
rithm were acquired by tenfold cross-validation. The clas-
sification results were also averaged over 10 runs for each
classifier to alleviate any possible bias induced by the ran-
dom sampling. All of the experiments were carried out using
MATLAB on a PC with one 3.50-GHz processer and 16.0 GB
of RAM.

The benchmark algorithms are shown in Table IV. The
abbreviations in Table IV can be explained as follows. For
the SVM-based classifiers: SVMlinear denotes that the clas-
sifier is constructed as a linear version with a single feature;
SVMrbf refers to the well-used kernel method calling for the
explicit inner product with the RBF kernel; and SVM-CK

TABLE IV
COMPARISON OF THE CLASSIFICATION ALGORITHMS

: Linear/non Multi/single Contextual

Classifior linear feature information
SVMlinear [2] Linear Single No
SVMrbf [2] Nonlinear Single No
SVMlinear-VS Linear Multiple No
SVMrbf-VS Nonlinear Multiple No
SVM-CK [30] Nonlinear Multiple Yes
CRC[15] Linear Single No
KCRC[11] Nonlinear Single No
CRC-VS [20] Linear Multiple No
KCRC-VS Nonlinear Multiple No
JCRC-MTL [20] Linear Multiple Yes
MNFL [21] Nonlinear Multiple No
GCK-MLR [31] Nonlinear Multiple No
KJCRC-AWMTL Nonlinear Multiple Yes

means that a stack of the two spatial features is used to con-
struct a composite kernel with the original spectral feature.
For the CR-based classifiers, CRC denotes the classical lin-
ear method, and KCRC represents the method with a CG RBF
kernel. For the single feature-based algorithms, each feature is
applied to show the uneven discriminability. Moreover, vec-
tor stacking [29], which is shortened to “VS” in the postfix
of the term in Table V, means that we directly stack all three
features as an augmented one to simultaneously carry the mul-
tiple feature information. JCRC-MTL is a linear version of the
proposed method, where the weight of each feature is fixed in
advance [20].

Two recently published nonlinear multiple feature learn-
ing algorithms for HSI classification, generalized compos-
ite kernel-based multivariate logistic regression (GCK-MLR)
[31] and multiple nonlinear feature learning with multivari-
ate logistic regression (MNFL) [21], were also considered as
benchmarks.

For the parameter settings, the weights for each feature were
initially equal, and the regularization parameters A, v, and 7
for the MTL-based classification algorithms were varied from
1075 to 107!, The neighborhood sizes for KICRC-AWMTL
and JCRC-MTL were varied from 1 to 169. The optimal param-
eter settings for every trial of each algorithm were acquired by
cross-validation.

C. Experimental Results

In Tables V-VII, the best results for each quality index
are labeled in bold, and the suboptimal results for each qual-
ity index are underlined. It can be first seen that, compared
with the linear classifiers, the corresponding nonlinear versions
always obtain a better performance. For the single feature-
based classifiers, it can be seen that different features lead
to different classification results, and it is difficult to deter-
mine an “optimal” feature for the different datasets, which
have different kinds of land cover. In view of this, combin-
ing the features in a uniform way is of interest. In these
three tables, it is also notable that the multiple feature-based
algorithms can indeed offer additional complementary informa-
tion for the classification, as most of the classification results
are significantly better than the single feature-based results.
Since it is considered that CRC is comparable to SVM [15],
KCRC is also superior to SVMrbf in most cases, as with the
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CLASSIFICATION ACCURACY FOR THE HOUSTON UNIVERSITY IMAGE DATASET WITH THE TEST SET

TABLE V

Linear Training samples per Nonlinear
10 15 class 10 15
0.8196+0.0226 _ 0.8470+0.0139 - 0.8536£0.0182  0.8609£0.0094 ¢
0.80414+0.0244  0.8336+0.0150 Pec 0.8409+0.0197  0.8721+0.0101 Pt
. 0.6612£0.0295 0.7076+0.0222 0.6836+0.0235 0.7514+0.0219
SVMlinear 63541010320 0.6825:0.0240  abor SVMIb 6562400252  0.7297+0.0238  aber
0.7059£0.0303  0.7536+0.0268 TR 0.70970.0228 " 0.7670£0.0223 o0
0.6818+0.0325  0.7332:0.0287 0.6855+0.0244  0.7474+0.0237
0.7972+0.0200  0.813120.0154 S 0856600116  0.8769:0.0089 ¢
0.7802+0.0216  0.7973+0.0166 pec 0.8444+0.0124  0.8664+0.0096 pec
0.6503£0.0174 0.715940.0257 0.719540.0280  0.7836+0.0154
CRC 0.6209:0.0184  0.6919+0.0273  Jabor KCRC 16955100297 0.7649:00166  abor
0727600232 0.7887+0.0298 N 0.77410.0339 " 0.839450.0099 -0
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multiple feature stacking classifiers, which also verifies the
superiority of the CG kernel. In the multiple feature cases,
the proposed KICRC-AWMTL method is much better than
the linear JCRC-MTL, and is only slightly inferior to SVM-
CK for the Houston University image dataset. For the other
two datasets, the CR-based classifiers are more suitable, and
the proposed method gives the best results, which are slightly
superior to the results of JCRC-MTL and greatly superior to
the results of SVM-CK. In view of this, it can be concluded
that the MTL method is the best multiple feature combination
approach when compared with the VS and CK/GCK strategies.
Furthermore, the CR method is comparable to SVM, and is bet-
ter than MLR. For the number of training samples issue, the
classification results of all the methods improve with the growth
in the training sample set, and the multiple feature-based clas-
sifiers, especially the proposed KICRC-AWMTL, can obtain
a more desirable performance. It can also be observed that
the variations in the results of each classifier in Tables V—
VII are large, as the limited training samples seriously affect
the performance. Under the small sample set condition, it can
be seen that the proposed method can obtain a more sta-
ble result. All in all, the proposed kernel multiple feature
method can provide a more stable and competitive classification
result.

For the running time comparisons, the detailed average run-
ning times for every multiple feature related classifier are shown
in the third line of the terms in the classification accuracy
table. Here, it can be seen that the linear version is faster than
the associated kernel method, but, at the same time, the dis-
crimination is inferior. Although the running time of MNFL

seems to be optimal, its classification performance is infe-
rior to the other kernel-based classifiers. Comparing the MLR,
SVM, and CR methods, it can be observed that MLR is the
fastest method, but has the worst classification result, and CR
shows better discrimination but requires more running time than
SVM. Meanwhile, it should be noted that SVM was imple-
mented by the LibSVM [45] package, which utilizes C ++
software to speed it up. Comparing the multiple feature com-
bination approaches (i.e., VS, CK/GCK, and MTL), the VS
approach has the fastest speed and the worst discrimination,
and MTL obtains the best classification result, but has a bur-
densome computation cost. Comparing the running time ratios
tlm;;:;:‘_ii‘;’)’;éf iffffgfviMTL , it can be concluded that the
major computational burden of the proposed approach comes
from the adaptive weight estimation by several iterations, which
causes several matrix inverse calculations. It is, however, rea-
sonable to believe that with the rapid development in computer
hardware, the time cost of the proposed method will soon no
longer be an issue.

D. Parameter Analysis

In this part, we examine the effect of the parameters on
the classification performance of the proposed algorithm in
the aforementioned experiments. The experiments for A, 7,
v, and N, were repeated 10 times, using different randomly
chosen training sets, to alleviate any possible bias induced by
the random sampling. When analyzing one specific parameter,
we fixed the other parameters as the corresponding optimal.
The horizontal axis shown in Fig. 5 is the value range of the
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TABLE VI
CLASSIFICATION ACCURACY FOR THE BOTSWANA IMAGE WITH THE TEST SET

Linear Nonlinear
3% 504 Training samples 3% 504
percentage
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Multi
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feature related classifiers records the average 0.9004+0.0187  0.9033+0.0293
running time for the classification. GCK-MLR  0.8922+0.0200 0.8954+0.0315
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11.8636 18.2716 147.4000 300.9000

parameter being analyzed, and the vertical axis shows the OA
of the different classifiers.

In Fig. 5(a), it can be seen that except for “KSC 5,” all the
cases first improve as the regularization parameter \ increases,
and then begin to decrease slightly after the maximum value.
With the growth in the number of training samples, the
variations decrease, in all cases, which suggest the impor-
tance of the training samples. The regularization parameter
A makes a tradeoff between the data fidelity term and the
prior term of the coefficient matrix for every feature, and it
contributes to the objective function with regard to the value
of A. It can be seen that this regularization term can indeed
improve the classification result when A is in a reasonable
range.

For parameter 7, which was varied from 108 to 1, once 7
exceeds a certain threshold, the dominant part of the multitask

representation optimization can be denoted as w* || ¥* — ¥ Hi,
which has a poor discriminative power for the subsequent
classification, as Fig. 5(b) shows.

The performances associated with ~y are shown in Fig. 5(c).
Here, it can be observed that the proposed kernel method shows
a weaker capability with a small +y at first, then increases rapidly
to reach the optimal result, and finally decreases a little. It
is believed that this parameter affects the weight update pro-
cedure, and the effect of the adaptive weighting is shown in
Fig. 6.

Finally, we varied N, from 9 to 169 to investigate the effect
of the neighborhood size. From Fig. 5(d), it can be seen that
the optimal values for all the datasets are not large, as this

approach can be considered as a straightforward spatial smooth-
ing procedure. However, we believe that a more effective way
to adaptively utilize the contextual prior should be considered
in future work.

E. Weight Analysis

The effect of the adaptive weighting for each hyperspectral
dataset in each training sample set case is shown in Fig. 6.
Here, ten independent repeated trials were undertaken for each
case, associated with the parameter set cross-validations and
the classification results in Tables V-VII. In Fig. 6, the hor-
izontal axis is the class name, and the vertical axis shows
the statistical weight value over the different classes. All the
experiments were initialized with equal weights, and the most
intuitive issue from Fig. 6 is that the different features should
indeed be weighted differently, as the weights in most cases
change a lot in the adaptive weight update mechanism. It can
also be seen that the variations in all the classification results
are large, as each feature in a specific area is influenced by
the complicated surrounding scene. For the Houston University
image dataset, it can be observed that the spectral feature is the
most discriminative for all the classes, while the performance
(except for pixels in the running track class) suggests that the
DMP feature is inferior. For the other two datasets, it is demon-
strated that the latter two spatial features play more important
roles, while the spectral feature is inferior. It is notable that
although the Gabor feature shows the worst discriminability
in the single feature-based classifiers, its role in the proposed



Thisarticlehasbeenacceptedforinclusioninafutureissueofthisjournal.Contentisfinalaspresented, withtheexceptionofpagination.

LI et al.: NONLINEAR MULTIPLE FEATURE LEARNING CLASSIFIER FOR HSI

TABLE VII
CLASSIFICATION ACCURACY FOR THE KSC IMAGE WITH THE TEST SET

Linear Nonlinear
5 3% Training samples scale 5 3%
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Fig. 5. Classification accuracy versus parameters for KICRC-AWMTL.: (a) regularization parameter \; (b) regularization parameter 7; (c) regularization parameter
~; and (d) size of the spatial neighborhood window N,. In this figure, the abbreviations “Houston 10” and “Houston 15” refer to the experiments with 10/15 training
samples per class with the Houston University image dataset; “Botswana 3% and “Botswana 5% denote the experiments with 3% and 5% data of the whole
reference data, respectively, with the Botswana dataset; and the last two terms “KSC 5” and “KSC 3%” are associated with the experiments with the KSC dataset.
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Fig. 6. Effect of w in all the experiments: (a) Houston University image dataset experiment with 10 training samples per class; (b) Houston University image
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experiment with 3% reference data as the training samples; (e) KSC dataset experiment with five training samples per class; and (f) KSC dataset experiment with

3% reference data as the training samples.

multiple feature framework is enhanced. In addition, it is also
demonstrated that, under the proposed weight update frame-
work, the weights for the spectral feature and DMP feature
are consistent with their performances in the single feature-
based classifiers, which validates the effectiveness of this
approach.

V. CONCLUSION

In this paper, we have focused on the linearly inseparable
problem of HSI classification, and the different contributions
of multiple features in HSI classification, and we have applied
a CG kernel method to the adaptive weighted multiple feature
learning framework to deal with these issues. The contributions
of the proposed algorithm are as follows: 1) it not only main-
tains the complementary information of multiple meaningful
features, but also arranges them in a rational way; 2) it keeps
the smoothness of the spatial constraint; and 3) it maps each
feature of the original signal into a high-dimensional space. The
CG kernel technique, which directly treats the similarity mea-
sures between spectral pixels as a feature, shows an efficient

performance in the multiple feature learning procedure. The
proposed algorithm was tested on CASI, Hyperion, and AVIRIS
HSIs, and the extensive experimental results confirmed the
effectiveness of this nonlinear technique.
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