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A B S T R A C T

Rivers are essential to the Earth's ecosystem, but the current understanding of river width variability is limited,
owing to the sparse distribution of gauging stations. Remote sensing data enable the surveying and analysis of
river geomorphology by providing multi-temporal Earth observation data from satellites at fine spatial and
temporal resolutions. We proposed an optimized RivWidth method to automatically calculate width for all
channels in a water map and parallelized it to produce the Multi-temporal China River Width (MCRW) dataset,
which is the first 30-m multi-temporal river width dataset for China during 1990–2015, including estimates
under both seasonal fluctuations and dynamic inundation frequencies. The MCRW dataset is made up of
1.3 × 108 seasonal estimates of river width, and covers 1.4 × 105 km of rivers in China. We validated the MCRW
dataset against in-situ measurements. The MCRW estimates at maximum water extent showed a satisfactory
accuracy of 15.0% and 15.2% for the mean absolute percentage error (MAPE) and the relative root-mean-square
error (RRMSE), respectively. The MCRW dataset was further compared with the current state-of-the-art global
product, the Global River Widths from Landsat (GRWL) dataset, which demonstrated the superiority of the
MCRW in describing the basins of China. Our analysis indicated that the mean river widths of China in both
summer and winter have increased over the past 25 years, and river width of the Yangtze River mainstream in
the lower drainage region has shown a downward trend while the its middle reaches and tributaries (upstream of
the Three Gorges Dam) have shown an upward trend. We also developed a locally adaptive search method to
quantify seasonal (summer and winter) river width variability. The results revealed that most of the rivers were
wider in summer during the study period, and mainstream of Yangtze River in middle/lower region exhibited
less seasonal variability than its tributaries. Larger widths were observed in the middle reaches of the Yellow
River and the upper reaches of the Black River in winter due to ice-jam floods. Overall, the generated MCRW
dataset has the potential to serve as a fundamental resource in Earth system science, and could provide valuable
support to surface water resource and riverine management.

1. Introduction

Fluvial networks are the dominant mechanism by which surface
water is delivered from land to ocean, providing a host of vital eco-
system services, e.g., water purification, nutrient cycles, flood relief,
and hydropower (Tang et al., 2009). Simultaneously, rivers are crucial
emitters of greenhouse gas, and are responsible for a substantial
amount of carbon dioxide and methane outgassing to the atmosphere
(Bastviken et al., 2011; Battin et al., 2008; Raymond et al., 2013).
Consequently, knowledge of the location and persistence of river

geomorphology, such as river width, is crucial for water resource as-
sessments (Gleason and Smith, 2014; Mueller et al., 2016; Yamazaki
et al., 2012; Sichangi et al., 2016; Van Dijk et al., 2016; Tarpanelli et al.,
2019; Yang et al., 2019; Van Dijk and Renzullo, 2011; Tang, 2020),
water-related hazard prevention (Zong and Chen, 2000), and river
morphodynamics (Monegaglia et al., 2018). In the context of river
monitoring, in-situ gauge observations are the foundation of the current
understanding of river width dynamics (Alsdorf et al., 2003). Given this
context, a thorough understanding of river width fluctuations could
provide practical support for decision-makers to implement effective
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and sustainable management. However, a stream gauge network can
only provide point-based observations of riverine environments
(Alsdorf et al., 2007). Furthermore, in-situ observations of river width
are often lacking, due to the sparse distribution of gauges.

With the global gauge network shrinking due to the high main-
tenance costs (The Ad Hoc Group et al., 2001; Hrachowitz et al., 2013;
Hannah et al., 2011), alternative methods for estimating river width in
ungauged basins have been developed in recent years. Such methods
usually incorporate river widths generated by field survey or manual
measurement from aerial or satellite images (Barefoot et al., 2019;
Biancamaria et al., 2009; Gurnell, 1997; Wilson et al., 2007; Xu et al.,
2004). However, the manual interpretation is laborious and time-con-
suming, even for small basins. With respect to large rivers, their widths
are usually estimated by the empirical relationships with streamflow
(Andreadis et al., 2013; Sun et al., 2018; Yamazaki et al., 2012; Hou
et al., 2020; Hou et al., 2018) or drainage area (de Paiva et al., 2013;
Hou et al., 2019). Nevertheless, such empirical functions cannot cap-
ture the variations of river channels since hydrologic and geologic
conditions can vary in different river segments and over time. Fur-
thermore, it remains unclear whether a consistent empirical function of
river width can serve as a fundamental parameter in regional- or global-
scale models (Yamazaki et al., 2014).

It has been widely recognized that remote sensing enables an im-
proved understanding of the Earth by gathering multi-temporal ob-
servations from orbiting platforms at a fine spatial resolution. Landsat
satellites, for instance, have been collecting multispectral images of the
Earth at a 30-m spatial resolution since 1984 with the launch of Landsat
5, forming an accessible global archive courtesy of the Landsat Global
Archive Consolidation (LGAC) initiative (Wulder et al., 2016). Hence,
continually updated remote sensing data, in conjunction with the recent
advances in cloud-based platforms such as the Google Earth Engine
(Gorelick et al., 2017), have the potential to provide us with a viable
source of observations, plus the computational capabilities to generate
large-scale datasets of river geomorphology, thus ensuring a better
understanding of river width dynamics. In a pioneering effort,
Yamazaki et al. (2014) developed the Global Width Database for Large
Rivers (GWD-LR) using Shuttle Radar Topography Mission (SRTM)
Water Body Data (SWBD) and the HydroSHEDS (Hydrologic data and
maps based on Shuttle Elevation Derivatives at multiple Scales) (Lehner
et al., 2008) flow direction map. However, by using SWBD data as
baseline data, GWD-LR has limited coverage for river channels nar-
rower than 300 m. To address this limitation, recent efforts have been
focused toward large-scale fine-resolution river width products, such as
the North American River Width (NARWidth) (Allen and Pavelsky,
2015) and GRWL (Allen and Pavelsky, 2018) datasets. The NARWidth
dataset was constructed by calculating the width of North American
rivers at mean discharge by applying an automated width determina-
tion tool—RivWidth (Pavelsky and Smith, 2008)—to the Landsat-de-
rived water map. In addition, Isikdogan et al. (2017) developed river
width data for North American rivers by estimating river center lines
and widths directly from a 3-year Landsat composite, showing a com-
parable accuracy with NARWidth.

While automated river geomorphology and width determination
algorithms can be found in the existing literature (Table 1), in all these
studies, however, the river geomorphology has been presented under
certain climate or hydrologic conditions. For instance, GWD-LR only
provides the river width during the period when SRTM data were ac-
quired, and NARWidth was composited by sorted cloudless Landsat
images captured at mean annual discharge. While the hydrologic and
hydraulic models have long been multi-temporal, observational multi-
temporal river width are generally unavailable. Due to the fine spatial
and temporal coverage of satellite images, the satellite-derived multi-
temporal river width datasets can offer more comprehensive char-
acterizations of river width dynamics under different climate or hy-
drologic conditions over large extent (e.g., regional to global scale).In
addition, as there are increasing hydrological or hydraulic modeling Ta
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studies using vectorized river network (Lin et al., 2019), the dynamic
river width data can provide important reference for the modeling
studies. Moreover, multi-temporal datasets of river width can provide
insights into the impacts of anthropogenic activities and changes in
fluvial geomorphology, and can subsequently help the authorities to act
more efficiently (Isikdogan et al., 2017). In addition, it has long been
recognized that river width varies throughout the year in response to
precipitation changes (Burn, 1999; Zong and Chen, 2000). In China,
seasonal precipitation fluctuations are dominated by the warm-humid
East Asian summer monsoon and the cold-dry East Asian winter mon-
soon (An et al., 1990). However, to the best of our knowledge, the
current understanding of river width dynamics in China remains in-
complete.

To address the absence of multi-temporal datasets of river width and
the lack of understanding of the spatiotemporal dynamics of river width
in the drainage regions of China, the objectives of this study were: (i) to
generate a multi-temporal river width dataset for China; and (ii) to
analyze the spatiotemporal dynamics of river width in China from 1990
to 2015. To achieve these goals, we: i) generated the first multi-tem-
poral river width dataset of China (i.e., Multi-temporal China River
Width dataset, MCRW), including estimates under both seasonal fluc-
tuations (summer and winter) and dynamic inundation frequencies; ii)
proposed a locally adaptive search method to further analyze the spa-
tial-temporal patterns and seasonal variations of river width of China;
and iii) improved RivWidth method by preserving the channel struc-
tures as well as saving memory and computation time. The accuracy of
the estimated river width was validated with respect to in-situ mea-
surements and by comparison with the existing datasets. To the best of
the authors' knowledge, the existing research has rarely investigated the
spatiotemporal patterns of river width variations via satellite remote
sensing data. Although there have been multi-temporal datasets de-
veloped at smaller scales, this is the first paper that investigates the
spatiotemporal patterns of river width at the country level, with special
attention paid to river width variations under both seasonal fluctua-
tions and dynamic inundation frequencies. The outcome of this
study—the Multi-temporal China River Width dataset (MCRW)—can
provide continual dynamic width measurements along river channels.
Such a dataset could be used in hydrologic studies, pollutant dispersion,
and flood models.

2. Study area

The primary goal of this study was to generate a multi-temporal
river width dataset of China (Fig. 1). Located in East Asia, China covers
a land area of over 9.6 million square kilometers and embraces a
multitude of exterior rivers (e.g. the Yangtze and Yellow Rivers) that
stem from the Qinghai-Tibet Plateau, and interior rivers (e.g. the Tarim
River), which drain more than one-third of its territory. Climatologi-
cally, China is an interesting research area as its annual precipitation
mostly occurs in the rainy season when the moist East Asian summer
monsoon usually begins in May and retreats in August, while the dry
East Asian winter monsoon surges in December and weakens in Feb-
ruary (Wang and Ho, 2002). Based on the climatological characteristics,
we focused on two seasons for all the rivers of China: summer (May to
September) and winter (November to March). Geographically, the
study area was stratified into nine major drainage regions based on
rivers and their connected tributaries: the Inland River region (ILR), the
Songliao River region (SLR), the Yellow River region (YLR), the Hai
River region (HAR), the Huai River region (HHR), the Pearl River re-
gion (PER), the South-West River region (SWR), the South-East River
region (SER), and the Yangtze River region (YZR) (Fig. 1).

3. Methodology

This study was aimed at developing the MCRW dataset and re-
vealing the spatiotemporal dynamics and seasonal variability of river

widths in China. Our method consisted of three steps. We first com-
posited 12 seasonal river maps using the Global Surface Water (Pekel
et al., 2016) dataset to indicate the persistence and location of the rivers
in summer and winter for the six periods (i.e., 1990, 1995, 2000, 2005,
2010, and 2015). An improved RivWidth method was then proposed to
automatically calculate width for all channels in a given map. We also
developed a multi-processing framework to accelerate the parallel ex-
ecution of the width estimation method across multiple river maps.
Finally, we developed a locally adaptive search method to further
analyze the spatial-temporal patterns and seasonal variations of river
width of China.

3.1. Generation of the multi-temporal China River width dataset

3.1.1. Compositing seasonal water maps
The input images for large-scale optical remote sensing analysis

should adequately minimize the non-valid observations from clouds,
snow, or other disturbances. These images can be composited using
massive amounts of data, according to specific criteria, e.g., cloud cover
and temporal span (Grinand et al., 2013; Lück and van Niekerk, 2016).
Unfortunately, accessing and managing vast volumes of remote sensing
data for large-scale analysis is strenuous and resource-intensive. The
Google Earth Engine (GEE) has overcome these obstacles through
Google's massive computational and storage capabilities, together with
a multi-petabyte archive consisting of publicly available images (e.g.,
Landsat, MODIS, Sentinel), climate datasets, socioeconomic data, and
an advanced function library for parallel processing, which enables
large-scale geospatial data analysis (Gorelick et al., 2017). GEE's dedi-
cated data distribution models have empowered a paradigm shift from
traditional per-scene analysis to per-pixel analysis, which enables us to
make pixel-wise cloudless composites (Azzari and Lobell, 2017;
Donchyts et al., 2016). Therefore, we utilized the GEE platform to
composite cloud-free, seamless images via multi-temporal com-
plementation.

The monthly history collection of the Global Surface Water (GSW)
dataset was employed as the basis to obtain the aforementioned sea-
sonal water maps in the six periods (i.e., 1990, 1995, 2000, 2005, 2010,
and 2015). The GSW dataset was generated using 3 million Landsat
scenes, with the omission error less than 5% and the commission error
less than 1% (Pekel et al., 2016). The GSW monthly history collection
provides information on whether surface water appeared at the
monthly level from Mar/1984 to Oct/2015. We first combined the GSW
monthly data as a 5-year composite for each study period, e.g., all the
monthly data available from 2003 to 2007 were combined for the
nominal year of 2005. To describe the seasonal fluctuations, the images
of each period were then divided into two seasonal groups, i.e., winter:
November–March, and summer: May–September (Fig. 2). We extended
the winter season from November to March since the surface water data
in GSW are not always available during the winter in scenes where the
solar elevation is larger than a specific threshold (see Section 5.3 for
details). Finally, each seasonal group was reduced into a single com-
posite for each pixel, respectively, by computing the water occurrence
under three conditions (i.e., 1%, 50%, 100%). This approach of using
all the available seasonal images enabled us to: (i) maximize the like-
lihood that the composited water maps were acquired across the
summer/winter monsoons; (ii) maximize the coverage of GSW in each
time period; and (iii) minimize the contamination from clouds, snow, or
other disturbance, while preserving the seasonal variations of river
width. The 12 resulting composites (Fig. 2) had a 30-m resolution and
each composite included a binary label (1 for water and 0 for non-
water) to indicate the persistence and location of surface water in
summer/winter.

Please notice that the width measurements in the cases of 1%, 50%
and 100% water occurrence for each period represented the maximum
(1% occurrence), mean (50% occurrence) and minimum (100% oc-
currence) river width, respectively (Hou et al., 2019). The water
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occurrence was defined as:

WD
VO (1)

where WD denoted the total water detections during a period (e.g.,
summer or winter for a certain year) and VO stands for the total valid
observations (e.g., free of cloud, snow, and missing data) during the
same period. Please notice that the water occurrence in this study is
different from the occurrence layer in the GSW. We calculate the water
occurrence during a period (e.g., summer or winter for a certain year)
while the GSW occurrence layer is based on the data over 30 years.

Several processes were further conducted using the GEE platform to
delineate rivers from the binary water map (Fig. 3). In order to obtain
the outer banks of rivers, gaps within the water maps whose area was
less than 9 km2, e.g., islands and sandbars, were filled in. Meanwhile,
we filtered out the isolated water bodies (usually ponds and irrigated

lands) whose area is less than a threshold of 2700 m2 (~ 4 ha), in terms
of their normal size in the study area. We excluded reservoirs and lakes
using the Global Reservoir and Dam Database (Lehner et al., 2011) and
the Global Lakes and Wetlands Database (Lehner and Döll, 2004), since
this research was only focused on rivers.

3.1.2. Calculating the multi-temporal river width
An automatic algorithm is needed to estimate river width from the

river maps. The existing methods (e.g. RivWidth, RivaMap) have de-
monstrated their effectiveness in generating large-scale river width
datasets (Allen and Pavelsky, 2015, 2018; Isikdogan et al., 2017; Miller
et al., 2014). Functionally, RivWidth requires a binary water map with
water and non-water pixels as input, and uses trigonometry to calculate
the width at each pixel in the river center line. To estimate river width
from the binary river maps, RivWidth first measures the Euclidean
distance for each water pixel to the nearest non-water pixel using

Fig. 1. The nine drainage regions of China and the gauging stations used for the validation. The nine river basins are the Inland River Region (ILR), the Songliao River
Region (SLR), the Yellow River Region (YLR), the Hai River Region (HAR), the Huai River region (HHR), the Pearl River region (PER), the South-West River region
(SWR), the South-East River region (SER), and the Yangtze River region (YZR). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. 30-m seasonal water maps of China composited for six periods (i.e., 1990, 1995, 2000, 2005, 2010, 2015) using Global Surface Water (GSW) monthly water
data. For each period, the GSW data for summer/winter were composited at a 5-year interval (e.g., period 1990: 1988–1992).
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morphological distance transform (Rosenfeld and Pfaltz, 1968)
(Fig. 3b). The distance map is then convolved with a bidirectional La-
placian filter (Marr et al., 1980) to find the center line of each river
channel (Fig. 3c). Finally, the river width is calculated by adding up the
width of channels intersected by each orthogonal transect (Pavelsky
and Smith, 2008). Thereby, the performance of RivWidth depends on
the accuracy of the input water maps. RivaMap, on the other hand,
estimates river center lines and widths directly from water-enhanced
images (e.g. the Modified Normalized Difference Water Index, MNDWI)
(Xu, 2006). The effects of RivaMap rely on the performance of the
MNDWI and a series of post-processing algorithms to isolate snow and
shadows from water (Isikdogan et al., 2017). The method of RivWidth
was chosen in our research since: (i) it is able to automatically extract
river widths from the input binary water map; (ii) many rivers in China
originate from the mountains in the Qinghai-Tibet Plateau, where snow
and shadows show high MNDWI responses, leading to a large number of
errors when adopting the RivaMap method. In this study, therefore, we
improved the RivWidth (version 0.4) method, and used the multi-sea-
sonal river surface data derived from the GSW dataset as the input to
calculate the river width for all the river channels of China longer than
1500 m.

In this research, the RivWidth algorithm was modified by a series of
optimized strategies. Specifically, we first search for the largest river in
a given river map and then calculated its width. Subsequently, we re-
moved this river and applied RivWidth to the remaining largest one. In

such way, we were able to traverse all the channels in the water map
and calculate their widths. Moreover, during each iteration, river width
was estimated within a buffer area for each channel network, rather
than the whole map, considering the fact that the channels only account
for a small portion of the map. In this way, a lot of memory and com-
putation time (e.g., convolution operations used to find connected
components) can be saved while ensuring the effectiveness of the al-
gorithm at the same time. Two typical examples, Yarlung Zangbo River
and Pearl River, were shown in Table 2.

In addition, RivWidth removed all islands and sandy bars in the
river channel and calculated the wetted width based on the center line
of their outer banks. In such case, multi-channel rivers are aggregated
into a single one. To preserve the river's original structure, we attempt
to obtain the center line of each channel and measure its width in-
dividually (Fig. 3e).

In particular, in the cases of multi-channel or braided rivers, where
the flow directions changed rapidly, river width may be overestimated
since cross sections derived from flow directions to each center line
pixel were not completely orthogonal to the channel (Allen and
Pavelsky, 2015; Miller et al., 2014). In this research, specifically, when
a river is braided or has multiple channels (e.g., Fig. 4b), and the area of
its surrounding islands or sandy bars was smaller than a threshold, its
center line was delineated using outer banks of the entire river (Fig. 4e)
and its width was calculated by summing up the wetted width of
channels (Fig. 4d) intersected by each orthogonal. Please note that the

Fig. 3. Inputs, intermediate steps, and outputs of the calculation of river width in this study: (a) false colour percentile (20%) composite of Landsat 8 for middle reach
of the Yangtze River (30.6363 N, 114.3425 E); (b) composited seasonal GSW water map; (c) distance map based on morphology distance transform; (d) river center
line (blue) and orthogonal (red), orthogonals are presented every 30 pixels for visualization purposes only; (e) MCRW maximum measurements in 2015 summer; (f)
GRWL width measurements at mean discharge(derived by RivWidth). (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Table 2
Comparison of computation time, demonstrating the performance of our modification in reducing the computational time.

MCRW tile id Major River Time consumption (with modification) Time consumption (without modification)

30N_90E Yarlung Zangbo River 1874.9 s 53,459.9 s
27N_114E Pearl River 1078.4 s 35,835.5 s

J. Yang, et al. Remote Sensing of Environment 247 (2020) 111918
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number of channels that each orthogonal intersected at center line as
well as the end points of each orthogonal were provided as supple-
mentary information with each MCRW measurement.

To further estimate the river widths of China in multiple periods, we
divided each seasonal river map into 81 tiles of 3° latitude by 6°
longitude, and each tile was buffered by 0.2° to avoid boundary arti-
facts. In order to fully leverage the multi-core processors of computers,
we designed a multi-processing framework in Interactive Data

Language (IDL) to process all the tiles in parallel. This framework is
mainly composed of a process pool that maintains a set of ready-to-use
child processes (Fig. S1), and a supervising process that schedules
image tiles for asynchronous execution over the child processes. The
supervising process keeps tiles waiting in the queue when all the child
processes are busy, and it allocates a waiting tile for the concurrent
execution after the child process completes the river width estimation
from the previous tile. This pool-based parallelism enables us to

Fig. 4. Illustration of the data and results of width estimation for braided rivers: (a) GSW occurrence map showing the percentage of times surface water was
observed in 2005 summer; (b) false colour median-value composite of Landsat-5 data for upper reach of Yarlung Zangbo River located on 29.37 N and 88.94 E; (c)
GRWL river width at mean discharge; (d), (g) and (j) are composited river maps at 1%, 50% and 100% occurrence, respectively; (e), (h) and (k) are channel maps that
only used to delineate the center line at 1%, 50% and 100% occurrence, respectively; (f), (i) and (l) are MCRW river widths at 1%, 50% and 100% occurrence,
respectively.
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automatically manage all the tiles for parallel execution and also to
avoid the latency in the frequent instantiation and destruction of the
processes. The number of processes maintained in the pool is tuned
based on the computing resources available on a single machine, e.g.,
memory and processors. With 24 cores of dual Intel(R) Xeon(R) pro-
cessors and 64 GB of memory, it took 12 days to process all 972 tiles in
parallel with a pool of eight processes. Finally, we obtained the results
retrieved from the individual tiles and aggregated them to generate the
MCRW dataset.

3.2. Quantifying river width variations

MCRW provided multi-temporal information regarding both river
width and channel center line. However, center lines shift over time due
to streamflow variations or channel migration, making it difficult to
quantify the variations of river width from planimetric river geomor-
phology data. We thus developed a locally adaptive search method to
quantify river width variations when the center lines are misaligned. As
shown in Fig. 5, the proposed approach first determines the location of
the center line pixels of each period (e.g., summer and winter). If these
center line pixels are aligned (i.e. the center line pixels in summer and
winter share the same geographic location), the width variations can be
defined using Eq. (2):

= −W WΔWidth T T1 2 (2)

where WT1 and WT2 denote the river width in the different periods (i.e.
summer and winter). Considering the fact that river center lines shift
over time, we could not find aligned pixel pairs in a large number of

river channels. Thus, along the center lines in a given period, we at-
tempted to collect the river widths measured at different periods
(season or year) in a square window centered on the pixels of the base
period (summer in this paper). The window size was enlarged by two
pixels when the previous one failed to capture any center line pixel
from other MCRW data. The iterative searching continued until the
center line (measured at different periods) were found or the maximum
window size was reached (11 pixels in this study). The river width
variations were then determined as:

= − …W Median W W WΔ { , , , }Width T T T T n1 2,1 2,2 2, (3)

where Median(A) represents the median of the set of river width A. WT1

means the river width of the base period, and WT2, i(i = 1,2,…,n)
denotes a set of river widths collected by the proposed method from
different periods. As the window size continues to increase, it is likely
to bring in pixels from other rivers, while a larger window size may also
result in a higher computational cost. Thus, 11 pixels (~330 m) was
chosen as the stopping condition (i.e. the maximum window size), in
view of the fact that more than 80% of the rivers measured less than
350 m wide (see Section 4.1 for details).

This window searching strategy ensured that width measurements
that were spatially adjacent and shared similar hydrologic conditions
were compared. Based on the aforementioned method, we further cal-
culated the percent variation to depict the seasonal width variability:

− +Width Width Width Width( )/( )sum win sum win (4)

where Widthsum and Widthwin denote the river width in summer and
winter, respectively.

Fig. 5. Flowchart of the proposed locally adaptive search method to quantify river width variations when river center lines shift over time, taking the seasonal MCRW
widths as an example.
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Fig. 6. The MCRW river width for: (a) summer 2005, with zoom-in map of Yangtze River (29.67 N, 112.99 E); (b) winter 2005, with zoom-in map of Huai River
(32.83 N, 117.38 E). (c) Yangtze River (32.0345 N, 120.6221 E); (d) Wusong River and Huangpu River (31.2271 N, 121.3123 E); (e) canals in Suzhou City
(31.3020 N, 120.6069 E); (f), (g) and (h) are the corresponding false colour composites of Landsat-8 images for (c), (d) and (e), respectively.
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4. Results and discussions

4.1. The multi-temporal China River width dataset

The MCRW dataset is made up of a total of 1.3 × 108 georeferenced
planform measurements of river width in summer and winter (Fig. 6a
and b) for the years of 1990, 1995, 2000, 2005, 2010, and 2015, re-
presenting 1.4×105 km of rivers in China. The MCRW river widths
range from 30 m (i.e. the minimum pixel size of Landsat images) to
14,500 m (in the estuary where the Yangtze River meets the East China
Sea; see Fig. 8a). Each measurement in the dataset consists of the la-
titude and longitude of the river center line pixel and its corresponding
width. In summer, 3% of the rivers are wider than 2000 m, while more
than 80% of the rivers are narrower than 350 m.

It was found that the distribution of the seasonal MCRW width
(Fig. 7), which ranges from 100 m to 2000 m, closely (R2 > 0.99,
p < 0.01) follows the power-law function:

= × −N W3.85 10s s
9 1.62 (5)

= × −N W4.76 10w w
9 1.67 (6)

where Ns and Nw denote the number of pixels for corresponding river
width Ws and Ww in summer and winter, respectively. Following Allen
and Pavelsky (2015), we calculated the power-law function for GRWL
river width (ranging from 100 m to 2000 m, R2 > 0.99, p < 0.01):

= × −N W3.78 10GRWL GRWL
10 2.08 (7)

where NGRWL stands for the number of GRWL river width measurements
(WGRWL) in China. The fitted curves were generally similar, and our
MCRW slightly outnumbered GRWL (Fig. 7). The GRWL-derived width
distribution was characterized by a larger exponent (2.08 in Eq. (7))
than that of MCRW (1.62 and 1.67 for summer and winter estimates,
respectively), indicating that the MCRW possessed a higher proportion
of wider rivers (Allen and Pavelsky, 2015). The result can be explained
as: i) MCRW retained center line for each channel while GRWL ag-
gregated the multi-channel river into a single one; ii) different hydro-
logical conditions of two datasets. Therefore, the number of the pixels
of the river center lines was slightly different between MCRW and
GRWL.

The MCRW dataset represents the first multi-temporal morpho-
metric survey of Chinese rivers in summer/winter from 1990 to 2015,
providing historical information regarding river center lines and widths
in both raster and vector format. The raster files contain center line
pixels with the value of the corresponding river width, while the vector
files consist of polylines that connect each center line pixel to the ad-
jacent ones.

4.2. Validation of the MCRW dataset

To assess the accuracy of the MCRW dataset, we compared the river
widths with the corresponding in-situ records from the Hydrologic
Yearbooks issued by the Ministry of Water Resources of China. A total
of 59 reference gauging stations (Fig. 1) were chosen by considering the
following criteria: (i) a station must have been operated for at least
10 years; (ii) the distance between the station to the nearest MCRW
center line should be less than 1.5 km; and (iii) the station should have
a complete seasonal record, without missing data in summer or winter.
We aggregated all the in-situ records for the summer/winter season at
each station and calculated the maximum, mean, and minimum sea-
sonal widths. The corresponding seasonal in-situ width was then com-
pared to the mean width of the five corresponding MCRW estimates
that were the nearest to the current station, as conducted by Allen and
Pavelsky (2015, 2018). In addition, we compared the produced MCRW
estimates at 50% water occurrence with the GRWL estimates, con-
sidering that the latter was the only existing 30-m river width dataset
for China and was composited using Landsat images captured at mean
discharge.

We used the mean absolute percentage error (MAPE) to compare the
MCRW estimates and GRWL estimates with the seasonal in-situ mea-
surements:

∑=
−

=

MAPE
n

W W
W

100%

i

n
i i

i1



(8)

where Wi stands for the seasonal in-situ references, and Wi denotes the
MCRW or GRWL river width. In addition to the MAPE, the root-mean-
square error (RMSE) and relative root-mean-square error (RRMSE)
were also used to assess the accuracy:

∑= −
=

RMSE
n

W W1 ( )
i

n

i i
1

22 
(9)

=
∑ =

RRMSE RMSE
Wn i

n
i

1
1 (10)

whereWi stands for the in-situ references, andWi denotes the MCRW- or
GRWL-estimated river width.

From Table 3 and Fig. 9, it can be seen that, MCRW estimates
showed the most satisfactory accuracy at 1% occurrence (i.e., the
maximum width) in nearly all the situations. Therefore, it can be stated
that MCRW can represent the temporal river width dynamic better
(e.g., seasonal variability) and more practical for understanding the
river dynamics.

Allen and Pavelsky, (2018) validated the GRWL with width mea-
surements at gauging stations operated by United States Geological
Survey (USGS) and Water Survey of Canada (WSC) in the North
American. They achieved satisfactory RMSE (25.2 m) between GRWL

Fig. 7. River width distribution from 100 to 2000 m of summer/winter MCRW and GRWL.
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and North American in-situ widths. Please note that the in-situ mea-
surements for North America (mean width of 109.2 m and median of
77.8 m) were different in scale to those of China (mean width of
440.7 m and median of 272 m). Therefore, RRMSE, which is a nor-
malization of RMSE that is calculated via dividing the RMSE by the
mean in-situ measurements, was introduced to facilitate the comparison
between datasets validated with different in-situ measurements. In this
manner, the RRMSE of MCRW at 50% occurrence (compared to the
Chinese in-situ measurements) was 20.5%, which was better than the
23.1% of GRWL (compared to the North America in-situ measure-
ments).

Although both MCRW and GRWL estimated the river width on the
basis of the RivWidth method, GRWL surveyed the river widths that
were close to mean discharge, since the widths were generated from
cloudless Landsat tiles captured at mean discharge. MCRW, on the other
hand, was produced by composited cloudless water maps under dy-
namic (i.e., minimum, mean, and maximum) water occurrence in
summer/winter. Consequently, the differences in temporal coverage
might account for the relatively poor performance of GRWL when
compared to the seasonal in-situ measurements, especially given that
seasonal precipitation varies greatly in China. As for the comparison
between GRWL and the summer/winter in-situ measurements, RMSE
and RRMSE were lower in winter (Table 3), indicating that the GRWL-
estimated mean discharges at the locations of the in-situ measurements
were more likely to be in winter (November to March in this study).

The total median bias of the MCRW estimates was 5 m, relative to
in-situ width measurements. The errors possibly came from three
sources: (i) the inaccuracies inherent in the GSW data; (ii) the errors of
the RivWidth method; and (iii) the errors associated with the in-situ
measurements. The primary source of uncertainty in MCRW is the GSW
data. Although the validation with in-situ measurements suggests that
MCRW represents accurate estimates of river width in summer/winter,
there are clear instances where river widths are overrated due to mis-
connection with the surrounding paddy fields. In addition, width
measurements of pixels at channel boundaries may be overestimated
due to the difficulty in the classification of mixed pixels. The errors of
RivWidth are mainly triggered by the predefined length of center line
segment used to determine the flow direction. In highly sinuous rivers
where flow directions change rapidly, the width measurements may be
overestimated since the cross sections derived from the flow directions
to each center line pixel are not completely orthogonal to the channel.
Moreover, the positive values of MAPE and RRMSE also include other
sources of error, such as the difference in acquisition time between the
Landsat images and the in-situ measurements.

We aggregated the non-valid observations (e.g., cloud, snow, and
missing data) to further assess the integrality of MCRW. Overall, the
average proportion of non-valid observations was 2.39% and 22.47% in
summer and winter, respectively. The relatively high non-valid

observation proportion in winter (Fig. 10a) can be attributed to the fact
that: (i) snow and ice were categorized into non-valid observations in
GSW; and (ii) the spatial coverage of the GSW data in northern and
southern latitudes was limited during the winter. Please note that the
proportion of non-valid observations in winter 1990 and 1995 was al-
most twice than that of 2000 (Fig. 10). The absence of valid observa-
tions is mainly due to the uneven spatial and temporal coverage of
Landsat data. Prior to 2000, only Landsat 5 was operational, but it had
no on-board data storage capabilities and its relay satellites failed in
1992 (Goward et al., 2006; Whitcraft et al., 2015), which limited the
availability of Landsat data. This situation was improved after 1999
when Landsat 7 was commissioned and subsequently maintained a
routine global acquisition plan (Arvidson et al., 2001; Goward and
Cohen, 2004; Woodcock et al., 2008). Due to the lack of Landsat 5 data,
the width measurements could be affected by the availability of valid
observation to some extent. However, the proportion of non-valid ob-
servations for most drainage regions in summer is less than 10%
throughout all the periods (Fig. 10b), while more than half of the re-
gions show relatively high proportion of valid observations in winter
(Fig. 10a). In addition, the non-valid observations are not synchronized
to the river width variations (Fig. 11).

4.3. Spatiotemporal dynamics of river width

MCRW provided dynamic information regarding both river width
and center lines. We designed a locally adaptive search method (see
Section 3.2) to quantify river width variations when the center lines are
misaligned. The method aimed to collect the river widths measured at
different periods (season or year) in a square window. This window
searching strategy ensures that width measurements that are spatially
adjacent and share similar hydrologic conditions are compared. The
same strategy can also be used to find the river widths measured at
different periods for a given center line pixel. In this way, all the
measurements for the same drainage region will be consistent
throughout each study period, ensuring the comparability of the aver-
aged river width. We used the MCRW estimates at the maximum water
extent (i.e., 1% occurrence) to calculate the mean width of the nine
major drainage regions to depict the spatiotemporal dynamics of river
width in China from 1990 to 2015. The maximum width was adopted
by considering that: i) it was more consistent to the measurements
obtained by the gauging stations (Fig. 9); and ii) maximum water extent
can reduce the data missing in early periods. From Fig. 11j, it can be
seen that the mean river width of China in both summer and winter has
increased over the past 25 years, with average growth rates of 1.603 m/
year and 1.375 m/year for summer and winter, respectively. The mean
river widths in summer for the YLR, YZR, PER, SLR, ILR, SWR, and SER
regions have shown increasing trends (0.34 ≤ R2≤ 0.8). In winter, the
mean river widths for the YLR, YZR, PER, SLR, ILR, SWR, and SER
basins have shown upward trends (0.38 ≤ R2≤ 0.76), with significant
(p < .05) upward trends in the YLR and ILR regions. Significant
(p < .05) upward trends in the ILR regions were observed in both
summer and winter, which can be linked to the increased run-off caused
by accelerated glacier melt and higher annual precipitation in the Ti-
betan Plateau (Lutz et al., 2014).

Our results show that six major regions (i.e., YLR, YZR, PER, ILR,
SWR, SER) exhibit increased river width from 1990 to 2015. The river
width increase in these areas can be likely attributed to the increasing
flood intensity (Zhang et al., 2015). The increased run-off caused by
accelerated glacier melt and higher annual precipitation in the Tibetan
Plateau (Lutz et al., 2014) may account for the increased river width in
ILR, SWR and YZR. The increment of river width over PER, YZR, and
ILR is probably linked to the more frequent PEPEs (persistent extreme
precipitation events) after 1990 in midwestern and southern China
(Chen et al., 2013). The increase of river width in ILR is also likely
attributed to the significantly increased precipitation frequency and
intensity in western China (Zhai et al., 2005). In contrast, the river

Table 3
Mean absolute percentage error (MAPE), root-mean-square error (RMSE) and
relative root-mean-square error (RRMSE) for MCRW minimum (100% occur-
rence), mean (50% occurrence) and maximum (1% occurrence) estimates
compared with minimum, mean and maximum in-situ width, respectively.
GRWL estimates was compared with the mean width of in-situ data.

Metrics Seasons MCRW 1%
occurrence

MCRW 50%
occurrence

MCRW 100%
occurrence

GRWL

MAPE Summer 12.4% 14.0% 19.6% 17.9%
Winter 17.7% 21.5% 34.0% 19.9%
Total 15.0% 17.7% 26.2% 18.9%

RMSE
(RRMSE)

Summer 67.6 m
(13.5%)

59.8 m
(13.0%)

116.2 m
(27.8%)

121.5 m
(26.4%)

Winter 79.3 m
(16.7%)

111.7 m
(27.0%)

160.8 m
(44.0%)

100.1 m
(24.2%)

Total 73.7 m
(15.2%)

89.6 m
(20.5%)

138.2 m
(35.5%)

111.4 m
(25.5%)
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width declines in HAR and HHR, due to the decreased precipitation
frequency/intensity (Zhai et al., 2005). Climate-related increment in
river width can be also found in YZR, PER and SER, as these regions
suffered from great floods around 1998 and their widths reached peaks
around 2000 (Wang and Plate, 2002; Zong and Chen, 2000). In addi-
tion, the decline in runoff and river width over HAR is possibly also
linked to the increasing demands for agricultural water consumption
(Yang and Tian, 2009).

We performed least-squares regression over the multi-temporal
MCRW data to depict the spatial distribution of the river width trend of
summer (Fig. 12). As shown in Fig. 12a, while the river width for the
upstream of the TGD increased from 1990 to 2015, the Yangtze River
downstream of the TGD decreased in width. This is likely related to the
drastically changed water and sediment processes after the impound-
ment of the TGD (Xu and Milliman, 2009; Yang et al., 2006). The op-
eration of dams will alter the hydrologic regimes and thus change the
hydrologic processes (Hu et al., 2008). Given a similar discharge con-
dition, decrease of sediment can exacerbate the lateral erosion and
subsequently increase the river width (Yang et al., 2015). Considering
the notable reduction of sediment load in the lower YZR after the op-
eration of the Three Gorges Dam (TGD) in 2003 (Xu and Milliman,
2009; Yang et al., 2006), our results show uptrends of river width in the
upper/middle reaches of YZR while the width of its lower reaches de-
creased (Fig. 12a). This can be attributed to the construction and re-
inforcement of the levees and revetments along the Yangtze River after
the great flood in 1998 (Yin and Li, 2001), which restricted lateral
erosion in the channel. Obvious upward trends (~5 m/year) are ob-
served in the Lancang River (Fig. 12b), Ya-lung River, Nu River, which
can be linked to the growth of the number of cascade hydropower
stations in these areas (Chang et al., 2010; Cheng et al., 2012). A host of
hydropower stations are under-construction or planned along Lancang
River, which might trigger some problems concerning the water re-
source management and ecosystem service in the lower reach of Lan-
cang River (i.e., Mekong River). In general, our results demonstrate the
impacts of climate change and climate perturbations on river width and
the phenomenon that river width can be affected by human activities.

4.4. Seasonal variations of river width

Under the influence of the summer/winter Asian monsoons, channel
widths in China show seasonal patterns. We also used the MCRW da-
taset at 1% occurrence (i.e., the maximum water extent) for 2015 to
estimate the summer/winter river width variability. This indicated that
the river widths of the middle YZR, lower YLR, lower PER, and upper/

middle SWR basins were wider in summer. Yangtze mainstream showed
relatively small percent variability while its tributaries in Jianghan
plain tended to vary more (zoom-in map of Fig. 13), which can be at-
tributed to the fact that wider rivers (e.g., mainstream of Yangtze) tend
to vary more in absolute variation but less in terms of percent varia-
bility.

While most rivers were wider in summer during the study period,
larger width values were observed in winter in the middle reaches of
the Yellow River and the upper reaches of the Black River (Fig. 13). The
upper and middle reaches of the Yellow River locate in the north-
eastern edge of the Tibetan Plateau and Inner Mongolia (higher lati-
tude), respectively. While the upstream part of the Yellow River thaws
first in the early spring, the middle reaches are still frozen (Fig. S2). The
upper stream carries ice into the still-frozen middle reaches, and ice
jams are formed when broken chunks of ice pile up. Ice jams can cause
inundation or even overbank flooding, which accounts for the wider
channels measured from the satellite images in winter. A similar phe-
nomenon was also found in another northerly flowing river in China,
namely the Black River (Fig. 13). The seasonal width variations of the
Yangtze River are mostly dominated by precipitation. Climatologically,
sustained precipitation brought by the summer monsoon together with
streamflow from the upper region cause a rise in the water level in the
lower reaches of Yangtze River in early summer (Zong and Chen, 2000).
Topographically, on the other hand, the relatively gentle stream gra-
dient in the middle/lower YZR region slows down the flow velocity.
The Yangtze mainstream in the lower basin is much wider than up-
stream of the TGD (Fig. 8a), and thus water is retained longer in the
channels, which increases the possibility of capturing a wider river in
summer from satellite observations.

4.5. Limitations and uncertainties

The spatial and temporal coverage of the MCRW dataset is limited
by the input and the methods. Although we fixed the seasonal windows
according to the East Asia summer/winter monsoons, this approach
could easily be transferred to other basins or regions, based on the local
precipitation variations. For example, the approximate rainy/dry
season for each basin could be estimated via long-term discharge data,
such as the data available from the Global Runoff Data Centre.

In this study, we extended the seasonal windows due to the missing
data inherent to GSW data in winter. Generally speaking, more valid
observations were available during the winter season (Asner, 2001).
However, GSW data were not always available for the winter. For ex-
ample, the GSW data covered 78 N to 40 S in July but 32 N to 56 S in

Fig. 8. Raw (gray) and smoothed (black) longitudinal widths along the mainstreams of Yangtze (a) and Yellow (b) River. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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January. The pattern of missing data was also different in different
months. According to Pekel et al., (2016), water detection was only
conducted on scenes where the solar elevation was above 30 degrees to
avoid the effects of low illumination. Thus, missing data were found in
both northern and southern latitudes during the winter. Moreover,
Landsat 7 and Landsat 8 maintained routine global acquisition plans
(Long Term Acquisition Plans, LTAPs), aiming at capturing the sig-
nificant changes of the Earth's surface (Arvidson et al., 2006). In LTAPs,

high-latitude images were not scheduled for acquisition during the
winter season when the sun angle was lower than a certain threshold,
which limits the availability of Landsat data in winter (Arvidson et al.,
2001).

In addition, in this study, while the use of reservoir and lake data-
base eliminated most water bodies connected to rivers, some water
bodies (e.g., impoundments and irrigation areas) may be included in
the width estimation. However, they are considered conceptually part

Fig. 9. Comparisons: (a) MCRW maximum width (1% occurrence) against the maximum in-situ width (Pearson's correlation: 0.98, p < .05); (b) MCRW mean width
(50% occurrence) against the mean in-situ width (Pearson's correlation: 0.98, p < .05); (c) MCRW minimum width (100% occurrence) against the minimum in-situ
width (Pearson's correlation: 0.93, p < .05); (d) GRWL width at mean discharge against the MCRW mean width (50% occurrence) (Pearson's correlation: 0.95,
p < .05).

Fig. 10. Proportion (%) of non-valid observations in winter (a) and summer (b) for the Yellow River region (YLR), the Yangtze River region (YZR), the Pearl River
region (PER), the Songliao River region (SLR), the Hai River region (HAR), the Inland River region (ILR), the Huai River region (HHR), the South-West River region
(SWR), the South-East River region (SER) and China. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 11. Temporal dynamics of river width de-
rived from the MCRW dataset for: (a) the Yellow
River region (YLR); (b) the Yangtze River region
(YZR); (c) the Pearl River region (PER); (d) the
Songliao River region (SLR); (e) the Hai River
region (HAR); (f) the Inland River region (ILR);
(g) the Huai River region (HHR); (h) the South-
West River region (SWR); (i) the South-East
River region (SER); and (j) China from 1990 to
2015. The mean river width of the SLR region in
winter was excluded due to the lack of valid
observations. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 12. The spatial distribution of the summer river width trend from 1990 to 2015 derived from the MCRW dataset, with zoom-in maps of (a) middle/lower reaches
of Yangtze River (112.17 E, 29.69 N) and (b) middle reaches of Lancang River (110.70 E, 25.21 N).

Fig. 13. Spatial distribution of seasonal river width variability, with zoom-in maps of (a) middle/lower reaches of Yangtze River (29.94 N, 113,75 E). The positive
value suggests that river is wider in summer, while a negative value indicates a larger width value in winter.
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of the river during inundation (Hou et al., 2019), since they are phy-
sically connected to the river channels. Besides, the islands and sandy
bars were filled so as to avoid the possible overestimation in braided
rivers, which, however, may affect the delineation of center line of
these rivers. This source of uncertainties may be suppressed in the fu-
ture by representing a center line using cubic splines as suggested by
Miller et al. (2014).

The temporal coverage of the MCRW dataset is currently limited
from 1990 to 2015, due to the availability of the GSW data. Pekel et al.
(2016) have provided the parameters and details of the expert system
that was used to generate the GSW data. Therefore, we can con-
veniently employ the classifier they provided to update the GSW water
maps in future.

In addition, subject to the discernable resolution (30 m) of Landsat
imagery, the width of some narrow channels can be undetected or
partly detected, e.g., in the headwaters of the Yangtze or the Yellow
Rivers. In future work, we can employ higher resolution images (e.g.,
10-m resolution Sentinel images from European Space Agency) to fur-
ther address this issue. The objective of this research, however, is to
generate a multi-temporal dataset of China. To this aim, Landsat images
are appropriate data sources due to their fine spatial resolution and
long-term temporal span.

5. Conclusion

River width is a fundamental parameter for hydrological and hy-
draulic modeling. While the derivation of river width from satellite
images is increasingly recognized (e.g., Allen and Pavelsky, 2018),
multi-temporal river widths and their spatiotemporal dynamics ob-
tained by the remote sensing approach have rarely been investigated in
the current literature. In this paper, we have presented the Multi-tem-
poral China River Width (MCRW) dataset, which makes the following
contributions:

1) While the currently available products mainly focus on the river
width on mean discharge (e.g., Allen and Pavelsky, 2015; Allen and
Pavelsky, 2018), the MCRW dataset is the first to incorporate multi-
temporal river width in China from 1990 to 2015 at a 5-year in-
terval. In addition, we pay special attention to the seasonal varia-
tion, given that seasonal precipitation in China is dominated by the
East Asian summer/winter monsoons.

2) A locally adaptive searching method was proposed to quantify river
width variations when center lines were misaligned, based on which
we further analyzed the spatial-temporal patterns and seasonal
variations of river width of China. Our results show the impacts of
climate fluctuations and climate perturbations on river width and
the phenomenon that river width can be affected by human activ-
ities.

3) We improved the RivWidth algorithm by implementing a series of
optimized strategies, such as (i) saving memory and computational
time; and (ii) preserving the channel structures.

The MCRW dataset was validated by a comparison with in-situ
measurements and the existing datasets. The analysis of the MCRW
dataset indicated that the mean river width in China for both summer
and winter has increased over the past 25 years. The river widths of the
mainstream of the Yangtze River in the lower drainage region have
shown a downward trend, while the middle reaches and tributaries
(upstream of the TGD) have shown an upward trend. Further analysis of
the seasonal variability found that rivers were generally wider in
summer than in winter and Yangtze tributaries trended to vary more
than its mainstream in middle/lower reaches. Temporal river width
dynamic is very important for understanding river dynamics. As there
are increasing hydrological or hydraulic modeling studies using vec-
torized river network (Lin et al., 2019), our findings and dynamic river
width data would provide important reference for the modeling studies.

This paper has provided the first multi-temporal river width dataset
with particular focuses on seasonal fluctuations and dynamic water
occurrence, and to the best of our knowledge, it is the first study to
reveal the spatiotemporal dynamics and seasonal variations of river
widths in China by the use of satellite images. This product, combined
with other data (e.g., precipitation, runoff, and sediment load data),
will allow for more comprehensive characterization of channel form
variations.
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