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Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial
details and three-dimensional (3D) information to support detailed and accurate classification of com-
plex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly
utilized to provide height information to complement spectral properties for urban classification.
However, in such a way, the multi-angle information is not effectively exploited, which is mainly due
to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated
DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit
the available angular information from high-resolution multi-angle images. In this paper, we investigate
the potential for classifying urban scenes based on local angular properties characterized from high-
resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs)
are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels):
(1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the
multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by
comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles
(APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g.,
buildings and shadows), in order to describe the specific angular information related to the types of prim-
itive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features
using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and rep-
resenting the main angular characteristics within a local area. The experiments on ZY-3 multi-angle
images confirm that the proposed ADF features can effectively improve the accuracy of urban scene clas-
sification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral
bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing
between the spectrally similar and complex man-made classes, including roads and various types of
buildings (e.g., high buildings, urban villages, and residential apartments).
© 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.
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1. Introduction objects (e.g., roads and buildings) because of their spectral similar-

ities (Pacifici et al., 2009). Although spatial and structural features

High-resolution satellite imagery enables a more detailed
observation of the Earth at fine scales, which provides new oppor-
tunities for detailed urban land-cover mapping. However, urban
classification is a challenging task due to the spectral heterogeneity
and structural diversity of the complex geospatial objects (Khatami
et al,, 2016). For instance, it is difficult to separate man-made
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such as morphological profiles (Mura et al.,, 2010) and textural
metrics (Pacifici et al., 2009) have been used to complement spec-
tral features in a great number of studies, the complexity of urban
scenes, especially in the vertical dimension, seriously affects the
interpretation accuracy.

In recent years, satellites with the ability to capture high-
resolution stereo images (e.g., ZY-3) have become accessible. Such
satellites provide multi-view observations and allow the retrieval
of 3D structure characteristics that are difficult to obtain with
a single-view mode. These multi-angle images simultaneously
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provide both high-resolution multispectral bands and abundant
information about 3D structures, which is particularly suitable
for the interpretation of urban scenes with complex vertical struc-
tures. Therefore, there has been increasing interest in applying
high-resolution multi-angle imagery to urban classification. Most
of the existing high-resolution multi-angle classification studies
generated a digital surface model (DSM) using image matching
methods, and subsequently utilized the height information derived
from the DSM to enhance the classification results. For example, a
multi-angle derived DSM was stacked with spectral, textural, and
morphological features using the random forest (RF) classifier by
Longbotham et al. (2012). Their results showed that the inclusion
of the multi-angle information bolsters the ability to classify spec-
trally similar classes with significant height differences, such as
bridges and highways. Tian et al. (2014) proposed a method for
building change detection based on stereo imagery and DSMs gen-
erated with a stereo matching methodology. The results showed
that the fusion of height information and multispectral images
could significantly improve the performance of change detection
compared to using spectral or height information alone. Li et al.
(2016) presented an approach for land-cover mapping in surface-
mined and agricultural landscapes based on ZY-3 stereo satellite
imagery. The mean and standard deviation filters of the spectral
bands and topographic features derived from the ZY-3 stereo
images were employed for classification. In spite of the progress
made, a major disadvantage of these methods is that the perfor-
mance of the classification is subject to the accuracy of the gener-
ated DSM (Tian et al., 2013), which can be seriously affected by
inaccurate matching points, incompleteness, and blurred bound-
aries in the proximities of buildings (Aguilar et al., 2014). The
satellite-derived DSMs also tend to underestimate the height of
high buildings (Huang et al., 2017a). At the same time, the DSM
may ignore the more implicit angular information contained in
the multi-angle images, leading to underutilization of the discrim-
inative features. These drawbacks emphasize the need to investi-
gate more effective features or approaches to fully exploit the
available multi-angle images and obtain a high classification accu-
racy in complex urban scenes.

The differences in the multi-angle images can be considered as
additional features that provide information about the radiative
and structural characteristics of the scenes (Diner et al., 2005),
including the lateral sides of the objects (Xiao et al., 2012), materi-
als of man-made construction (Longbotham et al., 2012), reflective
properties of the land surface (Puttonen et al., 2009), and shadow-
casting and mutual obscuration of three-dimensional surface ele-
ments (Lucht et al., 2000). For elevated objects with 3D structure
(e.g., buildings and trees), the angular effects are particularly sig-
nificant (Diner et al., 2005; Licciardi et al., 2012; Pasher and King,
2010). For example, in forest studies, changes in canopy structure,
including changes in tree crown size, shape, density, and the spa-
tial distribution of leaves, affect the directional scattering of light.
Multi-angle observations of this scattering thereby reveal informa-
tion about the three-dimensional structure of the vegetation
(Chopping et al., 2008). For urban studies, in high-resolution
multi-angle images, a lot of detailed information about the 3D
structures of the elevated objects emerges, and can therefore pro-
vide cues about the properties of the buildings, such as the mate-
rials, structures, and heights. For example, the vertical structures
of buildings presented in multi-angle imagery can provide strong
evidence for building detection (Xiao et al., 2012). In this context,
effective methods capable of synergistically integrating the cues
from multi-angle imagery are needed to explore the great potential
of angular information in observing 3D structures and gaining a
better understanding of urban scenes. In this study, we used the
ZiYuan-3 (ZY-3) multi-view images. The ZY-3 satellite, launched
in January 2012, is China’s first civilian high-resolution three-line

array stereo satellite. The ZY-3 satellite can simultaneously collect
multi-view panchromatic images, and this unique merit makes it
particularly suitable for vertical feature extraction of the Earth’s
surface.

In this context, this paper proposes a series of novel multi-level
angular difference features (ADFs), in order to make full use of the
angular information contained in high-resolution multi-angle
images for urban classification. The proposed method describes
the angular information at three levels (pixel, feature, and label
levels) to reveal the angular variation patterns of different urban
scenes. Specifically, at the pixel level, the angular information is
directly extrapolated by pixel comparison between the multi-
angle images. At the feature level, in order to make full use of
the spatial structures in the high-resolution images and describe
the angular differences in the spatial domains, several angular fea-
tures are extracted based on spatial features (e.g., attribute profiles
(Mura et al., 2010)), which can provide a multi-level characteriza-
tion of an image and can model the different kinds of structural
information. At the label level, the urban scenes are represented
using a group of primitives (e.g., building/shadow), including their
frequency and spatial arrangement, in order to describe the angu-
lar differences related to the specific primitive types. The multi-
level features can characterize the image angular information from
various perspectives, and can complement each other in classifying
different land covers. It should be noted that after obtaining the
multi-level ADFs, the ADFs are refined based on superpixel seg-
mentation, for the purpose of alleviating the effect of noise and
representing the main angular characteristics within a local area.
The performance of the proposed multi-level ADF feature set was
assessed using a series of ZY-3 satellite stereo images over repre-
sentative urban areas. In the experiments, we examined the use
of the proposed multi-level ADFs for urban classification, and com-
pared the ADFs with the state-of-the-art spatial features and the
commonly used height feature (e.g., DSM).

The remainder of this paper is structured as follows. Section 2
introduces the proposed ADF method. The experimental analysis,
which includes the description of the datasets, the classification
results, as well as the feature analysis and discussion, is given in
Section 3. Section 4 concludes the paper with some closing
remarks and gives suggestions for future research directions.

2. Methodology
2.1. Overview

The main idea of the proposed approach is that the angular dif-
ferences can be considered as additional features that allow further
discrimination between land-cover classes with analogous spectral
properties in urban environments. To illustrate this concept, Fig. 1
shows examples where the same urban scenes are represented
under the three viewing angles of ZY-3 images. In order to thor-
oughly demonstrate the differences in angular variation patterns
based on class type, Fig. 2 shows the normalized multi-angle
panchromatic values for six urban classes, computed by averaging
the normalized multi-angle panchromatic values of a ground-truth
reference set (dataset 2, see Section 3.1) for each class. We have
conducted a relative normalization to the multi-angle images using
histogram matching method, taking the nadir images as the refer-
ence. As shown in the first row in Fig. 1, the low-lying class (e.g.,
road) remains almost the same across the multi-angle images,
while the high buildings present apparent angular variations
within a local area. This is due to the solar observational cross-
section, an effect responsible for changes in the reflectance of the
objects with non-flat surfaces (Matasci et al., 2015). This indicates
that the degree of local angular variation contains implicit height
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Fig. 1. ZY-3 multi-angle images for six urban classes.
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Fig. 2. Multi-angle panchromatic values for six urban classes. The multi-angle
panchromatic values are normalized by histogram matching (HM).

information and can help to discriminate the classes that have sim-
ilar spectral responses but different height characteristics, such as
roads and different types of buildings. Note that although the
widely used DSMs are able to provide height information, it has
been reported that DSMs derived from ZY-3 stereo images are
not accurate enough to estimate building height (RMSE = 7.78 m)
for Chinese cities with complex 3D urban landscapes (Huang
et al., 2017a). In particular, high buildings (more than 50 m) tend
to be underestimated, due to the large disparity and occlusion,
which is problematic for image matching. The local angular varia-
tions may provide a new possibility to delineate high buildings and
their height information, which is particularly useful in cases
where matching errors occur and the DSM is less accurate.

Furthermore, local angular variations also offer the possibility
to distinguish man-made structures with similar heights. For
instance, looking at the second row of Fig. 1, it can be seen that
for residential apartments and urban villages (densely distributed
buildings with little vegetation and public space (Huang et al.,
2015)) with similar heights (both six floors), the differences in
mutual obscuration and shadow-casting due to the building den-
sity are clearly presented in the multi-angle images. Specifically,
the sparsely distributed residential apartments present bright lat-
eral sides in the backward imagery, whereas the lateral sides of the
urban villages are rarely shown, because of the high building den-
sity. This observation is also confirmed by Fig. 2. It is noticeable
that sparse residential apartments present higher reflectance val-
ues in the nadir and backward directions due to the higher fraction
of bright lateral sides shown. In contrast, the angular effects of the
densely distributed urban villages are less apparent and exhibit a
relatively flat curve. Similarly, as shown in Fig. 2, factories and cot-
tages with similar heights (both three floors) exhibit dissimilar
angular variation patterns that may possibly be attributed to the
different reflectance properties of the materials and structures.
These examples illustrate that spectrally similar man-made objects
may have distinct angular properties, and that these angular prop-
erties can be exploited in urban classification.

The flowchart of the proposed approach is shown in Fig. 3.
Based on the coregistered stereo images, the angular difference
features (ADFs) are extracted to highlight the regions with large
angular variations at three levels: (1) pixel level (ADF-pixel); (2)
feature level (ADF-feature); and (3) label level (ADF-label) (see
Table 1). The multi-level ADFs can provide a comprehensive char-
acterization of the angular properties. Subsequently, the ADFs are
refined by spatial smoothing based on superpixel segmentation,
for the purpose of alleviating the effect of salt-and-pepper noises
and representing the main angular characteristics within a local
area. Prior to ADF extraction, the backward and forward imagery
are resampled at the same spatial resolution as the nadir imagery.
Three sets of ADFs can be generated through the combinations of
different viewing angles, i.e., nadir and forward (NF), nadir and
backward (NB), and forward and backward (FB), respectively.



X. Huang et al./ISPRS Journal of Photogrammetry and Remote Sensing 135 (2018) 127-141

S . N
= I '
g [ ADF-pixel :
o | |
2 : ADF-feature :
e I

I 1
=] | ADF-label |
@ I
2 : 1
g . !
g E Per-pixel ADFs ’
)
=

Fig. 3. Flowchart of the approach used in this study.
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Overview of the multi-level ADFs proposed in this study.

Symbol Description

P ADF-pixel

F(area) ADF-feature built with the area attribute

F(diag) ADF-feature built with the diagonal box attribute
F(iner) ADF-feature built with the moment of inertia attribute
F(std) ADF-feature built with the standard deviation attribute
L(shadow) ADF-label built with the shadow primitive

L(build) ADF-label built with the building primitive

L(back) ADF-label built with the background primitive

2.2. Angular difference features (ADFs)

2.2.1. ADF-pixel

Under the condition that the ZY-3 multi-angle images are
acquired simultaneously, it can be assumed that the apparent
land-cover changes did not occur during the acquisition, and the
differences between the multi-angle images are caused by the
angular effects of objects. Based on this assumption, it is possible
to directly extrapolate the angular information by pixel compar-
ison between the multi-angle images. A straightforward way is
image differencing, which produces an absolute residual image to
represent the pixel-level angle difference. Given a pair of stereo
panchromatic images X; and X, acquired over the same area from
different viewing angles A; and A,, respectively, the pixel-level
angle difference ADF-pixel can be described as:

P=X; - X;| (M

ADF-pixel is expected to highlight the pixels associated with
significant angular differences, and thus can be used to identify
and delineate the off-ground classes (e.g., buildings) and distin-
guish them from the low-lying classes such as roads and soil.

2.2.2. ADF-feature

ADF-pixel describes the angular information based on the dif-
ferences between stereo images on a per-pixel basis. Similarly
but furthermore, the structural and geometric features extracted
from multi-angle images can be utilized to represent the feature-
level angle difference. On the one hand, the structural features
can compensate for the inadequacy of the spectral information

and make full use of the spatial details in the high-resolution
images. One the other hand, the elevated objects present evident
variations of spatial properties from different viewing angles (see
Section 2.1), which may in turn reveal material and structural char-
acteristics of the urban objects. This structural variation can be
captured by the structural and geometric features.

To effectively describe the geometrical information of high-
resolution images, morphological attribute profiles (APs), which
provide a multi-level characterization of an image, are adopted in
this study to model the different kinds of structural information
(Mura et al., 2010). APs are a generalization of morphological pro-
files (MPs) (Pesaresi and Benediktsson, 2001), with the capacity to
extract different kinds of spatial features by applying a series of
attribute filters. We can assume that the attribute filters process
an image f according to a criterion T with n morphological attribute
thickening operators (¢") and attribute thinning operators ("), and
the AP is obtained the morphological filter by reconstruction:

In general, the criterion compares the value of an arbitrary attri-
bute o« measured on the component C against a given reference
parameter value /. If the criterion is fulfilled, then the regions
remain unchanged; otherwise, they are set to the gray level of a
darker or brighter surrounding region, according to whether the
transformation performed is thickening or thinning, respectively.
According to the attribute considered, different structural informa-
tion can be extracted from an image (Dalla Mura et al., 2010). In
this paper, four attributes are considered to construct the AP fea-
tures: the area, the standard deviation, diagonal of the box and
the moment of inertia.

Based on the AP and its different attributes, the feature-level
angle difference, ADF-feature, can be defined as:

F(o) = |APy(X1) — APy(X;)| 3)

where AP, (X;) and AP, (X;) denote the AP features of X; and X,with
attribute o, respectively. Examples of the ADF-features for four
urban classes are given in Fig. 4 for a ZY-3 image from Beijing,
China. It is shown that with the AP-based multi-angle feature rep-
resentation, distinctive angular properties can be obtained for the
different classes. The use of the ADF-features helps in discriminat-
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area std diag iner

Fig. 4. ADF-feature for several typical urban classes (soil, medium building, high building, and road). The four attributes (i.e., area, moment of inertia, standard deviation, and
diagonal of the box) are labeled on the horizontal axis. The parameters are set according to the suggestions in Marpu et al. (2013). The ADF-feature is calculated from the nadir

and forward imagery.

ing the buildings, which exhibit strong differences under different
acquisition angles, from the road and soil, which present relatively
consistent structures in different viewing angles. It is interesting to
see that the high building class (more than 10 floors) shows higher
ADF-feature values than the spectrally similar medium building (six
to nine floors) and road classes.

2.2.3. ADF-label

ADF-pixel and ADF-feature describe the intensity of the angular
difference from the perspective of pixel and feature levels, respec-
tively. At the label level, where urban primitives (e.g., buildings
and shadows) are explicitly identified in each image, multi-angle
information related to the specific land-cover categories can be
depicted. Buildings and shadows represent urban primitives, and
they exhibit significant variations in size, shape, and location under
different viewing angles (Lee and Kim, 2015). Such angular varia-
tions of buildings and shadows can provide important cues for
the analysis of 3D objects. As shown in Fig. 5, the proposed ADF-
label is composed of two main steps: (1) label representation, in
which the urban scenes are represented using a couple of primi-
tives (i.e., buildings and shadow) that are calculated automatically;
and (2) label-level angular feature extraction, which is aimed at
measuring the frequency and spatial arrangement of the urban
primitives and subsequently deriving the label-level angular
features.

Step 1: Label representation. The urban primitives, including
buildings and shadows, are extracted automatically using the mor-
phological building index (MBI) and the morphological shadow
index (MSI) (Huang et al., 2012), respectively. The MBI and MSI

Multi-angle grids Label

are chosen considering their ability to automatically generate
building/shadow structures from high-resolution urban images.
The MBI is an effective index to highlight building structures from
high-resolution imagery by representing the spectral-spatial prop-
erties of buildings (e.g., brightness, contrast, size, and directional-
ity) with a series of morphological operators. The calculation of
MBI is based on the fact that the relatively high reflectance of roofs
and the spatially adjacent shadows lead to high local contrast of
buildings. The MBI is defined as:

o Zse Z S (DMP—WTH(S,d))
MBI = &=<5 dDNsXND 4)

where DMP-WTH denotes the differential morphological profiles of
the white top-hat, which is able to highlight the locally bright struc-
tures; d and s represent the direction and scale of the structural ele-
ment, and Ns and Nj are the total number of scales and directions,
respectively. The MSI can be viewed as a twinborn index of the MBI
since shadows show low reflectance but high local contrast. Conse-
quently, the black top-hat (BTH), which is able to highlight the dark
structures within the defined directions and scales, is used to con-
struct the shadow index:

_ Yses2aen(DMP — BTH(s, d))
MSI = Nox No (5)

Subsequently, the label maps can be obtained by simply apply-
ing a threshold to the indices. The threshold values for the MBI and
MSI were chosen according to the previous studies (Huang et al.,
2017b, 2012).

Cell-based

representations  primitive histograms

Difference
—_— measurement
Eq. (6)
Building Grid
I Shadow D "

Il Background D Cell

Fig. 5. Demonstrations for ADF-label.
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Step 2: Difference measurement. Based on the stereo label maps
derived from the first step, the composition and spatial distribution
of the urban primitives are further described using a local his-
togram representation with a cell-grid strategy (Wen et al,,
2016). ADF-label is then calculated by measuring the differences
between the multi-angle primitive histograms. Specifically, an
image is first divided into a series of grids with the size of N x N
(pixels), which is regarded as the basic unit for calculating ADF-
label. Then, as shown in Fig. 5, each grid is further divided into n
x n cells, where the frequencies of the primitives in each cell are
used to characterize the spatial distribution and arrangement of
the primitives in the grid. In this way, a grid can be described by

Fig. 6. The half-overlapped grid approach.

Image grid

¢ Roads and seils

Medium buildings C_3 High buildings

n x n histograms, with each histogram representing the frequen-
cies of the primitives in each cell. The main advantage of this
cell-grid strategy is the ability to simultaneously describe the fre-
quency and spatial distribution of the urban primitives (Wen et al.,
2016). Subsequently, the label-level angle difference ADF-label for
primitive i is calculated by measuring the differences between
the multi-angle primitive histograms in each grid:

nxn

L(i) = Z|H1"(i) — H;(i)|,i € {building, shadow, background} (6)
x=1

where H{ (i) and H}(i) denote the frequency of primitive i in the xth
cell (1 < x < n?), for viewing angles A; and A,, respectively. A half-
overlapped grid approach was used when calculating the ADF-
label feature values (see Fig. 6). The main advantage of the half-
overlapped grid is that sufficient contextual information is incorpo-
rated, and at the same time the loss of the spatial details (caused by
the moving window) can be reduced. As shown in Fig. 6, the images
are divided into a series of half-overlapped grids. The ADF-label
value is computed at each grid, and the final ADF-label feature value
is defined as the average of the overlapping areas.

Three examples for the multi-angle label representation are
shown in Fig. 7 (right), from which it can be clearly seen that the
local angular variations can be effectively captured by the label
maps. Note that there is a high degree of variability in the multi-
angle label maps and histogram differences for the buildings, par-
ticularly for the high buildings. It appears that the angular informa-
tion can provide a means of distinguishing between the spectrally
similar urban classes. This can be seen in Fig. 7b, where ADF-label
is displayed in false-color composite, where the high buildings
(more than 10 floors) are displayed as bright blue and the medium
buildings (six to nine floors) are displayed as purple-yellow. The

Cell-based histogram

Label map J—
__________________________ .
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Shadow

B EBuilding [l Background

Fig. 7. Demonstration of ADF-label. Left: (a) nadir image; (b) ADF-label in false-color composite displaying background, building, and shadow primitives in red, green, and
blue. The soil, medium building (six to nine floors), and high building (more than 10 floors) are marked by the blue, yellow, and red ellipses, respectively. Right: multi-angle
(upper/lower nadir/backward) label representations and cell-based primitive histogram differences for the different classes, where (c), (d), and (e) represent road, medium
building, and high building, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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low-lying areas (e.g., soil and roads) tend to have much lower val-
ues, and are shown in black.

2.3. Superpixel-based refinement (SBR)

It is widely acknowledged that the use of the contextual infor-
mation of pixels can increase the accuracy of pixel-based land-
cover classification (Bruzzone et al., 2006). Moreover, Johnson
and Xie (2013) found that segment-based features, which provide
relatively homogenous local information for a pixel by considering
its neighborhood, are more robust and reliable than pixel-based
features. In this study, the per-pixel ADFs are further refined in
such a manner. After obtaining the multi-level ADFs, superpixel-
based refinement (SBR) is implemented to: (1) alleviate the salt-
and-pepper effect; (2) compensate for the residual misregistration
errors which are unavoidable when combining multi-angle data;

and (3) preserve the edges from the nadir images. Superpixels in
a high-resolution scene are defined as pure perceptual uniform
parcels, and a land-cover object is composed of several adjacent
superpixels (Li et al., 2015). The superpixel ADFs are calculated
by averaging the per-pixel ADFs within each superpixel to charac-
terize the local angular variations. Please note that the nadir
panchromatic image is utilized as the base image for the superpixel
segmentation, due to its high spatial resolution.

The superpixel segmentation method utilized in this paper is
based on graph partitioning and the entropy rate (ER) (Liu et al.,
2011), which favors compact and homogenous non-overlapping
clusters. The only free parameter T (the number of superpixels)
controls the segmentation scale of the scene. Specifically, the ER
first maps the base image to a graph G = (V, E), with the vertices
representing the pixels, and the edge weights denoting the pair-
wise similarities between adjacent pixels. Subsequently, the

(h)

Fig. 8. The multi-level ADFs with and without superpixel based refinement (SBR). (a) True-color nadir image. (b) Superpixel segmentation. (c) ADF-pixel (i.e., P) without SBR.
(d) P with SBR. (e) ADF-feature built on the area attribute (i.e., F(area)) without SBR. (f) F(area) with SBR. (g) The ADF-label built on shadow primitives (i.e., L(shadow))
without SBR. (h) L(shadow) with SBR. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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segmentation is accomplished through partitioning the graph G
into T connected subgraphs. This is achieved by selecting a subset
of edges A C E and maximizing an objective function with respect
to the edge set. In order to obtain compact, homogeneous, and bal-
anced superpixels, both the ER H(e) and a balancing term B(e) are
combined into the objective function:

m/;‘ix{H(A) +/B(A)}, subject to ACE (7)

where 1 is the weight of the balancing term.

Fig. 8 compares the multi-level ADFs with and without SBR.
Although the per-pixel ADF is able to highlight the pixels associ-
ated with significant angular differences, it suffers from salt-and-
pepper noise (the first column) to some extent. After applying
the SBR (the second column), most of the noise can be removed,
and at the same time the general patterns related to angular char-
acteristics are retained. In addition, by incorporating the bound-
aries from the nadir images, the building edges are better
preserved.

3. Experiments and discussion
3.1. Datasets

The ZY-3 satellite is China’s first civilian high-resolution satel-
lite specifically designed for along-track stereo imagery collection,
with a spatial resolution of 2.1 m for the nadir angle and 3.6 m for
the forward and backward angles. The incidence angles of the for-
ward and backward cameras are +22° with respect to the nadir
camera. The ZY-3 three-line array images are acquired nearly
simultaneously. Such images are particularly suitable for extract-
ing angular properties because, when the multi-angle images are
acquired simultaneously, it can be assumed that the apparent
land-cover changes did not occur during the acquisition, and the
differences between the multi-angle images are mainly caused
by the angular effects of objects. Therefore, this unique merit
makes it potential to extrapolate angular information by measur-
ing the differences between ZY-3 multi-angle images. Although
ZY-3 images have been previously used in urban studies, including
classification (Huang et al., 2014) and change monitoring (Huang
et al.,, 2017a), the man-made structures were roughly divided into
roads and buildings in these studies, and the potential of the multi-
angle ZY-3 images in distinguishing different categories of build-
ings has rarely been exploited. More importantly, the multi-angle
characteristic of the ZY-3 imagery has never been explored in the
current literature, mainly due to the errors and difficulties of
multi-view image matching and the inaccuracy of the generated
DSM over complex and dense urban scenes (Huang et al., 2017a).
Therefore, it is interesting to investigate whether the ZY-3 multi-
angle images are able to differentiate different types of man-
made constructions in complex urban environments (especially
in the vertical dimension) by incorporating the angular difference
information.

Three ZY-3 multi-angle datasets were used to evaluate the per-
formance of the proposed method. The first two datasets used in
the experiments were acquired over the city of Shenzhen, China,
in December 2013, and the third dataset is an image of Beijing,
China, acquired in October 2012. The three test images are made
up of 824 x 830, 1098 x 1097, and 1197 x 1194 pixels, respec-
tively (Fig. 9a). Pan-sharpening was carried out by applying the
Gram-Schmidt procedure to the nadir panchromatic image and
the four-band multispectral image. The backward and forward
imagery were resampled at the same spatial resolution as the nadir
imagery, and were registered to the nadir imagery using the
nearest-neighbor method, with a root-mean-square error of less
than one pixel. A relative normalization to the multi-angle images

was conducted using the histogram matching method, taking the
nadir images as the reference. The test areas represent a series of
typical urban areas with complex scenes, e.g., various man-made
structures with heterogeneous sizes and shapes, including roads
and different types of buildings. The key challenge in classifying
these images lies in the confusion among these man-made class
types, which usually present analogous spectral features in high-
resolution images.

3.2. Experimental setup

We compared the proposed multi-level ADFs with the APs
extracted from nadir imagery and the nDSM (normalized DSM)
derived from ZY-3 stereo imagery in classification. The DSM was
generated from the ZY-3 stereo imagery using the semi-global
matching (SGM) algorithm (Hirschmiiller, 2008; Qin, 2016,
2014). Subsequently, the nDSM was derived from the DSM by mor-
phological top-hat by reconstruction (Qin and Fang, 2014). The
parameters of the APs were set according to the suggestions of
Marpu et al. (2013). The proposed ADFs are superpixel features
since the segment-based features are more robust and reliable
than per-pixel ones by considering local contexts (Johnson and
Xie, 2013). For a fair comparison, the compared features (i.e., spec-
tral bands, APs and nDSM) were also refined by the superpixel
processing.

The nadir images are used as the base image for the superpixel
segmentation. According to the image resolution and the object
sizes in the test areas, the number of superpixels was set to 3000
for dataset 1, and 5000 for datasets 2 and 3. The cell size of ADF-
label was set to 3 pixels, and each grid was divided into 3 x 3 cells
(n = 3) to capture the subtle angular differences. The ZY-3 data pro-
vide three panchromatic stereo angles, i.e., 22° backward, nadir,
and 22° forward, resulting in three possible stereo pairs. Therefore,
three sets of ADFs were generated through the combinations of dif-
ferent viewing angles, i.e., nadir and forward (NF), nadir and back-
ward (NB), and forward and backward (FB). These three sets of
ADFs were concatenated into one stacked feature vector and used
as input for the classification. Seven groups of feature sets were
compared (Table 2). As shown in Table 2, at first, each level of
ADF was considered separately (cases 4-6), and then all the ADFs
were taken into account simultaneously (case 7).

Nine land-cover classes were defined in the experiment: cot-
tages, residential apartments (six to nine floors), high buildings
(more than 10 floors), roads, factories, urban villages (densely dis-
tributed buildings with little public space), vegetation, bare soil,
and shadows. The classes were defined to investigate the ability
of the ADFs to discriminate between different man-made class
types. Fig. 9d shows the reference data manually delineated from
the corresponding nadir images through field investigation and
visual interpretation of the ZY-3 images and Google Earth.

For each test site, 100 samples per class were randomly chosen
from the reference dataset to train the random forests (RF) classi-
fier (Breiman, 2001). The numbers of training and test samples for
each dataset are shown in Table 3. The number of decision trees of
RF was set to 100. All the experiments were repeated 10 times with
different and randomly generated training samples, and the mean
and standard deviation of the classification results are reported for
the assessment of the classification performance. Three measures
were calculated to evaluate the classification performance: (1)
the overall accuracy (OA); (2) the kappa coefficient (KC); and (3)
the kappa coefficient for man-made constructions (KCM), includ-
ing cottages, residential apartments, high buildings, roads, facto-
ries, and urban villages, which is used to evaluate the ability of
the classifier to distinguish between different types of man-made
structures.
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cottages

residential apartments Il high buildings

vegetation roads

bare soil Il shadows B urban villages Il factories

Fig. 9. The three datasets: (a) true-color nadir image; (b) forward image; (c) backward image; (d) ground-truth reference selected from the nadir image. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
The number of input features for each combination of features tested in each study
area.

Case  Name Input features Dimension of

features

1 S Nadir spectral bands 4

2 S+ AP Nadir spectral bands and nadir AP 36

3 S+nDSM  Nadir spectral bands and nDSM 5

4 S+P Nadir spectral bands and ADF-pixel 7

5 S+F Nadir spectral bands and ADF-feature 100

6 S+L Nadir spectral bands and ADF-label 13

7 S+ PFL Nadir spectral bands and all ADF 112

3.3. Classification results

The classification results of the three ZY-3 test sites are pro-
vided in Tables 4-6, respectively. The result with the highest accu-
racy is underlined for each class. The classification maps are
presented in Figs. 10-12. In general, from Tables 4-6, it can be seen
that the combination of the multi-level ADFs and spectral bands
(S + PFL) yields the highest overall accuracy and kappa coefficient
among all the datasets. In dataset 1 and dataset 2 with the hetero-

geneous urban scenes, the S + PFL feature set presents a significant
OA improvement (8.8-11.7%) compared to using spectral bands
alone. In dataset 3, which is a sub-urban area, S + PFL achieves a
lower OA improvement (3.8%). This suggests the superiority of con-
sidering angular information when interpreting complex urban
scenes. The promising performance when using angular difference
information can also be confirmed by the results of the feature sets
when each level of ADF is considered separately (i.e., S+P, S+F,
and S+L). In fact, in most cases, the results achieved with the
single-level ADF are better than those achieved by the compared
features (i.e., AP and nDSM).

We recall that KCM is the kappa coefficient between the man-
made classes, i.e., cottages, residential apartments, high buildings,
roads, factories, and urban villages. The relatively inferior KCM
compared with kappa coefficient indicates the difficulty of distin-
guishing between the man-made class types (Tables 4-6). Accord-
ing to KCM, in all cases, the optimal feature set is the combination
of multi-level ADFs and spectral bands (S +PFL), with a KCM
improvement of 0.12-0.23, compared to using only spectral bands.
Furthermore, it can be seen that by including the ADFs, the
accuracy of most of the classes is significantly improved. Most of
the man-made classes classified in these experiments show a



136 X. Huang et al./ISPRS Journal of Photogrammetry and Remote Sensing 135 (2018) 127-141
Table 3
The number of training and test samples for each class.
Class Dataset 1 Dataset 2 Dataset 3
Training Test Training Test Training Test
Cottages 100 1890 100 996 100 1210
Residential apartments 100 10,404 100 15,446 100 4150
High buildings 100 13,043 100 22,814 100 9658
Vegetation 100 7956 100 18,944 100 19,818
Roads 100 9183 100 10,982 100 13,225
Bare soil 100 6153 100 9816 100 13,092
Shadows 100 20,376 100 14,979 100 6023
Urban villages 100 18,441 100 10,555 100 6457
Factories 100 3435 100 8978 100 6015
Total 900 90,881 900 113,510 900 79,648
Table 4
The classification accuracies for ZY-3 dataset 1.
Class Raw Compared features The proposed ADF features
S S +AP S +nDSM S+P S+F S+L S+ PFL
Cottages 0.894 £0.018 0.920 + 0.027 0.895 +0.023 0.881 £ 0.020 0.933 +0.029 0.907 + 0.021 0.942 +0.026
Res. Apa. 0.716 £ 0.038 0.767 + 0.031 0.752 £ 0.029 0.787 £ 0.029 0.838 +0.021 0.837 +0.030 0.857 £0.032
High Bui. 0.650 + 0.041 0.721 +0.032 0.755 +0.021 0.801 +0.021 0.902 +0.018 0.845 +0.029 0.907 +£0.017
Vegetation 0.946 £ 0.018 0.946 + 0.024 0.941 £ 0.021 0.945 +0.020 0.949 +0.019 0.945 + 0.022 0.948 £ 0.014
Roads 0.814 £ 0.050 0.933 +0.027 0.932 +0.025 0.944 +0.021 0.961 +0.016 0.908 + 0.026 0.960 + 0.015
Bare soil 0.970 £0.019 0.984+0.014 0.996 + 0.003 0.977 £0.013 0.973 +0.017 0.981+0.013 0.975 £0.014
Shadows 0.934 £ 0.020 0.943 +0.013 0.936 +0.016 0.949 £ 0.016 0.953 +0.017 0.947 £ 0.013 0.953 £0.015
Urban Vil. 0.720 £ 0.030 0.884 + 0.036 0.886 +0.025 0.865 +0.030 0.934 +0.019 0.852 +0.028 0.937 £0.016
Factories 0.970 £0.018 0.970 +0.023 0.989 + 0.008 0.961 £0.018 0.978 +0.013 0.952 +0.029 0.971 £0.023
OA 0.817 £0.011 0.882 +0.006 0.884 + 0.004 0.892 £ 0.005 0.931 + 0.006 0.898 + 0.006 0.934 £ 0.005
KC 0.786 £ 0.012 0.861 + 0.006 0.864 + 0.005 0.874 + 0.006 0.919 + 0.006 0.881 + 0.007 0.923 + 0.006
KCM 0.700 +0.018 0.830+0.014 0.831+0.010 0.848 £ 0.011 0.926 +0.014 0.859 + 0.009 0.929 £0.013
Table 5
The classification accuracies for ZY-3 dataset 2.
Class Raw Compared features The proposed ADF features
S S +AP S +nDSM S+P S+F S+L S+ PFL
Cottages 0.917 £ 0.028 0.963 + 0.029 0.964 +0.014 0.952 +0.024 0.959 +0.023 0.949 + 0.025 0.962 £ 0.014
Res. Apa. 0.658 £ 0.030 0.726 + 0.016 0.719 £ 0.041 0.719 £ 0.041 0.745 + 0.039 0.761 + 0.032 0.776 £ 0.033
High Bui. 0.566 + 0.035 0.716 + 0.033 0.795 + 0.024 0.791 £ 0.020 0.862 +0.021 0.842 + 0.020 0.870 £ 0.024
Vegetation 0.952 +0.010 0.931+0.017 0.938 £+ 0.015 0.938 £ 0.012 0.888 +0.016 0.927 +0.018 0.879 +0.021
Roads 0.796 + 0.034 0.861+0.015 0.848 +0.028 0.840 + 0.036 0.873 +0.023 0.864 + 0.025 0.881£0.016
Bare soil 0.919 £ 0.025 0.957 +0.021 0.953 £0.017 0.944 £ 0.023 0.954 +0.022 0.936 + 0.021 0.952 £0.022
Shadows 0.960 + 0.012 0.969 + 0.014 0.963 £+ 0.011 0.963 £ 0.010 0.964 + 0.009 0.959 +0.016 0.959 +0.014
Urban Vil. 0.664 + 0.022 0.829 + 0.036 0.726 £ 0.015 0.797 £ 0.035 0.801 +0.027 0.790 + 0.027 0.796 + 0.033
Factories 0.959 £ 0.023 0.960 + 0.021 0.968 +0.018 0.971 £0.019 0.956 + 0.022 0.951 +0.034 0.954 £ 0.026
OA 0.791 £ 0.011 0.853 + 0.008 0.858 + 0.009 0.863 +0.008 0.876 + 0.005 0.876 + 0.008 0.879 + 0.007
KC 0.761+£0.013 0.831 +0.009 0.837 £0.010 0.842 +0.009 0.857 + 0.006 0.857 + 0.009 0.861 + 0.008
KCM 0.657 £ 0.021 0.769 + 0.014 0.780 + 0.020 0.786 £ 0.013 0.840 + 0.010 0.817 £+ 0.015 0.848 £ 0.016
Table 6
The classification accuracies for ZY-3 dataset 3.
Class Raw Compared features The proposed ADF features
S S+ AP S +nDSM S+P S+F S+L S+ PFL
Cottages 0.904 +0.033 0.927 +0.039 0.916 + 0.029 0.966 + 0.016 0.972 +0.014 0.952 +0.024 0.982 +0.009
Res. Apa. 0.856 + 0.022 0.899 + 0.029 0.927 £0.018 0.876 £ 0.034 0.908 +0.023 0.925 +0.025 0.921 £0.029
High Bui. 0.806 +0.019 0.816 + 0.036 0.847 £ 0.029 0.905 +0.010 0.906 + 0.010 0.884+0.013 0.910 £ 0.010
Vegetation 0.928 £ 0.026 0.934 +0.027 0.923 +0.037 0.924 +0.031 0.879 + 0.030 0.926 + 0.033 0.884 +0.043
Roads 0.783 £ 0.041 0.920 + 0.027 0.856 + 0.024 0.873 £ 0.027 0.931 +0.028 0.870 + 0.030 0.931 £0.020
Bare soil 0.946 + 0.023 0.950 + 0.035 0.965 +0.019 0.966 +0.014 0.963 +0.027 0.950 + 0.019 0.959 +0.021
Shadows 0.952 + 0.020 0.955 + 0.021 0.950 + 0.027 0.947 +0.020 0.944 + 0.017 0.951 + 0.022 0.937 £0.013
Urban Vil. 0.882 £ 0.033 0.920 + 0.028 0.913 £ 0.031 0.946 + 0.027 0.946 + 0.015 0.915 + 0.027 0.948 £ 0.017
Factories 0.970 + 0.024 0.975+0.016 0.980+0.013 0.980 +0.018 0.979 +0.012 0.973 +0.015 0.981 £0.014
OA 0.889 + 0.009 0.922 +0.011 0.915 +£0.010 0.926 + 0.009 0.926 + 0.008 0.920 + 0.009 0.927 £0.010
KC 0.870 +0.011 0.908 + 0.013 0.900 +0.011 0.913 +£0.010 0.913 + 0.009 0.907 + 0.011 0.915+0.011
KCM 0.839 £+ 0.013 0.921+0.013 0.901 +0.013 0.920 £ 0.015 0.957 + 0.009 0.922 +0.014 0.960 + 0.009
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Fig. 11. Classification results with dataset 2: (a) S; (b) S+ nDSM; (c) S+AP; (d) S+P; (r) S+F; (f) S+L; and (g) S + PFL (see the color legend in Fig. 9).

significant improvement that can be attributed to the angular dif-
ference information. For example, in dataset 2, the most heteroge-
neous scene, the spectral bands show a relative inability to classify
the residential apartments, high buildings, and urban villages (see
the first column of Tables 4-6), and these classes have an accuracy
of less than 70%. After adding the multi-level ADFs, the accuracy
increase for each of these classes is as much as 11.8%, 30.4%, and
13.2%, respectively. The cottages and factories show a relatively
low accuracy improvement, because the spectral bands (S) already
achieve an accuracy of over 89% for these classes, which is possibly
due to the prominence of the distinctive colors of these classes.
By focusing on the accuracy of the ADFs at each level, the largest
OA improvement is obtained by ADF-feature (3.7-11.4%), followed
by ADF-label (3.1-8.5%), while ADF-pixel, as the raw and low-level
form of angular difference information, provides the modest but

(2)

still significant improvement (3.7-7.5%). On the one hand, this sug-
gests that extracting information from each image, whether at the
feature level or label level, can make better use of the multi-angle
information and provide an additional improvement in the classi-
fication performance. On the other hand, the satisfactory perfor-
mance of ADF-pixel, in spite of it being the rawest form of
angular difference information with the lowest feature dimension
(only one feature for an angle combination), is important to note,
and its performance can further indicate the effectiveness of the
angular difference information.

Comparing the two types of features derived from the stereo
images (i.e., nDSM and ADFs) with the AP, it can be seen that ADFs
significantly outperform APs, and nDSM yields very close accuracy
to APs. The improved classification accuracy of ADFs, as opposed to
APs, is mainly due to the improved classification of man-made
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Fig. 12. Classification results with dataset 3: (a) S; (b) S+ nDSM; (c) S+AP; (d) S+P; (r) S+F; (f) S+L; and (g) S + PFL (see the color legend in Fig. 9).

structures, as ADFs largely improve KCM. This indicates that multi-
angle information greatly increase the inter-class separability
between the most commonly misclassified man-made categories
in urban scenes.

When comparing ADFs and nDSM, the former presents a higher
accuracy. As mentioned previously, this is due to the fact that the
classification accuracy of nDSM can be affected by the matching
errors, which can be attributed to the severe occlusions and shad-
ows in complex urban scenes. For instance, as shown in Fig. 13, the
high buildings (marked with yellow boxes) are not recognized in
the nDSM but, instead, they are successfully identified by the ADFs,
since ADFs can capture the angular variation characteristics,
instead of extracting the elevation parallaxes which depend
strongly on the matching efficacy, as in the case of the nDSM. This
leads to an accuracy increment for high buildings from 6.3% to
15.2%, compared to nDSM. Another explanation for the superior
performance of ADFs is that the multi-level ADFs are able to further
explore the implicit angular information that is ignored by the
nDSM. Thus, they can be more useful for the delineation of man-
made class types with similar heights. In particular, in dataset 1,
the average nDSM values for residential apartments and urban vil-
lages are 16.5 m and 20.7 m, respectively, making it difficult to dis-
tinguish between residential apartments and urban villages using
the S+ nDSM feature set, due to their similar height and color.
However, the S + PFL feature set has a better ability to differentiate
between these two classes. For instance, the average values of F
(area) for residential apartments and urban villages are 34.8 and

62.7, respectively, showing an increase in the accuracy of residen-
tial apartments in dataset 1 from 75.2% (S + nDSM) to 85.7% (S +
PFL), and an increase in the accuracy of urban villages from
88.6% (S +nDSM) to 93.7% (S +PFL). A similar phenomenon can
also be observed for dataset 2, where the average nDSM value for
residential apartments and urban villages is 18.5 m and 21.2 m,
respectively. The multi-level ADFs (S + PFL) show gains in classifi-
cation accuracy for both classes compared to nDSM, with an
improvement of 5.7% for residential apartments and 7.0% for urban
villages. As the results show, ADFs offer obvious advantages over
nDSM for the delineation of man-made class types, and can further
improve the accuracy of urban classification.

3.4. Feature analysis of the multi-level ADFs

As reported in Section 3.3, the multi-level ADFs (S + PFL) can
significantly improve the classification results. Furthermore, it
would be interesting to quantitatively analyze the contribution of
the multi-level ADFs to the urban classification. Therefore, a fea-
ture contribution analysis was performed according to the feature
importance quantified by permutation importance (Breiman,
2001). This method randomly permutes the values of a feature in
all samples, and then classifies the out-of-bag samples (OOB, the
unchosen samples for training a decision tree) by the RF classifier.
The average decrease in accuracy over all the trees, caused by the
feature permutation, is regarded as the feature importance.

Fig. 13. Exemplary comparison between ADFs and nDSM with dataset 1: (a) true-color nadir image; (b) nDSM; (c) ADF-pixel (i.e., P); (d) ADF-feature built with the area
attribute (i.e., F(area)); and (e) ADF-label built with the shadow primitive (i.e., L(shadow)). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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The average and total feature contributions of the multi-level
ADFs are listed in Table 7. It is interesting to note that, according
to the average feature contributions, ADF-pixel appears to be the
most informative feature, followed by ADF-label. The contribution
of an individual attribute in the ADF-feature is relatively small.
However, it should be noted that the overall contribution of ADF-
feature is significant, considering that it is composed of a series
of APs that depict the urban scene characteristics from various per-
spectives. With respect to ADF-label, L(shadow) and L(build) both
have a large influence on the classification, which shows the
important role of shadows and building primitives for urban scene
representation and class separation.

We further analyzed which ADF features are the most relevant
for the various classes. However, ADF-feature has a significantly
higher feature dimension, which complicates the comparison of
the contribution of the different ADFs. To analyze the importance
of ADF-feature regardless of the choice of scale, the feature contri-
bution for each attribute was averaged over the different scales.
Without loss of generality, dataset 1 was utilized for the class-
specific feature contribution analysis (Fig. 14). The per-class contri-
bution of the features varies according to the class categories. The
spectral bands contribute most significantly to vegetation and sha-
dow, which show distinctive spectral properties. However, as the
categories of most interest in urban classification, i.e., buildings

Table 7

and roads, with similar spectral properties, they can only be effec-
tively identified by the proposed ADFs. Specifically, ADF-pixel
shows the largest contribution to discrimination of road and cot-
tage. This is possibly because ADF-pixel is a raw form of angular
difference with the least information loss. ADF-label plays a key
role in identifying soil. In general, the analysis of the class-
specific contributions indicates that it is necessary to include dif-
ferent ADF features which can complement each other in classify-
ing different land covers, by characterizing the angular properties
from different perspectives.

Moreover, it should be noted that ADFs can be built on different
combinations of viewing angles, i.e. nadir and forward (NF), nadir
and backward (NB), forward and backward (FB). Therefore, the
influence and performance of different combinations of angles for
classification were analyzed. Specifically, in this research, we
attempt two approaches to combine the ADFs calculated from dif-
ferent pairs: stacking (i.e., three sets of ADFs were concatenated
into one stacked feature vector), and the weighted average (i.e.,
three sets of ADFs were summed). The results show that the accu-
racy achieved by considering each pair separately is comparable to
the accuracy obtained by the stacked ADF (Table 8). Moreover, the
classification results of ADFs constructed on different angle combi-
nations exhibit similar accuracies, signifying that all the multi-
angle combinations contain rich and relevant angular information

The contribution of the multi-level ADFs. The values in brackets correspond to the dimension of the features. See Table 1 for a description of the feature set symbols. AC = average

contribution, TC = total contribution.

ADF-pixel (3) ADF-feature (96) ADF-label (9)
P F(area) F(std) F(diag) F(iner) L(back) L(build) L(shadow)

Dataset 1

AC 0.020 0.012 0.012 0.013 0.011 0.021 0.027 0.018
TC 0.060 0.294 0.300 0.304 0.260 0.062 0.082 0.055
Dataset 2

AC 0.021 0.011 0.014 0.017 0.009 0.018 0.023 0.023
TC 0.064 0.273 0.327 0411 0.206 0.053 0.068 0.070
Dataset 3

AC 0.027 0.015 0.012 0.017 0.016 0.025 0.017 0.023
TC 0.082 0.359 0.283 0.418 0.381 0.075 0.051 0.068
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L L L L L L L L L L
00 01 02 03 04 05 06 07 08 09 10 1.1

Feature Contribution

Fig. 14. The class-specific feature contributions of the multi-level ADFs. The symbols in the legend correspond to the specific features in Table 1.
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Table 8

The classification results for multi-level ADFs built on different angle combinations. NB, NF, and BF denote the angle combinations of nadir and backward, nadir and forward, and
backward and forward, respectively. ‘Stacked’ means the three pairs are concatenated in a feature vector. ‘Weighted’ denotes the weighted average of the three pairs. ‘Equal-
Weight’ means the weights for NB, NF, and BF are equal, and in the case of ‘Different-Weight’, the weight for the NB, NF, and BF is 1, 1, and 2, respectively.

Dataset Angle combinations Stacked Weighted
NB NF BF Equal-Weight Different-Weight
1 0.902 +0.010 0.905 + 0.008 0.910 + 0.006 0.923 +0.006 0.911 £ 0.007 0.914 + 0.006
0.857 +0.016 0.848 +0.011 0.840 + 0.005 0.861 +0.008 0.858 £0.012 0.858 +0.010
3 0.922 +0.016 0.919 +0.010 0.924 +0.010 0.915+0.011 0.915 +0.010 0.913 +0.010
Table 9
Kappa values of classification without superpixel based refinement. KC means kappa coefficient. KCM denotes kappa coefficient between man-made constructions.
Feature set Dataset 1 Dataset 2 Dataset 3
KC KCM KC KCM KC KCM
S 0.574 +0.008 0.320 + 0.008 0.558 + 0.006 0.323 £0.010 0.664 + 0.009 0.468 £ 0.013
S+ AP 0.721 £ 0.007 0.569 +0.014 0.697 + 0.006 0.540 + 0.012 0.838 +0.011 0.787 £0.019
S+ nDSM 0.774 £ 0.008 0.654 £0.011 0.725 £ 0.007 0.584 £0.010 0.791 £ 0.008 0.712 £0.014
S+P 0.663 + 0.008 0.477 £0.012 0.639 + 0.006 0.438 £ 0.007 0.781 + 0.007 0.693 £0.011
S+F 0.816 + 0.005 0.745 £ 0.005 0.703 + 0.007 0.589 £0.013 0.797 +0.014 0.844 £0.011
S+L 0.740 + 0.004 0.603 + 0.007 0.704 +0.010 0.563 +0.011 0.797 +0.008 0.744 + 0.009
S+ PFL 0.842 + 0.005 0.780 + 0.007 0.725 £0.010 0.627 £0.012 0.802 +0.016 0.862 + 0.009

for interpreting urban scenes. In addition, it can be seen that the
results achieved by the stacked ADFs are slightly better than those
by the weighted ADFs. Moreover, the weights have little influence
on the classification performances.

3.5. Analysis of superpixel-based refinement

In order to investigate the effectiveness of superpixel based
refinement, the classification results for the pixel-wise ADFs, as
well as other features (e.g., AP and nDSM), are presented (Table 9).
It can be observed that the ADFs can produce the highest overall
accuracy in most cases, except for the KC in dataset 2 and 3, where
the ADFs still give close accuracies to the highest value. Moreover,
in terms of the KCM (i.e., kappa coefficient between the man-made
classes), the best feature set is always the combination of spectral
bands and the multi-level ADFs (S + PFL), which once again con-
firms the effectiveness of the proposed ADFs over other features
when classifying man-made objects. By reference to the classifica-
tion results of the superpixel feature sets (Section 3.3), it can be
observed that by incorporating superpixel refinement, the ADFs
can achieve greater accuracy increments compared to other fea-
tures (e.g., nDSM, APs), which indicates that the spatial refinement
can further enhance the performance of ADFs, probably by reduc-
ing the salt-and-pepper effect.

3.6. Effects of the superpixel segmentation scale on the classification
results

Since the superpixel processing is an effective refinement for
ADFs, the relationship between the classification results and the
superpixel segmentation scale was further analyzed. Fig. 15 pre-
sents the effect of the segmentation size on the performance of
the S+PFL feature set (i.e., the combination of spectral bands
and the multi-level ADFs). In this figure, the horizontal axis indi-
cates the number of superpixels in the image, and the vertical axis
shows the corresponding average kappa of the 10 independent
tests. It can be seen that with the increase of the superpixel seg-
ment number, the classification accuracy quickly increases before
reaching a maximum, and then becomes relatively stable. This
trend can be expected, since the segmentation scale should be
large enough so that sufficient local angular information is cap-
tured but, at the same time, the scale should produce a reasonable
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Fig. 15. Relationships between the kappa values of the classification results and the
segmentation scales.

over-segmentation, so as to depict the subtle angular differences
and better describe the angular properties of small or narrow
objects (e.g., cottages and roads) in the heterogeneous urban
environment.

4. Conclusion

Multi-angle high-resolution images can provide abundant
angular information in both the spectral and spatial domains. In
this study, we have proposed novel multi-level angular difference
features (ADFs) for urban scene classification. The basis of ADFs
is that multi-angle observations provide a source of signal variabil-
ity on the urban structures, which in turn reveals the material and
structural characteristics of the urban objects. In greater detail, the
proposed method is composed of two main steps: (1) multi-level
angular feature extraction, which reveals the angular properties
at three levels (i.e., pixel, feature, and label levels); and (2)
superpixel-based refinement, in which the ADF features are refined
based on superpixel segmentation, for the purpose of alleviating
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the effects of noise and representing the main angular characteris-
tics within a local area. The experimental analysis was carried out
on three ZY-3 multi-angle datasets acquired over complex urban
scenes. Our results indicate that ADFs can characterize urban
classes and give promising results for detailed urban classification.
The classification results are far better than using the spectral
bands alone. More importantly and interestingly, the proposed
ADF features can outperform the state-of-the-art nDSM, as the lat-
ter can be subject to stereo image matching errors, especially for
high buildings in dense and heterogeneous urban scenes. In addi-
tion, ADFs also provided much better classification performances
than the state-of-the-art spatial and structural features, i.e., mor-
phological attribute profiles, which have been proven to be very
effective in high-resolution remote sensing urban classification
tasks (Bhangale et al., 2017; Licciardi et al., 2012; Mura et al.,
2010). Furthermore, the results indicate the superiority of the pro-
posed ADFs in discriminating spectrally similar man-made classes,
including roads and various types of buildings such as high build-
ings, urban villages, and residential apartments. On the one hand,
ADFs contain implicit height information and can help to discrim-
inate the spectrally similar classes with different height character-
istics. On the other hand, ADFs can also offer the possibility to
distinguish between man-made classes with similar heights but
with different spatial structures, such as residential apartments
and urban villages.

The proposed ADFs could still be further improved in certain
aspects. For instance, the current framework only considers the
vector stacking approach for the integration of the multi-level
ADFs, which does not necessarily result in the optimal perfor-
mance for multi-feature classification (Huang and Zhang, 2013).
In addition, the ADF features have the potential to estimate build-
ing height, which will be investigated in our future research.
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