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A B S T R A C T

Few studies have examined the influence of different data and method on estimating the SUHIs. This study aims
at analyzing the impact of different method (to define rural area) and different data (MODIS Terra and Aqua
satellite data) on estimating the SUHI intensity (SUHII, LST in urban minus rural reference) in 31 cities of China.
The major findings include: (1) For SUHII, ignoring the influence of elevation and water body will overestimate
the SUHII by 1.68 °C (averaged for 31 cities, hereafter) and 0.28 °C, respectively, in summer days (SDs). Using
nearby suburban area as reference will underestimate the SUHII by 1.48 °C in SDs. Different data and method
have smaller impact on estimating the SUHII in summer nights (SNs) than in SDs. (2) For spatial variation of
SUHII, ignoring the influence of elevation will influence the spatial variation of SUHII in SDs (r= 0.3, p > .05),
but other methods have little impact on estimating the spatial variation of SUHII. (3) For interannual variation of
SUHII, using nearby suburban area will underestimate the increasing rate of SUHII (SD: 0.106 °C/year, SN:
0.012 °C/year), whereas ignoring the influence of elevation and water body have little influence on the changing
rate of SUHII. The changing rates of SUHII in SDs monitored by Terra satellite were 0.025 °C/year lower than
Aqua satellite. In all, the present study can enhance our understanding of the influence of different data and
method on estimating the SUHII, and provide a useful reference to study the SUHII.

1. Introduction

Urbanization is accelerating around the world and brings a large
amount of natural and social problems, for example, urbanization can
lead to higher temperature in urban area than the nearby rural area.
This phenomenon is called urban heat island (UHI), which can bring a
series of negative effects to human beings (e.g. influencing the human
health (Goggins et al., 2012; Mohan and Kandya, 2015) and increase
energy consumption (Akbari et al., 2015)) and surface ecological en-
vironment (e.g. changing land surface phenology (Yao et al., 2017b;
Zipper et al., 2016) and damaging water and air quality (Grimm et al.,
2008)). Therefore, UHI studies contribute to many fields, including
atmospheric environment, ecology, natural landscape, architecture and
climatology, which has attracted more and more attentions from gen-
eral public and scientific experts in recent decades (Li et al., 2017a; Luo
and Lau. 2017; Sun et al., 2016; Wang et al., 2015a, 2016b; Zhou et al.
(2017a,b).

Generally, there are two kinds of UHIs: The first one was air UHI,
which was detected by in situ data (including within and above the
canopy layer) (Chen and Frauenfeld, 2015; Ren et al., 2008; Wang

et al., 2015a). However, the measured data from weather stations have
many limitations for estimating the UHIs. Firstly, the stations are
sparsely distributed and cannot completely reflect the UHIs for a whole
city (Zhou et al., 2014b). Secondly, most stations are located in urban
area and it is difficult to select rural stations that have not been affected
by UHIs (Wang et al., 2015a). Thirdly, the high-quality data from
weather stations are not available for all users (Wang et al., 2015b). The
second one was called surface UHI (SUHI), which was observed by
remote sensing products. Because of the full and wide coverage, open
and easy access, more researchers began to study the UHIs using remote
sensing technology. Due to the high temporal resolution (four times per
day by two satellite), MODIS land surface temperature (LST) data has
been used to study the SUHIs worldwide in recent years (Bounoua et al.,
2015; Du et al., 2016; Imhoff et al., 2010; Peng et al., 2012; Tran et al.,
2006; Wang et al., 2015b, 2016; Yao et al., 2017a; Zhou et al., 2014b).

An important parameter for studying SUHI was SUHI intensity
(SUHII), which was calculated as the LST in urban minus rural (Du
et al., 2016; Peng et al., 2012; Wang et al., 2015b; Zhou et al., 2014b),
therefore, it is necessary to select reliable rural references. However,
the methods to define the rural area varied greatly in different studies.
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Most studies calculated the SUHII between urban and nearby suburban
area (Clinton and Gong., 2013; Du et al., 2016; Li et al., 2017b; Liao
et al., 2017; Peng et al., 2012; Shastri et al., 2017; Wang et al., 2015b;
Zhao et al., 2016; Zhou et al., 2014b), whereas some studies calculated
the SUHII between urban and far rural areas (Imhoff et al., 2010; Yao
et al., 2017a–c; Zhang et al., 2014; Zhou et al., 2016b). Actually, some
studies showed that LST decreased gradually with rising distances from
urban area and the spatial extent of SUHIs was much greater than the
actual size of urban area (Han and Xu. 2013; Yao et al., 2017b; Zhang
et al., 2004; Zhou et al., 2015) and using nearby suburban area as re-
ferences may underestimate the SUHII (Zhou et al., 2016a, 2015). In
addition, it was necessary to exclude the impact of water body and
elevation on LST when calculating the SUHII (Haashemi et al., 2016;
Imhoff et al., 2010; Zhou et al., 2016a), but many studies have ignored
this point, for example, Zhang et al. (2014) and Wang et al. (2015b) did
not exclude the influence of water body, and almost all studies ignored
impact of elevation when using nearby suburban area (Clinton and
Gong., 2013; Du et al., 2016; Li et al., 2017b; Liao et al., 2017; Peng
et al., 2012; Wang et al., 2015b; Zhao et al., 2016, 2014b). Therefore,
the SUHII results may vary substantially in different cases, for example,
Peng et al., (2012) used nearby suburban areas as references to study
the SUHII and the results indicated that the mean summer SUHII during
2003–2008 averaged for 419 global big cities were 1.9 °C and 1.0 °C for
daytime and nighttime, respectively; Zhang et al. (2014) used 15–20 km
buffer as rural area and the mean summer SUHII during 2003–2005
averaged for more than 3000 global cities were 2.6 °C and 1.6 °C for
daytime and nighttime, respectively. There are large differences of
SUHII for above studies, therefore, it was necessary to comprehensively
analyze the impact of different methods in estimating SUHII at regional
scale.

In addition, MODIS LST data can be obtained from two satellites:
Terra and Aqua. Some studies used the Terra satellite to analyze the
SUHIs (Bahi et al., 2016; Du et al., 2016; Gawuc and Struzewska., 2016;
Morabito et al., 2016; Wang et al., 2016a; Yao et al., 2017a–c), whereas
other studies used the Aqua satellite (Imhoff et al., 2010; Peng et al.,
2012; Wang et al., 2015b; Zhao et al., 2016; Zhou et al., 2016a, 2014b,
2015). Previous study showed that the daytime SUHII monitored by
Aqua satellite was higher than the Terra (Clinton and Gong. 2013), but
the impact of different data on estimating the spatiotemporal variations
of SUHII remain unclear.

Therefore, to solve the above mentioned problems and fill the cur-
rent research gaps, a series of experiments were performed in this study.
Different methods (to define rural area) used by previous studies were
first analyzed and an appropriate method was selected. The influence of
different data and method on estimating the SUHII and spatiotemporal
variations of SUHII were also examined. The order of the rest paper is
organized as follows. Section 2 describes the study area, data and
method in this study. Section 3 shows the main results of the influence
of different data and method on estimating the SUHII. The discussion
and conclusions are presented in Section 4 and 5, respectively.

2. Data and methods

2.1. Data

In this study, the 31 major cities in China were selected as study
area because of the rapid urbanization and large variations in back-
ground climate and topography (Fig. 1). The 31 cities include 29 mu-
nicipalities or provincial capitals, Pearl River Delta urban agglomera-
tion (including Guangzhou, Shenzhen, Hongkong, Zhongshan,
Dongguan, Foshan, Zhuhai and Jiangmen) and Yangtze River Delta
urban agglomeration (including Shanghai, Wuxi, Suzhou and
Changzhou). China has experienced rapid urbanization and socio-
economic development in recent decades (Liu et al., 2010, 2012), the
total urban area in China increased from 4.85×104 km2 in 1990 to
9.08×104 km2 in 2010 according to Kuang et al. (2016), and the total

urban population in China increased from 308 million in 1990 to 779
million in 2015 (United Nations, 2014). Deterioration of urban en-
vironment was observed in China in recent years (He et al., 2017; Yao
et al., 2017c; Zhou et al., 2014a).

In this study, China’s Land Use/Cover Datasets (CLUDs, derived
from Landsat TM/ETM+ and HJ-1A/1B imagery, 5-year interval) for
the year 2000, 2005, 2010 and 2015 were used to extract the urban and
rural areas. The CLUDs were characterized by high spatial resolution
(30m), detailed classification (25 land cover types), high accuracy
(overall accuracy was higher than 90% for the 25 land cover types) and
wide coverage (for the whole China). Detailed information on the
CLUDs can be found in Liu et al. (2010, 2014) and Kuang et al. (2016).

LST was obtained from MOD11A2 (Terra satellite, 8 day composite,
1 km spatial resolution, at 10:30 am and 10:30 pm local solar time,
2003–2016) and MYD11A2 data (Aqua satellite, 8 day composite, 1 km
spatial resolution, at 1:30 am and 1:30 pm local solar time, 2003–2016)
(Haashemi et al., 2016; Yao et al., 2017a). Both MOD11A2 and
MYD11A2 have advantages: the MOD11A2 data have longer time series
(available since 2000) than MYD11A2 (available since 2002); the
monitoring time of MYD11A2 is closer to the time of occurrence of the
highest and lowest temperature in the diurnal cycle than that of
MOD11A2 (Clinton and Gong, 2013). In addition, the vegetation ac-
tivity was quantified by the enhanced vegetation index (EVI) using
MOD13A3 data (monthly composite, 1 km spatial resolution) (Liu et al.,
2015; Wang et al., 2015b). The higher EVI represents higher vegetation
coverage.

2.2. Methods

MODIS data (MOD11A2, MYD11A2 and MOD13A3) was first re-
projected (to Albers Equal Area projection) and moisacked using
MODIS Reprojection Tool (MRT). MOD11A2 data monitored at 10:30
am and 10:30 pm were used to represent the LSTs in daytime and
nighttime, respectively. MYD11A2 data detected at 1:30 pm and 1:30
am were used to represent the LSTs in daytime and nighttime, respec-
tively. We only studied the SUHII in summer since the SUHII was
generally higher in summer than in other seasons (Peng et al., 2012;
Wang et al., 2015b; Zhou et al., 2014b) and the UHIs in summer has the
largest impact on human lives (Goggins et al., 2012). Therefore, this
study mainly focused on two time periods: summer day (SD) and
summer night (SN).

The CLUDs were first combined into three major types: built-up area
(urban area, industrial land and rural settlement), water body and other
types. Then we used a moving window method to calculate the urban
development intensity (UDI, defined as the proportion of built-up area
in each 1 km×1 km pixel (Zhou et al., 2016a)) and proportion of water
body (PWB, defined as the proportion of water body in each
1 km×1 km pixel) maps. Finally, the areas with UDI more than 50%
were aggregated with aggregation distance of 2 km to generate urban
area (Liao et al., 2017; Zhao et al., 2016; Zhou et al., 2014b).

A total of 5 different methods were used in this study, including 4
different methods to define rural area according to previous studies
(Table 1 and Fig. 2). Method 1 and Method 2 used the same method to
define rural area but different data (Table 1). Rural areas in Method 1
and 2 were defined as Rural 1. Rural areas in Method 3, 4 and 5 were
defined as Rural 2, 3 and 4, respectively (Table 1 and Fig. 2). The Rural
1 was generated in two steps. Firstly, we produced 20–25 km buffer
based on the generated urban area previously. Secondly, the pixels
meeting one of the following requirements were excluded from the
20–25 km buffer: a) UDI higher than 5%; b) classified as water body;
and c) elevation outside the range of elevation of urban areas± 50m
(Table 1). The resultant area was defined as Rural 1. The methods to
define Rural 2, 3 and 4 can be found in Table 1. Note that the 20–25 km
buffer was according to previous studies (Zhou et al., 2016c; Yao et al.,
2017a,c), since the SUHI’s footprint was much greater than the urban
area size (Han and Xu. 2013; Yao et al., 2017b; Zhang et al., 2004; Zhou
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et al., 2015). We did not select further buffer area for reducing the
discrepancy of climate conditions between urban and rural areas (Yao
et al., 2017a; Zhou et al., 2015). The references that used similar
methods to define the rural area were listed in Table 1. The references
that used similar methods to study the SUHII and the study areas that
intersect with the 31 cities in this study were listed in Table 2. The
characteristics of each method can be summed up:

Method 1: Excluding all influence in estimating the SUHII.
Method 2: Excluding all influence in estimating SUHII but using
MOD11A2 data.
Method 3: Ignoring the influence of water body.
Method 4: Ignoring the influence of elevation.
Method 5: Using nearby suburban area as reference.

After urban and rural areas were generated, the SUHII was calcu-
lated using Eq. (1):

= −ΔLST LST LSTurban rural (1)

where the LSTurban and LSTrural are the average LSTs for all the pixels in
urban and rural areas, respectively. Therefore, ΔLST is the SUHII. In
addition, the △EVI and △elevation was calculated using the same
method as in Eq. (1).

To analyze the influence of different data and method on estimating
the SUHII and the spatiotemporal variations of SUHII in China, we
performed a series of experiments:

a) In the Section 3.1, we examined: (1) UDI in Rural 4; (2) △elevation
between urban area and Rural 4; (3) △elevation between urban
area and Rural 3; (4) PWB in Rural 2. Note that certain methods
have excluded the influence of pixels with high UDI or elevation or
water body. Thus we did not analyze the UDI, △elevation and PWB
in these methods.

b) In the Section 3.2, CLUD in the year 2015, MODIS data for the
period 2014–2016 and five methods mentioned above were used to
analyze the influence of different data and method on estimating the
SUHII.

c) In the Section 3.3, Pearson’s correlation analysis was used to ex-
amine if different data and method influenced the spatial variations
of SUHII. In addition, the spatial variations of SUHII and their re-
lationships with △EVI were examined. Pearson’s correlation ana-
lyses were performed across 31 cities in China.

d) In the Section 3.4, union area of urban areas in the year 2000, 2005,
2010 and 2015, above mentioned five methods and MODIS data for
the period 2003–2016 were used to analyze the influence of dif-
ferent data and method on estimating the interannual variations in
SUHII (Yao et al., 2017c). We studied the interannual variations of
SUHII in the union urban areas for the purpose of comparing SUHII
in the stationary areas across different years and examining the
overall variation trends of urban areas (including urbanization and
industrial relocation on SUHII (Yao et al., 2017c). Linear regression
analyses were used to examine the interannual variations in SUHII.
The interannual variations in SUHII and their relationships with
△EVI were further examined. Pearson’s correlation analyses were
performed in each city during 2003–2016.

3. Results

3.1. Overview of different methods

3.1.1. The UDI in Rural 4
Most studies used the nearby suburban area around the urban area

as reference and did not exclude the pixels with high UDI. We first
calculated the UDI in the nearby suburban area (Rural 4) in each city in
the year 2015 (Fig. 3a). The UDI in the Rural 4 averaged for 31 cities
was 0.225. In addition, we calculated the UDI difference (UDID) in

Fig. 1. The locations of 31 cities in China: Harbin (HB), Changchun (CC), Urumqi (UQ), Shenyang (SY), Hohhot (HT), Beijing (BJ), Tianjin (TJ), Yinchuan (YC), Shijiazhuang (SJZ),
Taiyuan (TY), Jinan (JN), Xining (XN), Lanzhou (LZ), Zhengzhou (ZZ), Xi’an (XA), Nanjing (NJ), Yangtze River Delta Urban Agglomeration (YRDUA), Heifei (HF), Hangzhou (HZ), Wuhan
(WH), Chengdu (CD), Chongqing (CQ), Nanchang (NC), Changsha (CS), Fuzhou (FZ), Guiyang (GY), Kunming (KM), Nanning (NN), Pearl River Delta Urban Agglomeration (PRDUA),
Haikou (HK) and Lhasa (LS). The background land cover map was China’s Land Use/Cover Datasets (in the year 2010).
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Rural 4 in each city between year 2000 and 2015 (Fig. 3b). The UDI in
Rural 4 was higher in 2015 than that in 2000 for all cities. The UDID
averaged for 31 cities was 0.103. It suggested that the Rural 4 may not
be reliable rural references, and have errors in estimating SUHII and the
interannual variations of SUHII. Therefore, for accurately calculating
SUHII and the interannual variations of SUHII, it was necessary to use
further rural area and exclude the pixels with high UDI.

3.1.2. The △elevation between urban area and Rural 3 or Rural 4
We examined the △elevation (elevation in urban minus rural) be-

tween urban area and Rural 3 (Fig. 4a) or Rural 4 (Fig. 4b). For all cities
combined, the △elevation between urban area and Rural 3 was
-195.34. There were more than half of the cities (18 out of 31) with
△elevation lower than −50m (Fig. 4a). In addition, the △elevation
between urban and Rural 4 averaged for 31 cities was −37.68. Al-
though the Rural 4 was close to the urban area, the △elevation were
lower than −50m in more than one quarter of the cities (8 out of 31)
(Fig. 4b). Therefore, the influence of elevation cannot be ignored when
calculating the SUHII.

3.1.3. The PWB in Rural 2
We examined the PWB in Rural 2 in each city (Fig. 5). The PWB in

Rural 2 averaged for 31 cities was 0.11. There were more than one-third
(12 of 31 cities) of the cities with PW higher than 0.1, thus the impact of
water body (may be small) cannot be ignored when calculating the
SUHII.

It is clear from above analysis that the influence of pixels with high
UDI, elevation and water body on estimating the SUHII cannot be ig-
nored. Rural 1 may be more appropriate to study the SUHII and the
interannual variations of SUHII than other methods, since Rural 1 ex-
cluded all mentioned impact and may accurately reflect the actual ur-
banization effects on LST. In following sections, we will analyze the
influence of different data and method on estimating SUHII, spatio-
temporal variations of SUHII and relationships between SUHII and
vegetation. Method 1 seemed as a best method, and other methods were
compared with Method 1 separately in following sections.

3.2. The influence of different data and method on estimating the SUHII

3.2.1. The SUHII in SDs
Different data and method have great impact on estimating SUHII in

SDs (Table 3 and Fig. 6). The SUHII in SDs averaged for 31 cities ex-
amined by Method 1 was 3.87 °C, which was much higher than the
Method 2 (3.18 °C). The SUHII in SDs examined by Method 1 was
higher than the Method 2 in 29 of 31 cities (Fig. 6a). These findings
suggested that the SUHII in SDs monitored by Aqua satellite was gen-
erally higher than Terra satellite. Meanwhile, ignoring the impact of
water body (Method 3) will overestimate the SUHII in SDs by only
0.28 °C averaged for 31 cities (Table 3), and nearly all points were close
to the 1:1 line (Fig. 6b), which can be attributed to the less water body
in Rural 2. Furthermore, ignoring the impact of elevation (Method 4)
will overestimate the SUHII in SDs by 1.68 °C averaged for 31 cities
(Table 3 and Fig. 6c). Finally, for all cities combined, using nearby
suburban area (Rural 4) will underestimate the SUHII in SDs by 1.48 °C
(Table 3)

3.2.2. The SUHII in SNs
Different data and method have smaller impact on estimating SUHII

in SNs (Table 3 and Fig. 7). For all cities combined, the SUHII in SNs
monitored by Aqua satellite was nearly equal to Terra satellite (1.55 °C
vs. 1.62 °C; Table 3). Ignoring the impact of water body will under-
estimate the SUHII in SNs by 0.16 °C. Meanwhile, neglecting the impact
of elevation (Method 4) will overestimate the SUHII in SDs by 0.87 °C
averaged for 31 cities (Table 3). In addition, using nearby suburban
area (Rural 4) will underestimate the SUHII in SNs by 0.43 °C averaged
for 31 cities (Table 3).Ta
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3.3. The influence of different data and method on estimating the spatial
variations in SUHII

Spatially, the Method 2, 3 and 5 have few effects on spatial varia-
tions of SUHII in SDs (Fig. 6). The Pearson’s correlations were all sig-
nificant at 0.01 level. However, Method 4 has large effects on spatial
variations of SUHII in SDs, the correlation coefficient was only 0.3
(p > .05). This finding suggested that neglecting the influence of ele-
vation will largely influence the spatial variations of SUHII in SDs.

All above methods have little effects on spatial variations of SUHII
in SNs (Fig. 7), the Pearson’s correlations between Method 1 and other
methods were all significant at 0.01 levels. The lowest correlation
coefficient was between the Method 1 and Method 4 (0.59, p < .01,
Fig. 7).

All methods also have little effects on estimating the spatial varia-
tions of interannual changing rates of SUHII in SDs and SNs, the cor-
relations were all highly significant (p < .01) (Figs. 8 and 9). The

Fig. 2. The schematic diagrams of (a) Rural 1: rural areas in the Method 1 and Method 2, (b) Rural 2: rural areas in the Method 3, (c) Rural 3: rural areas in the Method 4, (d) Rural 4:
rural areas in the Method 5.

Table 2
The references that used similar methods to define rural area and their study areas in-
tersect with the 31 cities in this study.

References Study area Method

Zhou et al. (2016a) 32 cities in China Method 1
Zhou et al. (2016b) 32 cities in China Method 1
Yao et al. (2017c) 31 cities in China Method 1
Zhang et al. (2014) Over 3000 cities globally Method 3
Yao et al. (2017a) 10 cities in China’s Yangtze River Basin Method 4
Yao et al. (2017b) Northeast China Method 4
Zhou et al. (2014b) 32 cities in China Method 5
Du et al. (2016) 101 cities in China’s Yangtze River Delta Method 5
Liao et al. (2017) 32 cities in China Method 5
Wang et al. (2015b) 67 cities in China Method 5
Zhao et al. (2016) 32 cities in China Method 5
Huang et al. (2017) Shanghai Method 5
Yang et al. (2017) 332 cities in China Method 5
Peng et al. (2012) 419 cities globally Method 5

Fig. 3. (a) The UDI in Rural 4 in the year 2015 in each city. (b) The UDI difference (UDID) in Rural 4 from 2000 to 2015 in each city.
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lowest correlation coefficient was between Method 1 and Method 5
(SDs: 0.73, p < .01, Fig. 8; SNs: 0.75, p < .01, Fig. 9).

Different methods can influence the correlation analyses between
SUHII and △EVI across cities (Table S1). Method 3 and 4 have large
impact on correlation analyses between SUHII and △EVI across cities
(Table S1). In addition, the SUHII in SNs was generally invariant with
△EVI across cities (Table S1).

3.4. The influence of different data and method on estimating the
interannual variations in SUHII

The interannual increasing rate of SUHII in SDs averaged for 31
cities monitored by Aqua satellite was much higher than Terra satellite
(1.32 °C/year vs. 1.07 °C/year; Table 3), nearly all cities were below the
1:1 line (Fig. 8a), but the result is opposite when it comes to the SUHII
in SNs (0.35 °C/year vs. 0.34 °C/year; Table 3 and Fig. 9a). Meanwhile,
ignoring the influence of elevation and water body have few effects on
both changing rates of SUHII in SDs and the SNs. The increasing rates of
SUHII estimated using methods 1, 3 and 4 were nearly equivalent

(Table 3). Moreover, using Rural 4 has the largest effects on estimating
the interannual variations of SUHII, which underestimate the increasing
rates of SUHII in SDs and SNs by 0.106 °C/year and 0.012 °C/year, re-
spectively (Table 3).

Additionally, different methods have little influence on correlation
analyses between SUHII and △EVI across years (Table S1). The Pear-
son’s correlation coefficients across years averaged for 31 cities esti-
mated by different methods were nearly equivalent (Table S1).

4. Discussion

4.1. The influence of different data and method on estimating the SUHII

4.1.1. The SUHII in SDs
Different data and method have great impact on estimating the

SUHII in SDs according to above mentioned results (Table 3 and Fig. 6).
Ignoring the impact of elevation (Method 4) will overestimate the
SUHII in SDs (Table 3). The increases in elevation can reduce the LST
and ultimately influence the SUHII, which suggests that the influence of
elevation must be removed when calculating the SUHII. In addition,
ignoring the impact of water body (Method 3) will also overestimate
the SUHII in SDs (Table 3), which can be attributed to the lower day-
time LST of water pixels.

The SUHII in SDs monitored by Aqua satellite was higher than Terra
satellite (Table 3), which was consistent with Clinton and Gong (2013).
This is possibly due to the different monitoring time between Aqua
satellite (1:30 pm) and Terra satellite (10:30 am) during the daytime.
The monitoring time of Aqua satellite is closer to the maximum LST in a
diurnal cycle than Terra satellite. It may be also closer to the maximum
SUHII in a diurnal cycle since urban area warms faster than the rural
area.

Using nearby suburban area will largely underestimate the SUHII in
SDs (Table 3), which was consistent with Zhou et al. (2015, 2016a).
This can be attributed to the high UDI in Rural 4. Generally, each pixel
can be composed of multiple cover types (e.g. built-up area, water
body, cropland and forest), especially for the coarse spatial resolution
of MODIS LST data (1 km). Pixels in nearby suburban areas (Rural 4)
may contain some built-up areas, therefore, using nearby suburban area
may underestimate the SUHII in SDs.

4.1.2. The SUHII in SNs
In addition, different data and method have smaller impact on es-

timating the SUHII in SNs (Table 3 and Fig. 4). Ignoring the impact of
elevation (Method 4) will overestimate the SUHII in SNs by 0.87 °C
averaged for 31 cities (Table 3). In contrast to the SUHII in SDs, the
SUHII in SNs estimated using Method 3 was 0.16 °C lower than the
Method 1 (Table 3). This phenomenon can be explained by the prop-
erties of water body. Water body normally cool and heat more rapidly
than other land cover types, therefore, water body generally has lower
and higher LST than other land cover types (e.g. forest, cropland)
during the daytime and nighttime, respectively. Next, SUHII in SNs

Fig. 4. (a) △elevation between urban area and Rural 3 in each city. (b) △elevation between urban area and Rural 4 in each city.

Fig. 5. The proportion of water body (PWB) in Rural 2 in each city.

Table 3
The comparisons of surface urban heat island intensity (SUHII) and temporal trends of the
SUHII averaged for 31 cities between different methods. SDs: summer days, SNs: summer
nights.

Results Method 1 Method 2 Method 3 Method 4 Method 5

SUHII on SDs (°C) 3.87 3.18 4.15 5.55 2.39
SUHII on SNs (°C) 1.55 1.62 1.39 2.42 1.12
Temporal trends of

SUHII on SDs
(°C/year)

0.132 0.107 0.135 0.134 0.026

Temporal trends of
SUHII on SNs
(°C/year)

0.035 0.034 0.033 0.039 0.023
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monitored by Aqua satellite was nearly equivalent with Terra satellite
(Table 3), which suggested that the SUHII in SNs changed little over
time. In addition, using nearby suburban area will largely

underestimate the SUHII in SNs by 0.43 °C averaged for 31 cities
(Table 3), which might also be related to the high UDI in Rural 4.

It was interesting that different data and method have smaller

Fig. 6. Influence of different data and method on spatial variations of surface urban heat island intensity (SUHII) in summer days (SDs). A dot represented a city.

Fig. 7. The influence of different data and method on spatial variations of SUHII in summer nights (SNs).
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impact on estimating the SUHII in SNs than SDs (Table 3). This can be
explained by two reasons. Firstly, the SUHII in SDs was much higher
than SNs and the LST gradient from urban to rural area in SDs was
much larger than that in SNs. Secondly, the driving forces of SUHII
between SDs and SNs were different (Zhao et al., 2016; Zhou et al.,

2015). The dominant drivers of SUHII in SDs were built-up area and
vegetation coverage, while in SNs were due to the anthropogenic heat
release and albedo (Liao et al., 2017; Peng et al., 2012; Zhao et al.,
2016; Zhou et al., 2014b). The UDI was closer related to the SUHII in
SDs than SNs, thus the built-up areas in Rural 4 can lead to higher

Fig. 8. Influence of different data and method on spatial variations in changing rates of SUHII in SDs.

Fig. 9. Influence of different data and method on spatial variations in changing rates of SUHII in SNs.
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discrepancy of SUHII in SDs than SNs (Zhao et al., 2016).

4.2. The influence of different data and method on spatial variations of
SUHII

Different data and method have little effects on spatial variation of
SUHII, mostly owing to the large variation of background environment
in China. The great elevation gradient decreasing from west to east and
background climate gradient from hot-wet climate in southeast to cold-
dry climate in northwest can lead to highly different background en-
vironment in China (Zhou et al., 2014b). Therefore, the spatial varia-
tion of SUHII may be less affected by different data and method.

The correlations between SUHII and △EVI across cities estimated
using Method 3 and Method 4 were smaller than Method 1, 2 and 5
(Table S1). The correlations estimated using Method 4 was insignificant
(p < .05), which was different from previous studies (Peng et al.,
2012; Zhou et al., 2014b). The water body in rural areas and △ele-
vation between urban and rural areas may also influence the SUHII,
which further proved that it was necessary to exclude influence of water
body and elevation when analyzing the SUHII. In addition, the SUHII in
SNs was generally invariant with △EVI across cities, which was similar
to previous studies (Peng et al., 2012; Zhou et al., 2014b). This can be
attributed to the much lower evapotranspiration during nighttime than
daytime (Peng et al., 2012; Zhou et al., 2014b).

4.3. The influence of different data and method on interannual variations of
SUHII

It is interesting that neglecting the influence of elevation and water
body has little effects on estimating the interannual variation of SUHII,
although it has large effects on estimating the SUHII (Table 3). When
using Method 3 and Method 4 to estimate the interannual variation of
SUHII, the overestimation existed in each year, therefore, using Method
3 and Method 4 will not influence the interannual changing rate of
SUHII in theory. In addition, we suggested not to exclude the influence
of elevation when analyzing the interannual variation of SUHII, since:
a) more pixels will be contained in rural area when not excluding the
influence of elevation, the background LST change may be more ac-
curately reflected, and b) the plains may be more affected by human
activities than high mountains. Most cities in China are located in plains
and surrounded by some mountains, the main vegetation types in
mountains and plains are forest and cropland. The cropland may be
affected by human activity (e.g. irrigation, planting and harvest) and
cannot accurately reflect the background LST change (Yao et al., 2017b;
Zhou et al., 2016c). Therefore, not excluding the influence of elevation
can more accurately reflect the background LST change.

The SUHII in SDs monitored by Aqua satellite was higher than Terra
satellite, this was consistent with Clinton and Gong. (2013). We further
found that the increasing rate of SUHII in SDs monitored by Aqua sa-
tellite were usually higher than Terra satellite (Table 3). The newly
built urban areas may have higher SUHII in SDs in early afternoon
(Aqua satellite monitoring time) than morning (Terra satellite mon-
itoring time). Thus the increasing rate of SUHII in SDs monitored by
Aqua satellite may be higher than Terra satellite. We can infer from this
study that the increasing rate of SUHII in SDs will be higher in previous
studies (Yao et al., 2017a,c) if it was monitored at the same time using
MYD11A2 data.

In this study, using nearby suburban area (Rural 4) will under-
estimate the SUHII, This was consistent with Zhou et al., (2015, 2016a).
We further found that using nearby suburban area will underestimate
the increasing rate of the SUHII. This can be attributed to the rapid
urbanization in nearby suburban area. The UDI in Rural 4 increased
from 0.108 to 0.210 averaged for 31 cities. Furthermore, the SUHII in
SDs estimated using Method 1 increased at the rate of 0.132 °C/year,
the SUHII in SDs estimated using Method 5 increased at the rate of
0.026 °C/year. These results suggested that the SUHII in SDs in nearby

suburban areas increased at the rate of 0.106 °C/year.
In our previous studies, we analyzed the interannual variation in

SUHII using MOD11A2 data since it has longer time series (Yao et al.,
2017a–c). We can infer from this study that the increasing rate of SUHII
on SDs will be higher in our previous studies if it was monitored at the
same time using MYD11A2 data. In addition, the methods of our pre-
vious studies were mentioned in Table 1.

Interestingly, although using Method 3 and Method 4 will influence
the correlation analyses between SUHII and △EVI across cities, it will
not influence the correlation analyses across years (Table S1). The in-
terannual variations in SUHII in a city may not be affected by elevation
since the elevation may not change across years and the overestimation
of SUHII existed in each year, thus vegetation may be dominant driver
for interannual variation of SUHII in China. The strongest correlation
was estimated by Method 4 (−0.594), which can also be attributed to
vegetation type. The human activity may have more effects on cropland
than forest. This further suggested that it was not necessary to exclude
the influence of elevation and water body when analyzing the inter-
annual variation of SUHII. In addition, not excluding the influence of
elevation may be a better choice.

4.4. Suggestions and future works

From above analyses we can find that different data and method
have large impact on estimating the SUHII. We suggest to use Method 1
(excluding all influence in estimating the SUHII) to study the spatial
variation of SUHII. Previous studies that used unreliable methods to
study SUHII may need to be reevaluated.

For studying the interannual variation in SUHII, it was not necessary
to exclude the influence of elevation and water body, but it was ne-
cessary to use far rural area and exclude pixels with high UDI. Previous
studies primarily investigated the diurnal, seasonal and spatial varia-
tion of SUHII, relatively few studies examined the interannual variation
of SUHII at regional and global scales due to the short time series of
MODIS LST products (Yao et al., 2017a,c; Zhou et al., 2016b). Thus, this
study can provide valuable information for studying the interannual
variation of SUHII in China or other country.

There were still some methods to define rural area that not men-
tioned in this study. For example, Ward et al., (2016) used the inner
urban LST differences to calculate the SUHII. Cao et al., (2016) only
selected several pixels outside the urban area as rural areas. Quan et al.,
(2016) only used the croplands as rural areas. Thus, to make the results
comparable across different studies, a universal method to quantify the
SUHII needs to be introduced in future.

5. Conclusions

In this study, we analyzed the impact of different method (to define
rural area) and different MODIS data on estimating the SUHII, spatio-
temporal variation of SUHII and the relationships between SUHII and
△EVI.

The results showed that using nearby suburban area (Rural 4) will
underestimate the SUHII in SDs, while ignoring the influence of ele-
vation and water body will overestimate the SUHII in SDs. The SUHII in
SDs monitored by Terra satellite was lower than Aqua satellite. Ignoring
the influence of elevation will obtain insignificant correlations between
SUHII and vegetation across cities in SDs. Different data and method
have smaller influence on SUHII in SNs.

Meanwhile, ignoring the influence of elevation will influence the
spatial variation of SUHII in SDs, while other methods and different
data have little influence on estimating the spatial variations of SUHII.

Moreover, using nearby suburban area will underestimate the in-
creasing rate of SUHII, but ignoring the influence of elevation and water
body has little influence on estimating the interannual changing rate of
SUHII. The interannual increasing rate of SUHII in SDs monitored by
Terra satellite was lower than Aqua satellite. All data and method have
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little influence on correlation analyses between SUHII and vegetation
across years.

Therefore, we suggested to exclude the influence of water body,
elevation, and use far rural area from urban area for calculating the
SUHII. For studying the interannual variation of SUHII, it was necessary
to use far rural area from urban area, but it was not necessary to ex-
clude the influence of elevation and water body.

Overall, this study comprehensively analyzed the influence of dif-
ferent data and method on estimating the SUHII for the first time. It can
be concluded that different data and method have large impact on es-
timating SUHII in China. Attentions should be paid to the data and
method for estimating SUHII. This study can provide a valuable re-
ference to study the SUHII for future studies. Some previous methods to
study SUHII need to be reevaluated. In addition, a universal method to
quantitatively quantify the SUHII needs to be proposed in future stu-
dies.
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