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Monitoring of Urban Impervious Surfaces Using
Time Series of High-Resolution Remote Sensing
Images in Rapidly Urbanized Areas: A Case
Study of Shenzhen
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Abstract—Knowledge of impervious surface changes is impor-
tant for understanding the urban environment and human activ-
ity. Most of previous studies have investigated impervious surface
change at a macro level (e.g., urban expansion) using medium-
resolution images but ignored the subtle changes within urban
areas. High-resolution images have great potential to precisely
monitor the detailed characteristics of impervious surfaces. How-
ever, very few studies focused on this issue using multitemporal
high-resolution data. In this study, we aimed to resolve these prob-
lems and investigate the impervious surface characteristics using
high-resolution time-series data. The experiments were performed
on Shenzhen, a megacity in China that has experienced rapid
urbanization over the past three decades. The images were ac-
quired by QuickBird (2.4 m), WorldView-2 (2 m), and WorldView-
3 (1.2 m) at ~2-year intervals from 2003 to 2017. The presented
method integrating multiple features was found to be effective in
extracting impervious surfaces from the high-resolution images
(kappa coefficient greater than 0.90), and the average accuracy
of the change detection was 75%. Courtesy of the high-resolution
imagery, it was revealed that the impervious surfaces can be con-
verted back to pervious surfaces, and some regions have shown
repeated changes due to the urban renewal planning. It was also
found that impervious surfaces in Shenzhen gradually increased
before 2012, but subsequently showed a decreasing tendency, re-
flecting the adjusted strategies for urban development. Qur results
demonstrate that high-resolution images are essential for precise
impervious surface monitoring, and can provide deep insights into
urban development patterns during the process of urbanization.

Index Terms—Change detection, high-resolution images, imper-
vious surfaces, time-series analysis, urban.
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1. INTRODUCTION

MPERVIOUS surfaces are generally defined as artificial ma-
I terials that water cannot infiltrate, and are mainly associated
with buildings and transportation (e.g., street, pavement, parking
lot) [1]. Although currently occupying only a small proportion
of Earth’s terrestrial surface, impervious surfaces have a great
impact on human beings. Besides being a primary component
of urban land cover and an important indicator of the degree of
urbanization, impervious surfaces also significantly affect the
urban environment, such as surface runoff, air quality, and the
urban heat island effect [2], [3]. In recent years, the developing
countries (e.g., China) have undergone rapid urbanization, with
frequent changes related to impervious surfaces. Apart from ur-
ban expansion, the subtle changes of impervious surfaces within
urban areas are also very common due to the construction and
demolition of buildings in the process of urban development [4].
Knowledge of such detailed characteristics of impervious sur-
faces across time-series data is highly desired since it can help
us to understand the urbanization process and make proper ur-
ban planning proposals. Accordingly, the accurate and detailed
monitoring of impervious surfaces is of great importance for
many urban- and environment-related applications.

The remote sensing technique has been widely applied in the
monitoring of urban impervious surfaces, due to its large-scale
coverage and high temporal frequency [5]. Motivated by the
significance of impervious surfaces, numerous studies have fo-
cused on impervious surface monitoring using remote sensing
data, most of which have employed medium-resolution satel-
lite images such as the Landsat series [3], [6]. Because of the
mixed pixel effect caused by the limited spatial resolution and
the complicated urban landscapes, the results extracted from
medium-resolution images usually have limited accuracy [2].
More importantly, these studies have mainly focused on imper-
vious surface change at a macro level (e.g., urban expansion),
based on the assumption that impervious surfaces are rarely
converted back to pervious surfaces [5], [7]. However, in fact,
this assumption is not always satisfied during the process of
rapid urbanization in developing countries. For instance, Shen-
zhen in China, which was a small fishing village in the 1970s,
has now developed into a large modern city, resulting in a large
number of complicated urban land-cover and land-use changes.
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Moreover, in recent years, the Chinese government has paid
increasing attention to protecting the urban environment and
promoting ecosystem services [8]. It is now common that im-
pervious surfaces are converted back to pervious surfaces with
a stronger ecological function during the process of urban de-
velopment. In addition, some regions may have changed more
than once due to the urban renewal policies (e.g., demolition of
old buildings and reconstruction of new architecture) [9]. Ac-
cordingly, the assumption of irreversible urban transition is not
suitable when dealing with frequent urban changes, and the tra-
ditional medium-resolution data fail to effectively capture such
impervious surface change information within urban areas [4].

In recent years, the availability of multitemporal high-
resolution imagery provided by different satellite sensors such
as QuickBird and WorldView has offered a new opportunity for
detailed impervious surface trajectory monitoring within urban
areas, e.g., demolition and reconstruction of urban infrastruc-
ture at different times but the same location, and hence supports
a more in-depth understanding of urban development patterns
[10]. Some related studies have investigated urban land-cover
changes through bi-temporal comparison [11], [12], but very
few studies have focused on the monitoring of impervious sur-
faces using time series of high-resolution images to characterize
the change profiles of impervious surfaces within urban areas.
This can be attributed to the data availability and the large spa-
tial heterogeneity in multitemporal high-resolution images (e.g.,
different viewing angles, illumination conditions, spatial regis-
tration errors, and different shadow sizes and shapes). These
issues make it difficult to detect accurate and reliable changes
from high-resolution imagery. It is widely acknowledged that
change detection at the pixel level can lead to a large number
of false alarms when conducting change analysis from high-
resolution images of complicated urban landscapes [13], [14].
Therefore, in this study, we performed impervious surface mon-
itoring based on the grid level, which can mitigate the spatial
heterogeneity in the multitemporal high-resolution images. This
strategy is also called hot-spot detection, which has been used
in some studies when dealing with change detection from high-
resolution images [11], [15], [16].

In the meantime, the accurate multitemporal extraction of im-
pervious surfaces is also of great importance since it provides
an underlying basis for the subsequent time-series analysis.
Although the high-resolution images provide great potential
to extract much more detailed impervious surface information,
new problems (e.g., the high spectral variation of impervious
surfaces and the shadows caused by high buildings) arise with
these image data [1]. Different methods, including pixel-based
and object-based methods, have been developed to extract im-
pervious surfaces from high-resolution images [2], [17]. Many
studies have demonstrated that the object-based methods out-
perform the pixel-based methods [18], [19]. Specifically, in
some studies, the shaded areas are treated as a single class
or further classified to reduce the impact of shadows [20], [21].
However, the accurate extraction of impervious surfaces from
high-resolution images remains a big challenge, and in the cur-
rent research, the abundant spatial information (e.g., textural,
shape information) inherent in high-resolution data and the

semantic information of the shaded areas (e.g., class-related
spatial relations) have not been fully investigated to promote
the accuracy of impervious surface mapping. For instance, the
spatial and semantic features can complement each other by
characterizing image properties from different perspectives to
improve the discrimination among spectrally similar objects
(e.g., bright impervious surfaces and soil; dark impervious sur-
faces and water and shadow). Accordingly, in this study, we
attempted to use multiple features, including spectral, textural,
shape, and class-related features, for impervious surface extrac-
tion. The proposed multifeature framework can make full use
of the information provided by the high-resolution images to
produce a more accurate estimation of impervious surfaces.

In summary, this study was aimed at addressing the key issues
for the monitoring of impervious surfaces within urban areas us-
ing time series of high-resolution data. The method was applied
in multitemporal images of Shenzhen, a typical megacity in
China, at ~2-year intervals from 2003 to 2017. The research
objectives of this study were:

1) accurate impervious surface extraction using the multiple
features inherent in high-resolution data to deal with the
land-cover confusion and shadow problems;

2) investigation of the detailed characteristics of impervi-
ous surfaces spanning 15 years (e.g., location, type, and
frequency of change) in Shenzhen;

3) analysis of the urban development pattern in Shenzhen
during the past years (e.g., infrastructure construction,
ecosystem services promotion, and urban renewal).

II. STUDY AREA AND DATA SETS

In this study, Shenzhen, a typical megacity in China, was
selected for the monitoring of urban impervious surfaces. Shen-
zhen, located in Guangdong province, is one of the largest cities
in the Pearl River Delta. As China’s first special economic zone,
it has experienced astonishing economic and urban develop-
ment, from a tiny rural town to a large city with a population of
more than 10 million over the past 30 years [22]. A number of
complicated impervious surface changes have taken place dur-
ing the process of rapid urbanization. Therefore, the urban area
of Shenzhen was appropriate for our research into impervious
surface change investigation.

We collected a series of high-resolution remote sensing im-
ages of Shenzhen at ~2-year intervals from 2003 to 2017 (see
Fig. 1 and Table I). The images covered ~100 km?, including
the main urban areas of Shenzhen, with various landscapes, e.g.,
hill, river, park, high-rise commercial architecture, and low-rise
residential buildings such as urban villages [23]. The satellite
sensors included QuickBird (2.4 m), WorldView-2 (2 m), and
WorldView-3 (1.2 m). In Fig. 1(c), it can be clearly seen that a
large building was demolished in 2012, but some new architec-
ture was rebuilt in 2015 at the same location, which indicates that
repeated land-cover changes can occur during the process of ur-
ban development. Fortunately, the time series of high-resolution
images of Shenzhen spanning 15 years provided us with great
potential to monitor the detailed characteristics of impervious
surfaces within the urban areas. In the preprocessing step, the
raw digital number (DN) values of the remote sensing images
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Study area and data sets. (a) Overview of the study area for Shenzhen city. (b) The high-resolution time-series images used in this study. Note that all the

images can cover the whole study area. (c) Local scene composed of seven pieces. Each piece (taken at different times) shows a part of the whole scene.

TABLE I
SUMMARY OF THE DETAILED INFORMATION FOR THE DATA SETS CONSIDERED
IN THIS RESEARCH

Image Date Sensor Spectral range
Shenzhen 2003 2003/01/07

Shenzhen 2005  2005/12/17 QuickBird 4 bands 450-900 nm
Shenzhen 2007 2007/12/10

Shenzhen 2010  2010/11/03  WorldView-2 8 bands 400-1040 nm
Shenzhen 2012 2012/03/25

Shenzhen 2015 2015/08/04  WorldView-3 8 bands 400-1040 nm
Shenzhen 2017  2017/02/18  WorldView-3 16 bands 400-2365 nm

were converted to surface reflectance with the FLAASH at-
mospheric correction module embedded in ENVI software, to
reduce the effect of the atmosphere [24]. The low-quality ob-
servations (e.g., cloud and haze) were manually masked out and
all the images were resampled to 2-m resolution for the subse-
quent processing and analysis. All the spectral bands available
for each image were used when conducting the classification.
In addition, since evergreen broadleaf species are prominent in
Shenzhen, the seasonal variation has no significant effect on
impervious surface change.

III. METHODS

In this study, we investigated the detailed characteristics
of impervious surfaces using multiple high-resolution im-
ages. First, a series of accurate impervious surface maps were

generated using the multifeature object-based approach to pro-
vide an underlying basis for the impervious surface monitoring.
A grid-level approach, which can mitigate the spatial hetero-
geneity in high-resolution images, was then employed to detect
the impervious surface changes across the time series. Finally,
the continuous change profiles of the impervious surfaces were
further investigated and analyzed.

A. Object-Based Impervious Surface Mapping Using Multiple
Features

1) Class Definition: Mapping impervious surfaces can be
regarded as a classification task, where impervious/pervious
surfaces consist of various land-cover materials. For instance,
impervious surfaces can be made up of bright materials (e.g.,
metal and new concrete) and dark materials (e.g., asphalt and
old concrete), while pervious surfaces mainly refer to vegeta-
tion, water, and bare soil [25]. In this study, a two-stage object-
based classification approach was proposed for extracting the
impervious surfaces (see Fig. 2). First, six land-cover types, i.e.,
bright impervious surface, dark impervious surface, shadow,
soil, vegetation, and water, were identified. Note that the shad-
ows were regarded as a single land-cover type since they often
present unique spectral and spatial properties [26]. Moreover,
the shaded areas may consist of both impervious (e.g., roads and
roofs) and pervious surfaces (e.g., vegetation), which can have a
great impact on accurate impervious surface extraction. There-
fore, in the second stage, the shadows were further classified
into shaded impervious surfaces and shaded pervious surfaces.
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Finally, bright impervious surface, dark impervious surface, and
shaded impervious surface were combined as “impervious sur-
faces”, while the other land covers were viewed as “pervious
surfaces”.

2) Feature Extraction and Object-Based Classification: Tm-
age segmentation is a prerequisite step to object-based classifi-
cation. In this study, the time-series images were segmented into
relatively homogeneous objects using a multiresolution segmen-
tation algorithm [27]. In the first stage, the segmentation was
conducted at a relatively small scale parameter (e.g., 50), deter-
mined by visual interpretation of the image segmentation results
and some other related research [26]. At this scale, the objects
were viewed as relatively homogenous regions, i.e., all the pixels
within an image object belonged to one land-cover class. The
multiple features, including spectral, textural, and shape fea-
tures, were then extracted. The spectral features can record the
spectral reflectance of the different land-cover materials, and
include mean spectral reflectance, vegetation index, etc. The
textural features have the ability to describe the tonal variations
of different land covers to assist the classification, e.g., water
and shadow have very similar radiometric responses, but water
usually has a smaller variance than that of shaded areas [26].
The textural features include the gray-level co-occurrence ma-
trix (GLCM) measures (e.g., homogeneity, and contrast) [28],
and morphological metrics such as the morphological build-
ing index/shadow index, which can characterize the building or
shadow components in high-resolution images [29]. The GLCM
measures were calculated based on the panchromatic image for
the individual image objects. The spatial displacement was set
as a distance of one in four directions (0°, 45°, 90°, 135°), and
subsequently, the directionality was suppressed by averaging
the extracted features over the four directions [30].The shape
features, e.g., border length, and shape index, can be used to
measure the geometric characteristics of image objects such as
elongated roads and ponds. In the second stage, only the shad-
ows were focused on, and they were further segmented at a
smaller scale parameter (set to 30 in this study), at which the

Multifeature classification framework for impervious surface mapping (IS = impervious surface, PS = pervious surface).

shaded areas could be segmented into smaller objects to alleviate
the mixed-object effects for shaded areas [21], [26]. Shadows
can obscure impervious surfaces and increase the difficulty of
correctly identifying the shaded impervious surfaces. In view
of this, the semantic information, i.e., the class-related features,
was considered as an additional feature set in the shadow clas-
sification. For instance, when a shaded object is much closer
to vegetation, it is more likely to be vegetation and, hence, the
class-related features can benefit the shadow classification. In
addition, for the convenience of the subsequent change analy-
sis, the shaded pervious objects were further classified into the
specific class (i.e., soil, vegetation, and water) to which they
had the smallest distance. In most cases, it seems impossible
to select the one optimal feature set for different objects and
scenes. Consequently, image classification integrating multiple
features (see Table II) was attempted in this study, to enable
more accurate mapping of impervious surfaces.

In this study, the random forest (RF) algorithm was selected
as the classifier since it has been widely applied in remote sens-
ing studies and yields accurate land-cover maps [25], [31]. RF
is a well-known ensemble learning method for classification,
which is operated by constructing multiple decision trees and
outputting the class through majority voting from all the indi-
vidual trees [25]. It has been demonstrated that RF can achieve
a classification accuracy that is comparable to the traditional
methods such as support vector machine (SVM) [32]. Moreover,
RF has a great ability to deal with large data sets and extremely
high dimensional input feature spaces [33], and hence was used
to perform the classification procedure with multiple features
in this study. The classification in this study was conducted in
each time series separately.

B. Monitoring of Impervious Surfaces

1) Basic Units for Change Detection: Change detection can
be conducted using the multitemporal impervious surface maps
spanning the 15 years. However, the large spatial heterogeneities
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TABLE I

MULTIPLE FEATURES USED IN THE CLASSIFICATION

Feature type

Feature name

Feature description

Spectral [Mean band] The average intensity on each spectral band
[Std. dev] The standard deviation on each spectral band
[Brightness] The average intensity of all the spectral bands
[Max. diff.] The maximum difference of the average intensity of each band to the brightness
[NDVI/NDWI] Normalized difference vegetation index/water index
[HIS] The hue, intensity, and saturation of RGB color
Textural [Mean] Average of gray level
[Variance] Gray-level variance
[Homogeneity] The homogeneity derived from the GLCM
[Contrast] The contrast derived from the GLCM
[Dissimilarity] The dissimilarity derived from the GLCM
[Entropy] The entropy derived from the GLCM
[Second moment]  The second moment derived from the GLCM
[Correlation] The correlation derived from the GLCM
[MBI/MSI] Morphological building index/shadow index
Shape [Area] The number of pixels within image objects
[Border length] The number of pixels of the inner and outer borders
[Length/width] The length-width ratio of the bounding box
[Asymmetry] The relative length of an image object compared to a regular polygon
[Border index] The ratio of the border lengths of an image object to the smallest enclosing rectangle
[Compactness] The ratio of the product of length and width to the area of an image object
[Density] The number of pixels of an image object divided by its approximate radius
[Ellipse fit] The degree of an image object fitting into an ellipse
[Radius ellipse] The radiuses of the largest enclosed ellipse and the smallest enclosing ellipse
[Rectangular fit] The degree of an image object fitting into a rectangle
[Shape index] The border length of an object divided by four times the square root of its area
[Roundness] The difference between the radiuses of the enclosing ellipse and the enclosed ellipse

Class-related  [Rel. Border to]
[Rel. Area of]

[Distance to]

The relative length of the shared border of an image object to one class
The relative area of one class within a circular area
The distance of the image object to the closest image object of one class

in the high-resolution time-series images, including different
viewing angles, spatial registration errors, and complicated ur-
ban landscapes, make it difficult to detect accurate and reliable
change information, and can often lead to a large number of false
alarms when conducting change analysis from high-resolution
images at the pixel level [10], [34]. In this context, we there-
fore employed a grid-level approach to monitor the impervious
surface change, which is aimed at discovering changed scenes
rather than individual pixels [23]. This strategy is also called hot-
spot detection, and has been used in related studies for change
detection from high-resolution images [11], [15], [16]. In this
study, the image was initially divided into a series of grids,
which were regarded as the basic units for change detection.
The proportion of impervious surfaces in each grid was cal-
culated, and thus the binary map of impervious surfaces was
converted to an impervious surface percentage map for the sub-
sequent processing and analysis. The grid size in this study was
set as 200 m for the following reasons. The sizes of the largest
buildings (e.g., large residential buildings and public facilities)
in the image ranged from 100 m to 150 m. Moreover, due to the
various viewing angles in the multitemporal high-resolution im-
agery, the tall buildings may incline toward different directions,
and the cast shadows may have different shapes and sizes [10].
The selected grid was expected to cover the urban scene, includ-
ing buildings and their surroundings (e.g., roads, shadows, and
vegetation). Thus, the size of the grid should be larger than the
size of the large and tall buildings, and 200 m was selected as a
suitable value in this regard.

2) Change Detection Based on Median Absolute Deviation:
In this study, a change detection method based on median ab-
solute deviation (MAD) [35] was used to detect the changes
across the time series. In general, the impervious surface area
in most multitemporal images is relatively stable, and the sig-
nificant change can be regarded as an outlier in the whole time
series [36]. MAD is a robust measure and is immune to sample
size [37], and can be used to effectively detect the outliers. The
time-series data set can be expressed as:

T={T(1),7(2),...,7(i)} (1)
DT = {T(2) — T(1),T(3) — T(2),...,T(i) — T(i — 1)](»2)

where 7(i) means the impervious surface percentage in the im-
age of the ith year; and DT is the time difference between
neighboring years. MAD can be defined as follows:

MAD = b x median {|DT(¢) — median(DT)|}  (3)

where median(-) is the median of the series. Usually, b = 1.483,
a constant linked to the assumption of normality of the data [37].
Finally, the anomaly degree L is defined as

_ IDT(7) — median(DT)| @
MAD '

A large L value indicates a high degree of change. Gener-

ally, the anomaly criteria can be adjusted by the researcher, e.g.,

Miller [38] suggested a value of 3, 2.5, or 2 for anomaly de-
tection. A larger value indicates a more strict criteria for outlier

L
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land-cover classification (IS = impervious surface). Note that we collected reference samples separately for all the images.

TABLE III
REPRESENTATIVE LANDSCAPE METRICS CONSIDERED IN THIS STUDY

Metric Description

Largest patch The percentage of the total landscape that is made

index (LPI) up by the largest patch

Mean patch area The average area of the impervious surface within

(MPA) a unit

Patch density (PD) ~ The number of impervious surface patches per
unit area

identification. In this study, we employed a relatively strict strat-
egy for change detection, and hence we chose the threshold of 3
in our experiment [37] to mitigate the false alarms caused by the
large spatial heterogeneity (e.g., parallax distortion and viewing
angle effect) in the high-resolution images.

C. Grid-Level Landscape Analysis

The urban landscape, which indicates the arrangement, dis-
tribution, and spatial characteristic of urban land covers, can be
expressed as a series of quantitative indexes. In this research,
in order to further measure the spatial distribution of the im-
pervious surfaces across the time series, some representative
landscape metrics (see Table III) were calculated, including the
largest patch index (LPI), mean patch area (MPA), and patch
density (PD), which can quantitatively describe the spatial pat-
tern of impervious surfaces [39]. In this study, the considered
landscape metrics were only calculated for impervious surfaces
in each image grid. The overall change tendency of landscape
metrics can reflect the urban development pattern over the past
years.

D. Accuracy Assessment

1) Accuracy Assessment of Impervious Surface Classifica-
tion: The reference data were manually collected through care-
ful visual interpretation of each high-resolution image. Taking a

representative image of Shenzhen 2003 as an example, as shown
in Fig. 3, the reference objects, evenly distributed over the whole
study area, were collected with a spatial constraint in this study,
i.e., each reference object has no common border with the other
ones, which means that each labeled object is far away from the
others, in order to ensure the spatial independence. For all the
collected reference samples, 50% of each class were randomly
selected as the training samples to construct the RF model using
300 trees, referring to the current literature [25], [40], and the
rest were used as the validation set to test the effectiveness of the
classification result (see Table IV). As such, the training sam-
ples selected were spatially disjoint from the validation samples.
The selection of training samples was undertaken 10 times, and
the final classification map for the subsequent change analysis
was obtained by majority voting of each classification result.
The overall accuracy (OA) and kappa coefficient [41] generated
from the confusion matrix were used to assess the accuracy of
the impervious surface extraction.

2) Accuracy Assessment of Change Patterns: The accuracy
assessment of continuous change patterns is necessary when
dealing with multitemporal image analysis. First, the accuracies
of the change detection between the neighboring years were
evaluated. All the detected changed areas at the grid level were
carefully checked on the high-resolution images and, in the
meantime, some randomly selected unchanged areas were also
included. Due to the relatively large size of the unchanged areas,
the number of selected unchanged grids was set to twice that of
the changed grids [5] (see Table VII). The confusion matrix for
each changed period was then derived for the accuracy evalua-
tion. In addition to the assessment of change detection between
the neighboring years, the accuracy across the whole time se-
ries was also evaluated. Specifically, the detected changed years
were flagged as 1 and the unchanged years were labeled as
0. A long string composed of 0 and 1 was then generated for
each detected unit through the time series. The Hamming dis-
tance [42], which denotes the minimum number of errors that
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TABLE IV
NUMBER OF REFERENCE OBJECTS COLLECTED AT THE OBJECT LEVEL FOR ALL THE IMAGES (IS = IMPERVIOUS SURFACE, PS = PERVIOUS SURFACE)

Two-Stage Classification Class Image

2003 2005 2007 2010 2012 2015 2017

General urban land cover classification Bright IS 378 417 421 332 245 445 447
Dark IS 201 289 231 303 213 253 361

Shadow 231 193 263 156 79 49 253

Soil 424 202 214 62 117 79 262

Vegetation 786 722 573 436 312 577 667

Water 269 156 134 175 173 90 171

Shadow classification Shaded IS 199 177 138 134 85 68 154
Shaded PS 108 152 83 98 55 47 126

TABLE V

CONFUSION MATRIX AND ACCURACY ASSESSMENT FOR THE OBJECT-LEVEL CLASSIFICATION IN THE FIRST STAGE FOR THE REPRESENTATIVE IMAGE OF
SHENZHEN 2003 (IS = IMPERVIOUS SURFACE, UA = USER’S ACCURACY, PA = PRODUCER’S ACCURACY, OA = OVERALL ACCURACY)

Classified Data

Reference Data

Bright IS Dark IS Shadow Soil Vegetation ~ Water  Total  UA (%)

Bright IS 184 2 0 3 0 0 189 97.35
Dark IS 1 98 0 2 0 1 102 96.07
Shadow 0 0 112 0 0 6 118 94.91
Soil 4 0 0 207 1 0 212 97.64
Vegetation 0 0 1 0 392 0 393 99.74
Water 0 0 2 0 0 127 129 98.44
Total 189 100 115 212 393 134 OA: 97.99
PA (%) 97.35 98.00 97.39 97.64 99.74 94.77 Kappa: 0.97

could have transformed one string into the other, was employed
to measure the similarity between the detected change result
and the reference change profile. A smaller Hamming distance
indicates a higher accuracy. The aforementioned accuracy as-
sessments from the two perspectives ensured the reliability of
the continuous change detection results.

IV. RESULTS AND ANALYSIS

A. Impervious Surface Extraction

Table V shows the accuracy of the general urban land-cover
classification for the representative image of 2003. The results
show a satisfactory performance in terms of OA (97.99%) and
kappa coefficient (0.97). In the meantime, some confusion can
be found between the bright impervious surface/soil and dark
impervious surface/water and shadow, due to their very sim-
ilar spectral signatures, which is also the main challenge in
land-cover classification from high-resolution images. A local
area composed of complicated urban features is presented in
Fig. 4(a) and (b) to further illustrate the result of the urban land-
cover classification. In general, by visual inspection, it can be
observed that most areas are correctly identified, wherein the
large shadows caused by tall buildings, as a unique problem in
impervious surface mapping from high-resolution images, can
also be well recognized by the proposed method.

The general land-cover classification results indicate that the
shadows account for a considerable amount of the total area.
For instance, the detected shadows in the image of Shenzhen
2007 occupy approximately 14.9% of the entire image, and

should not be ignored when dealing with impervious surface
estimation. The accuracy of the shadow classification is shown
in Table VI. The OA and the kappa coefficient are 97.30%
and 0.93, respectively. Fig. 4(c) and (d) presents an example of
shadow classification. It can be seen that the shaded areas are
mainly roads (impervious surfaces) and urban greening (pervi-
ous surfaces). In Fig. 4(d), the impervious surfaces associated
with roads are successfully recognized from the shaded areas,
which can effectively avoid the underestimation of impervious
surfaces caused by shadows.

The accuracy of the classification in two stages for all the
images is shown in Fig. 5, and a representative impervious
surface map is presented in Fig. 6. It can be concluded that the
multiple features, integrating the spectral, spatial, and semantic
information in the high-resolution images, have a great ability to
comprehensively describe complicated urban land covers, and
hence extract impervious surfaces from multitemporal high-
resolution images with a promising accuracy, which provides
a firm foundation for the subsequent analysis related to the
characteristics of impervious surfaces.

B. Impervious Surface Change Between Neighboring Years

Based on the extracted impervious surface maps, a number
of impervious surface changes at the grid level were detected in
the Shenzhen central urban areas across the 15 years, and the
accuracies of the change detection between neighboring years
were assessed (see Table VII). In general, the change detec-
tion results show reasonable performance, with OAs ranging
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Fig. 4.

B siign s

Dark IS

Shadow

Soil
- Vegetation
- Water

B shadedIs
I shaded PS

Local examples of the classification results: (a) true-color image, (b) general urban land-cover classification, (c) false-color image, and (d) shadow

classification. The red rectangular border in (a) corresponds to the image extent shown in (c) and (d).

TABLE VI
CONFUSION MATRIX AND ACCURACY ASSESSMENT FOR THE OBJECT-LEVEL
CLASSIFICATION IN THE SECOND STAGE FOR THE REPRESENTATIVE IMAGE OF
SHENZHEN 2003 (IS = IMPERVIOUS SURFACE, PS = PERVIOUS SURFACE,
UA = USER’S ACCURACY, PA = PRODUCER’S ACCURACY, OA = OVERALL
ACCURACY)

Classified data Reference data

Shaded IS~ Shaded PS  Total UA (%)
Shaded IS 98 2 100 98
Shaded PS 2 46 48 95.83
Total 100 48 0A: 97.30
PA (%) 98 95.83 Kappa: 0.93

from 85.7% to 93.9% (average value: 89.1%) and the kappa
coefficients varying from 0.65 to 0.86 (average value: 0.75).
In addition to some misclassifications remaining in complicated
and challenging areas, the major detection errors were caused by
the viewing angle difference between the high-resolution time-
series images. The significant difference of the viewing angles
among the images, leading to building inclination toward dif-
ferent directions and target occlusion to varying degrees, can
severely affect the change detection result. This issue is a great
challenge with respect to change detection from high-resolution
images in complex urban areas. In fact, the employed hot-spot
change detection strategy can alleviate the viewing angle ef-
fect, to some extent, but the pixel-based method has difficulty
in handling such a problem [4].

1 r OOA ®Kappa

095

09

2003 2005 2007 2010

(@)
L r OOA BKappa

2012 2015 2017

0.85

0.8

2003 2005 2007 2010

(b)

2012 2015 2017

Fig. 5. Classification accuracy for all the images used in this study. (a) Gen-
eral urban land-cover classification. (b) Shadow classification (OA = overall
accuracy).

A post-classification comparison was also conducted to
reveal the detailed change trajectory of the impervious surfaces.
In the detected changed areas, the land-cover class with the
maximum change between neighboring years was regarded
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Fig. 6.
representative image of 2003.

(b)

(a) Final impervious surface map for a representative image of 2003. (b) Impervious surface percent map aggregated at 200 m in grid level for a

TABLE VII
CONFUSION MATRIX AND ACCURACY ASSESSMENT FOR THE GRID-LEVEL CHANGE DETECTION BETWEEN NEIGHBORING YEARS (OA = OVERALL ACCURACY)

Detected Reference Detected Reference
Changed  Unchanged Changed  Unchanged
2003-2005 Changed 46 3 2010-2012 Changed 10 1
Unchanged 8 90 Unchanged 1 21
OA (%) 92.52 OA (%) 93.94
Kappa 0.83 Kappa 0.86
2005-2007 Changed 16 5 2012-2015 Changed 22 13
Unchanged 3 39 Unchanged 2 68
OA (%) 87.30 OA (%) 85.71
Kappa 0.71 Kappa 0.65
2007-2010 Changed 30 11 2015-2017 Changed 18 5
Unchanged 5 77 Unchanged 3 43
OA (%) 86.99 OA (%) 88.41
Kappa 0.70 Kappa 0.73
TABLE VIII

ACCURACY OF THE IMPERVIOUS SURFACE CONVERSION

Accuracy (#)  Accuracy (%)

2003-2005 44/46 95.6
2005-2007 13/16 81.2
2007-2010 28/30 93.3
2010-2012 9/10 90.0
2012-2015 20/22 90.9
2015-2017 17/18 94.4

as the main source of the impervious surface transition. For
instance, when the proportion of the soil showed the largest
change compared to other classes (i.e., water and vegetation)
in a changed grid, we considered that, in this unit, the main
conversion was from impervious surface to soil or from soil
to impervious surface. Table VIII presents the accuracy of
the impervious surface transition for the changed areas. The
results show a relatively high correctness ranging from 81.2%

to 95.6%, which indicates the high credibility of the detected
impervious surface transformation. The proportion of each
change trajectory related to impervious surfaces is shown
in Table IX. For instance, during 2003-2005, 46 grids were
detected as change scenes, in which 71.7% (33/46) of the grids
showed the main land-cover transition from soil to impervious
surface. In general, the most frequent change trajectory was
from soil to impervious surface (43.7%), followed by the
transitions from vegetation to impervious surface (24.6%),
impervious surface to soil (18.3%), and impervious surface
to vegetation (9.2%). In addition, transition from impervious
surface to water and from water to impervious surface, were
rarely found in the study area. Specifically, before 2010, the
changed areas were mainly due to the conversion from soil or
vegetation to impervious surface. These phenomena indicate
that the city may have experienced a number of infrastructure
constructions during this period. Then in 2010-2015, the
impervious surface increase was nearly equal to the im-
pervious surface loss in the detected changed areas. Finally,
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TABLE IX
PERCENTAGES OF THE CHANGED TYPES FOR DETECTED CHANGED AREAS (IS = IMPERVIOUS SURFACE, VEG = VEGETATION)

Soil to IS (%)  Vegto IS (%) Waterto IS (%) IS to Soil (%) IS to Veg (%) IS to Water (%)
2003-2005 71.7 17.4 6.5 4.4 0 0
2005-2007 18.7 37.5 0 31.3 12.5 0
2007-2010 53.4 26.7 0 33 13.3 33
2010-2012 30 20 0 40 10 0
2012-2015 27.3 31.8 4.6 22.7 13.6 0
2015-2017 5.6 222 0 50 16.6 5.6
All 43.7 24.6 2.8 18.3 9.2 1.4
1 g T Td;
] b . L -
: (a)
: ' E\ (
i 4
T
: _: .
u
c_ _ + Unchanged Soil to IS VegtoIS

o 1 2 3 4

L=

Fig. 7.
vegetation).

in 2015-2017, half of the changed areas referred to the transition
from impervious surface to soil, indicating that more building
demolition activities may have taken place during this period.
A typical example of the change transition between 2003 and
2005 is illustrated in Fig. 7. A variety of impervious surface
change trajectories can be found due to the frequent building
construction and demolition. The impervious surfaces can be
transformed from soil, vegetation, and water and, in turn, the
impervious surfaces can also be converted back to pervious
surfaces such as soil.

C. Impervious Surface Change Patterns Across the Time
Series

Apart from the impervious surface change between neighbor-
ing years, we also assessed the impervious surface change pat-
terns across the time series to reveal the detailed characteristics
of the impervious surfaces. The change profile of a monitoring
unit (i.e., a grid) was represented by a long string consisting of
0 and 1, referring to the unchanged and changed years, respec-
tively. Thus, a continuous change profile was composed of six
change intervals (seven multitemporal images). In this study,
the accuracy across the time series yielded a relatively small
average Hamming distance of 0.32, which means that the error

= J - Water to IS - IS to Soil

Representative map of change transition from 2003 to 2005 with some local examples of the different change types (IS = impervious surface, Veg =

rate of the detected profile was 5.3% (0.32/6) compared to the
reference change pattern. Furthermore, ~76% of the total de-
tected areas completely matched with the reference data. Over-
all, the accuracy of the impervious surface change profile across
the time series is reasonable considering the great challenges
(e.g., the large spatial heterogeneity and error propagation) in
change detection from multitemporal images.

Fig. 8 illustrates the change detection result in the study area
over the past 15 years. The timing of the changes is also pro-
vided. It is noteworthy that most of the detected areas changed
only once over the past 15 years, but some areas changed mul-
tiple times. Some typical examples of the continuous change
results are presented in Fig. 9, referring to the three main types
of change across the time series. Fig. 9(a) and (b) shows the
increase of impervious surfaces corresponding to building con-
struction, in which soil and vegetation are converted to imper-
vious surfaces during urban development. Fig. 9(c), (d), and (e)
represents the loss of impervious surfaces, which mainly refers
to building demolition. In addition to such single changes across
the time series, some regions have changed more than once. In
Fig. 9(f), the pervious surface (i.e., vegetation) was converted
to impervious surface due to the construction of some tempo-
rary buildings in 2010, and then the impervious surface was
transformed back to pervious surface (i.e., soil) following the
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Fig. 8. Change detection result for the Shenzhen central areas over the past
15 years. The letters a—g represent the locations of some typical examples shown
in Fig. 9.

demolition of the buildings in 2012. A similar repeated change
can also be seen in Fig. 9(g). In 2012, the old buildings were
dismantled and the impervious surface was converted back to
soil, but in 2015, some new buildings were constructed at the
same location and the soil was transformed to impervious sur-
face. It should be noted that the studies using medium-resolution
images (e.g., Landsat) usually focus on the urban expansion at a
macro level, with the assumption that the urban development is
irreversible. The impervious surface converted back to pervious
surface is often regarded as an illogical class transition [3], [5],
[7]. However, this assumption makes it impossible to capture
the subtle changes of impervious surfaces within urban areas
[4]. Hence, time series of high-resolution images are necessary
for the monitoring of impervious surfaces and can help us to
assess the details (e.g., location, type, and frequency) of the im-
pervious surface changes within urban areas, providing insights
into the drivers of change and urban development.

D. Urban Land-Use and Development Policy Evolution

China has experienced rapid urbanization since the initia-
tion of the “reform and opening-up” policy in late 1978. By
the end of 2011, the urban population exceeded that of rural
dwellers, and 51% of the total population lived in urban areas
[22]. A large number of land-cover and land-use changes have
occurred during the process of urban development. With the
rapid urban-rural transformation, various issues have arisen,
e.g., excessive consumption of resources, low-efficiency land
use, and environmental pollution, giving rise to the need for
new policies for urban sustainable development [43]. In re-
cent years, the Chinese government has paid much more at-
tention to protecting the urban environment, promoting ecosys-
tem services, and improving land-use efficiency. Such urban

development policy evolution can also be seen in Shenzhen.
Fig. 10 presents the impervious surface composition in Shen-
zhen over the past 15 years. The piecewise linear fitting model
was used to quantitatively analyze the overall change tendency
of the impervious surfaces, and the year of 2012 was regarded
as a turning point. Compared to the result using a continuous
fitting line without breakpoint (R?: 0.03), the piecewise linear
fitting achieves a better performance (R?: 0.90) in describing
the trend of impervious surface change. The result in Fig. 10 in-
dicates that the impervious surfaces gradually increased before
2012 (0.82% per year) and then showed a decreasing tendency
(1.46% per year). These phenomena of impervious surface
change could also provide clues for the adjustment of land-use
policy by the Shenzhen government during the process of urban
development.

Specifically, from 2003 to 2012, the urban function and in-
frastructure was gradually improved and perfected, e.g., the con-
struction of the Shenzhen Convention and Exhibition Center, as
shown in Fig. 9(a). In the meantime, with the increase of the
floating population and the demand for housing, the real estate
industry boomed and became one of the main drivers for rapid
urbanization [e.g., Fig. 9(b)]. However, the local government
noticed that the socio-economic development had exceeded the
sustainable supply capacity of resources [43] and, hence, started
to change land-use policy to further improve urban competi-
tiveness. One strategy was the promotion of urban ecosystem
services [8], e.g., land-cover changes from continuous urban
fabric toward green spaces. In a government document released
in 2012 [44], the Shenzhen government pledged to strengthen
ecological conservation in the city. It is believed that urban green
spaces play an important role for the local environment, public
health, and balance of the city ecosystem [45]. Hence, in the
process of urban development, it is found that some impervious
surface areas are converted back to vegetation, becoming more
environmentally friendly and improving the urban ecological
function [e.g., Fig. 9(c)]. In addition, urban renewal is another
approach to urban sustainable development. In 2012, the city
managers enacted detailed measures for urban renewal plan-
ning, mainly referring to the activities of demolition and the
reconstruction of buildings, regeneration of the old industrial
areas, and urban functional changes [46]. The redevelopment
of old and inefficient built-up areas inside the cities can cre-
ate a better living environment, enhance land-use efficiency,
and promote sustainable development. For instance, over the
past 30 years, many villages in the urban fringe have been en-
gulfed by the ever-expanding urban areas and have become the
informal settlements known as “urban villages”, which are char-
acterized by extremely high density buildings and substandard
living conditions [23], [47]. Since Shenzhen has grown at an
amazing speed from a small fishing village to a modern megac-
ity, the urban built-up areas are dotted with many urban villages
covering large areas. Many migrant workers reside in the urban
villages as they cannot afford the high rent in other formal settle-
ments. However, urban villages lack reliable medical and health
services, adequate public spaces, complete urban facilities, and
other basic services, and have become a complicated socio-
economic problem in urban sustainable development [23]. The
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Fig. 9.
spatial locations of the examples are labeled in Fig. 8.

latest Shenzhen 13th Five-Year Plan announced in 2016 [48]
pledged that the city would further promote the urban renewal
policy to improve the city’s service quality. During the imple-
mentation of the urban redevelopment plan, the urban villages
will be gradually dismantled and the land will serve other use-
ful purposes [e.g., Fig. 9(e)]. Demolition and reconstruction in
industrial areas, e.g., old industrial areas replaced by high-rise
residential buildings [see Fig. 9(g)], is also among the mea-
sures of the urban renewal plan. These activities associated with
urban redevelopment will result in urban functional changes,
facilitating proper and efficient land use for urban sustainable
development.

E. Landscape Change Analysis

Fig. 11 presents the landscape change of the impervious sur-
faces in Shenzhen over the past 15 years. Piecewise linear fitting

Some typical examples of impervious surface change profiles, where the images with red borders represent a change compared to a previous date. The

was again used to analyze the general landscape change of the
impervious surfaces. From 2003 to 2012, the rising tendency
of LPI (1.03% per year) and MPA (0.01 hectare/year) indi-
cate that the impervious surface patches became more dominant
and connected, resulting from the construction of new build-
ings [e.g., Fig. 9(a), and (b)]. In the meantime, the larger LPI
and MPA resulted in descending PD (2.91# per year), indicat-
ing increased spatial homogeneity of the impervious surface
patches. Subsequently, from 2012 to 2017, opposite trends for
all the metrics can be observed (i.e., the decreasing trend of
LPI (2.28% per year) and MPA (0.03 hectare per year) and the
increasing tendency of PD (6.52# per year), indicating that the
impervious surface patches became more fragmented during
this period. These phenomena can be attributed to the fact that
the demolition of some old buildings reduced the cohesion of
the impervious surface patches [e.g., Fig. 9(d)]. In summary, the
changes of these landscape metrics provide us with clues on the
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distribution of the landscape metric computed at each grid.

urban development patterns of Shenzhen over the past 15 years,
and the change tendency is similar to the previous analysis in
Section IV-D. Before 2012, Shenzhen mainly experienced in-
frastructure construction, with increasing impervious surfaces
in terms of the larger LPI and MPA but, subsequently, the im-
pervious surfaces showed a decreasing tendency, reflecting the
adjusted strategies for urban development after 2012 (e.g., the
promotion of urban ecosystem services and the implementation
of the urban renewal plan).

Boxplot and trend line showing the IS percentage spanning 15 years in Shenzhen (IS = impervious surface). The vertical axis represents the distribution
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Boxplots and trend lines of the landscape metrics. (a) Largest patch index. (b) Mean patch area. (c) Patch density. The vertical axis represents the

V. DISCUSSIONS

A. Feature Importance

In this section, the importance and relevance of the features
are analyzed. Using the RF model, the feature contribution can
be quantified by randomly permuting the values of the out-of-
bag samples (OOB, the unchosen samples for training a decision
tree) for a certain variable. The average decrease in accuracy
over all the trees, caused by the feature permutation, is regarded
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Fig. 12.  (a) Feature contribution in general urban land-cover classification. (b) Feature contribution in shadow classification. (c) The most relevant features (top

five) for individual classes.

as the feature importance. The normalized importance can then
be obtained by dividing each feature importance by its standard
deviation [49].

Fig. 12 shows the feature contributions to the overall clas-
sification result. The detailed feature description can be found
in Table II. In urban land-cover classification, all the features
present a positive contribution to the classification. The spectral
features show the highest contribution, followed by the textural
features and shape features [see Fig. 12(a)]. A similar trend can
be found with regard to shadow classification in Fig. 12(b). In
addition, in the class-related feature set, the features associated
with vegetation make a greater contribution.

The top five features that are the most relevant for the indi-
vidual classes are shown in Fig. 12(c). This provides the hint

that NDWI plays a very important role in identifying all classes,
probably due to the fact that NDWI is not only a water index, but
it also shows higher responses in other low-albedo surfaces, e.g.,
shadow and dark impervious surfaces [50]. NDVI, a commonly
used vegetation index, is another very important feature in the
discrimination of most classes such as vegetation and detailed
shaded land cover. The hue-saturation-intensity (HSI) compo-
nents are also very effective in the identification of classes such
as shadow and soil, which has been reported in [51] and [52].
MBI shows a relatively high contribution to bright impervious
surface classification since MBI mainly represents the build-
ings with high reflectance [29]. The Homogeneity texture shows
the most relevance for water identification due to the fact that
water is homogeneous, with low variance. Finally, the relative
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border to vegetation presents a relatively high contribution to
the discrimination in shaded areas. The shaded areas are mainly
roads and green belts, and hence the spatial relationship with
vegetation can assist to detailed shadow classification.

Summing up, most of the features make a positive contribu-
tion to the overall classification, and the most relevant features
for the individual classes come from different feature categories.
More importantly, in most cases, it seems very difficult to select
one optimal feature set for different objects and scenes, due to
the complex landscape characteristics of the study area. There-
fore, in this study, we employed multiple features (spectral, tex-
tural, shape, and class-related features) to represent the complex
image scenes from different perspectives, in order to produce
an accurate classification result for the subsequent time-series
analysis.

B. Training Sample Collection Across Time Series

In our study, the classification was performed separately for
each year. In this section, we considered two other options for
training sample collection across the time series.

First, we collected training samples from all the images to
build a single classification model to classify the whole data set.
Due to the difference in the spectral resolution of the images,
the spectral features corresponding to the same four spectral
bands (i.e., blue, green, red, and near infrared band) were used
in this experiment. The accuracy is shown in Fig. 13(b), where
it can be seen that using training samples across all the images
to build a single classification model also achieves a reason-
able performance, but is inferior to the separate classification
for each image [see Fig. 13(a)]. We then further investigated
the possibility of transfer training across the time series. For
instance, to perform the classification of Shenzhen 2003, the
training samples were obtained from the other six multitemporal
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Accuracies of different classifiers for urban land-cover classification. (a) Overall accuracy (OA). (b) Kappa.

images. The accuracy is shown in Fig. 13(c). Although the trans-
fer training has the potential to reduce the cost of training sample
collection, the classification accuracy is not fully satisfactory for
the subsequent change analysis. Therefore, in our study, we per-
formed the classification separately to obtain an accurate result,
guaranteeing a reliable time-series analysis.

C. Comparison of Different Classifiers

In this section, we considered two other classifiers—support
vector machine (SVM) and multilayer perceptron (MLP) neu-
ral network—using the same training and validation datasets to
test their performance in urban land-cover classification. SVM
was implemented by the use of a Gaussian radial basis function
(RBF) kernel. The penalty parameter and the bandwidth of the
RBF kernel were selected by tenfold cross-validation [47]. MLP
is one of the most widely used artificial neural networks. The
input layer corresponds to the multiple features used in classi-
fication, and the output layer represents the different kinds of
land covers. A single hidden layer was used in this study since
it is sufficient for most classification tasks [53]. The number of
nodes in the hidden layer can be estimated as follows [54]:

N, = INT\/N; x N, (5)

where IV}, denotes the number of nodes in the hidden layer, NV;
is the number of nodes in the input layer, and N, is the number
of nodes in the output layer. A back-propagation algorithm was
used to adjust the weights and minimize the overall error. Finally,
different parameters (e.g., learning rate, and momentum factor)
were tested and selected through the learning process [54].
The accuracies of the different classifiers for urban land-cover
classification are shown in Fig. 14. It can be seen that all the
classifiers achieve accuracies that are very close to each other.
In this study, we considered that RF has some advantages, such
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as easy parameterization and convenient evaluation for feature
importance [33]. In these regards, RF was selected as a suitable
classifier for our research into urban land-cover classification
and time-series analysis.

VI. CONCLUSION

Impervious surfaces are recognized as a major indicator of
urban development and environmental quality. In recent years,
many cities in China have undergone rapid urbanization, with
frequent subtle changes related to impervious surfaces result-
ing from infrastructure construction. Such change information
is very important for urban planning and environmental assess-
ment. In this study, we assessed the change of impervious sur-
faces using time series of high-resolution images. The method
was applied to multitemporal images of Shenzhen, a typical
megacity in China, at ~2-year intervals from 2003 to 2017.
Some general conclusions can be summarized as follows:

1) We developed an object-based classification method in-
tegrating multiple features, including spectral, textural,
shape, and class-related features, which can make full
use of the information inherent in high-resolution data to
deal with the land-cover confusion and shadow problems,
producing accurate impervious surface maps to guarantee
reliable impervious surface change detection.

2) The details of the impervious surface changes (e.g., lo-
cation, type, and frequency) were investigated using the
time series of high-resolution data. The increase of imper-
vious surfaces mainly refers to building construction, and
the decrease of impervious surfaces usually corresponds
to building demolition. It is also revealed that impervious
surfaces can be converted back to pervious surfaces, and
some regions have changed more than once due to urban
redevelopment. These phenomena are impossible to de-
tect with the traditional assumption of irreversible urban
transition. Our results demonstrate that high-resolution
images are essential for the precise monitoring of imper-
vious surfaces.

3) We found that impervious surfaces in Shenzhen grad-
ually increased before 2012, but subsequently showed
a decreasing tendency, reflecting the adjusted strategies
for urban development. It was demonstrated that high-
resolution images can provide insights into the urban de-
velopment patterns during the process of urbanization.
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