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GRAPHICAL ABSTRACT

The land surface temperature in summer days and winter days in urban cores was more stable than rural in
Northern China.
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ABSTRACT

In this study, the relationships between interannual variations of surface urban heat islands (SUHIs) and climate
variability were studied in 31 cities of China for the period 2001-2016. For cold and dry Northern China, it was
found that the interannual variations of SUHI intensity (SUHII, land surface temperature (LST) in urban minus
rural) in urban cores was significantly (p < 0.05) and negatively correlated with rural LST in 9 (in summer
days (SDs)) and 8 (in winter days (WDs)) of the 15 northern cities, respectively. In addition, the daytime LST dif-
ferences between hot summers and other summers and between cold winters and other winters were generally
lower in urban cores (1.141 °C for SDs and 2.535 °C for WDs) than in rural areas (1.890 °C for SDs and 3.377 °C for
WDs). The standard deviation was further used to reflect the interannual stabilities of LST, enhanced vegetation
index (EVI) and white sky albedo (WSA). Interestingly, the standard deviations of LST across 2001-2016 were
generally lower in urban cores (0.994 °C for SDs and 1.577 °C for WDs) than in rural areas (1.431 °C for SDs
and 2.077 °C for WDs). Similar results were observed for EVI and WSA (winter). The results suggested that the
urban surface is less sensitive to climate variability than rural areas in Northern China. Comparatively, most find-
ings were less evident in hot and humid Southern China. Despite the whole world would become warmer or
colder in future, the insensitivity of urban surface may mitigate its impacts in cold and dry Northern China. How-
ever, it does not mean that urbanization is totally good due to its environmental problem.
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1. Introduction

One of the important issues that human being is facing is the rapid
urbanization, especially in developing countries (United Nations,
2014). A major effect of urbanization is urban heat island (UHI),
which refers to higher temperature (including both land surface and
air temperatures) in urban area than in rural surrounding and is a prev-
alent phenomenon that has been observed in hundreds of cities (Peng
et al., 2012; Santamouris, 2015). UHIs has many negative impacts on
human beings and surface environment: a) it can affect human health,
for example, increasing the natural mortality (Goggins et al., 2012;
Mohan and Kandya, 2015); b) it can increase energy consumption by in-
creasing cooling needs in summer (Akbari et al., 1992); and c) it can re-
duce air and water quality (Grimm et al., 2008). Thus, it is necessary to
comprehensively study the UHI, including its magnitude, spatiotempo-
ral variations and driving forces.

Another important problem that human being is facing is climate
change. It is generally believed that the earth surface is warming
(Brown et al.,, 2017; Sun et al.,, 2016; Huang et al., 2017a, 2017b; IPCC,
2015). However, the earth may cool in the future due to reductions in
solar activities (Shepherd et al., 2014; Landscheidt, 2003; Nevett,
2016). Although future climate change remains controversial, both ex-
treme high and low temperatures have negative impacts on human be-
ings, for example increasing mortality and energy consumption
(Kolokotroni et al., 2012; Linares et al., 2015; Schatz and Kucharik,
2015). Therefore, both climate and UHI can significantly alter the
urban thermal environment, and have negative impacts on human soci-
ety, it is important to systematically study the relationships between
them.

However, the relationships were still poorly understood at a regional
scale. Certain studies analyzed the relationships between UHI and
heatwaves using in situ data or model simulations in single city or a
few cities in a small region, the results indicated that the UHI intensity
(UHII, urban temperature minus rural) was enhanced by heatwaves, es-
pecially at night (Founda et al., 2015; Li et al.,, 2016; Li et al., 2015;
Ramamurthy and Bou-Zeid, 2017; Ramamurthy et al., 2015). For exam-
ple, Founda et al. (2015) showed a significant amplification of nighttime
UHII under heat waves in Athens (Greece); Ramamurthy and Bou-Zeid
(2017) showed that the UHII was amplified more strongly during heat
waves in bigger cities (e.g. New York City, 2 °C) compared to smaller cit-
ies in Western United States. Detailed studies for a large area and across
different climate regions are needed. Additionally, few studies have an-
alyzed the relationships between UHI and climate in winter. Schatz and
Kucharik (2015) showed that the air UHII in winter was negatively re-
lated to the daily minimum temperature in Madison (USA), similar re-
sults were found in Northern China according to Yao et al. (2017c),
however, they did not find the detailed reasons. Furthermore, data
from weather stations have some disadvantages in terms of studying
the UHI: a) weather stations are spatially scarce and air temperature
data from one or few stations cannot be used to represent the whole
city; and b) it is hard to choose a reference rural station that immune
to UHI, since most stations are located in urban areas (Sun et al., 2016;
Wang F. et al., 2015a; Yao et al.,, 2017b).

Satellite remote sensing provides a new and objective way to
monitor the UHI. It has wide spatial coverage and can cover the
whole city. The UHI monitored by satellite remote sensing is called
surface UHI (SUHI) since satellite data reflect heat information of
land surface. Moderate Resolution Imaging Spectroradiometer
(MODIS) LST data have wide coverage and can be easily used to
study the UHI at national and continental scales (Imhoff et al.,
2010; Wang ]. et al., 2015b; Ward et al., 2016; Zhou et al., 2015,
20164, 2016b), which overcomes the drawback (strait coverage) of
traditional methods (in situ measurement and model simulation).
For instance, Peng et al. (2012) showed that the SUHI intensity
(SUHII, urban LST minus rural) is positive in 92% and 95% of the
419 global big cities for daytime and nighttime, respectively.

China has large temperature and precipitation gradients since it
covers a large area for about 9.6 million km?. In addition, China has un-
dergone rapid urbanization in terms of population growth (United
Nations, 2014) and urban expansion (Kuang et al., 2016). All of these
make China an ideal region to study the SUHI and its relationships with
background climate variability. Thus, this study aims at: a) exploring
the correlations between interannual variations of SUHII and climate var-
iability in 31 cities in China for the period 2001-2016; b) analyzing the
SUHII and LST changes in hot summers and cold winters; c) studying
the stabilities of LST, enhanced vegetation index (EVI) and white sky al-
bedo (WSA) in urban and rural areas. The main novel elements of this
study includes: a) systematically analyzing the relationships between
SUHII and climate variability for a large area and across different back-
ground climate zones; b) comprehensively studying the relationships
between SUHII and climate in winter; and c) revealing an interesting
characteristic of urban surface: the stabilities of LST, EVI and WSA.

2. Data

In this study, the experiments were performed in Yangtze River
Delta urban agglomeration (including Shanghai, Suzhou, Changzhou
and Wuxi), Pearl River Delta urban agglomeration (including Shenzhen,
Dongguan, Guangzhou, Foshan, Zhongshan, Zhuhai, Xianggang and
Jiangmen) and other 29 municipalities or provincial capitals (Fig. 1)
(Yao et al.,, 2017c). Due to different geographical locations and climate,
the whole China was divided into southern part (including 15 cities,
humid climate) and northern part (including 15 cities, semi-humid,
semi-arid and arid climate) using Qinling Mountain-Huaihe River Line
(Wang J. et al.,, 2015b). Because of its special location (away from the
Qinling Mountain-Huaihe River line) and plateau climate, Lhasa was
not classified into any of them (Fig. 1) (Yao et al., 2017c).

China's Land Use/Cover Datasets (CLUDs, produced from Landsat
TM/ETM+ and HJ-1A/1B imagery using human-computer interactive
interpretation) in the year 2000, 2005, 2010 and 2015 were used to de-
lineate urban and rural areas in this study. The CLUDs have many advan-
tages, for example, high spatial resolution (30 m), high overall accuracy
(over 90%) and long time series (5-year interval since the late 1980s).
Detail information (e.g. data processing and accuracy assessment) can
be found in Liu et al. (2010), Liu et al. (2014) and Kuang et al. (2016).

Terra MODIS LST data (MOD11A2, 8-day composite, 1 km spatial
resolution, version 6, for the period 2001-2016) was used to extract
LST in this study. The LST data was retrieved using generalized split-
window algorithm and improved by correcting noise due to topo-
graphic differences, cloud contamination, and zenith angle changes.
The accuracy of this data had been widely validated in a wide range
(—10 to 58 °C) and different land cover types (Wan, 2008, 2014). This
data had been widely used to study the SUHI (Imhoff et al., 2010;
Peng et al., 2012; Zhang et al., 2014; Zhou et al., 2014; Wang J. et al.,
2015b; Ward et al., 2016; Yao et al., 2017c). Vegetation information
was quantified by MODIS MOD13A3 EVI data (1 km spatial resolution,
monthly composite, version 6, for the period 2001-2016), with higher
value representing higher vegetation activity (pixels with negative
value were considered as water bodies and excluded in this study). In
addition, albedo information was derived from MCD43B3 shortwave
WSA data (1 km spatial resolution, 8-day composite, version 5, for the
period 2001-2016), respectively. Finally, precipitation data for the pe-
riod 2001-2015 from weather stations (obtained from China Meteoro-
logical Administration) in and around the city were used in the
present study (Fig. 1). EVI and WSA data had been widely validated
and used by previous studies (Liang et al., 2002; Huete et al., 2002; He
et al, 2012; Peng et al., 2012; Zhou et al,, 2014).

3. Methods

Fig. 3 shows the flow chart of the methodologies in this study. The
CLUDs were first merged into three broad types: built-up area
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Fig. 1. The 31 cities and weather stations in this study. 15 northern cities: Beijing (BJ), Changchun (CC), Harbin (HB), Jinan (JN), Lanzhou (LZ), Urumgqi (UQ), Shenyang (SY), Hohhot (HT),
Tianjin (TJ), Yinchuan (YC), Shijiazhuang (SJZ), Taiyuan (TY), Xining (XN), Zhengzhou (ZZ) and Xi'an (XA). 15 southern cities: Changsha (CS), Chengdu (CD), Chongqing (CQ), Fuzhou (FZ),
Nanjing (N]), Yangtze River Delta Urban Agglomeration (YRDUA), Heifei (HF), Hangzhou (HZ), Wuhan (WH), Nanchang (NC), Guiyang (GY), Kunming (KM), Nanning (NN), Pearl River

Delta Urban Agglomeration (PRDUA) and Haikou (HK). Plateau city: Lhasa (LS).

(including urban area, industrial land and rural settlement), water body
and other types (including cropland, forest, grassland and unused land).
We then generated resampled maps (1 km spatial resolution, keep ac-
cordance with MODIS data) and proportion maps (the proportions of
each of the 3 land cover types for each pixel with 1 km spatial resolu-
tion). To minimize the influences of interannual urbanization on
SUHII, the analyses in this study were only conducted in the intersection
area of urban cores (UCs, pixels consisted of 100% of the built-up area;
Fig. 2) in all four CLUDs (in the year 2000, 2005, 2010, 2015) (Cao
et al,, 2016). In other words, this study only performed in fixed urban
area throughout the whole study period. Additionally, the 20-25 km
buffer around the urban area was used as rural reference (excluding
pixels with water body higher than 0% or built-up area higher than
5%; Fig. 2) (Imhoff et al., 2010; Yao et al.,, 2017a, 2017c; Zhou et al.,
2016c¢). In the present study, the rural references were far from urban
areas, since the SUHI's footprint was far greater than urban area size ac-
cording to Zhang et al. (2004), Han and Xu (2013) and Zhou et al.
(2015). This study did not exclude the impacts of elevation, the reasons
can be found in supporting information.

MOD11A2 data detected at 10: 30 am and 10: 30 pm (local solar
time) were used to represent daytime and nighttime LSTs, respectively.
Then they were averaged into summer (defined as June, July and Au-
gust) and winter (defined as December, January and February). Thus,
the analyses of this study were performed in four time periods: summer
days (SDs), summer nights (SNs), winter days (WDs) and winter nights
(WNs).

Eq. (1) was used to compute the SUHII (Peng et al., 2012; Yao et al.,
2017a):

ALST (SUHII) = LSTyc—LSTyyral (1)

where the LSTyc and LST,; are the LSTs in UC and rural area, respec-
tively. Thus the ALST is the SUHII in UC. Moreover, the AEVI and
AWSA were computed using the same way as Eq. (1).

The experiments include three main sections:

(1) Exploring the relationships between SUHII and climate variability
in each city. The LST averaged for daytime and nighttime in rural
area (background LST, henceforth) was used to reflect background
climate variability of a city (Yao et al., 2017c). We did not use in

situ data, since most of the weather stations are situated in urban
areas and it is hard to select a rural station that immune to UHI
(Sunetal, 2016; WangF. et al., 2015a). Pearson's correlation anal-
yses were employed to analyze the relationships between SUHII
and background LST in each city across 2001-2016. Note that the
correlation analyses in this study were performed across time
(years), which were different from space (cities) in previous stud-
ies (Imhoff et al., 2010; Peng et al., 2012; Clinton and Gong, 2013;
Wang J. et al,, 2015b; Du et al,, 2016; Zhou et al,, 2014, 2016b).
Analyzing the changes in LST and SUHII in hot summers and cold
winters in each city. The heat magnitude (HM) and the cold mag-
nitude (CM) was used to analyze the changes in LST in hot sum-
mers and cold winters, respectively:

—
\]
—

HM = LSThot summers _LSTother summers (2)
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Fig. 2. The schematic diagram of urban core (UC) and rural area in Beijing.
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M = LSTcold winters _LSTother winters (3)

where the LSThot summers @and the LSTother summers represent the average
LST in the hottest three summers and other 13 summers for the period
2001-2016, respectively. The hottest three summers of a city were de-
fined as summers with the highest, the second highest and the third

(a) SD

® Significant positive correlation

® Significant negative correlation

highest background LST. Note that these hot summers somewhat varied
among the 31 cities. Thus the HM represents the average LST difference
between the hottest three summers and the other summers. We used
three summers rather than one or two to minimize the influences of
climate variability, human activity and data quality (Imhoff et al.,
2010; Zhang et al., 2014; Zhou et al., 2016b). The LSToiq winter and the
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Fig. 4. Pearson's correlation analyses between background land surface temperature (LST) and surface urban heat island intensity (SUHII) in (a) summer days (SDs); (b) summer nights

(SNs); (c) winter days (WDs) and (d) winter nights (WNs).
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Fig. 5. The Aheat magnitudes (HMs) in (a) SDs and (b) SNs.

LSTother winter F€present the average LST in the coldest three winters and
other 13 winters, respectively. The coldest three winters of a city were
defined as winters with the lowest, the second lowest and the third low-
est background LST. Thus the CM represents the average LST difference
between the coldest three winters and the other winters. Additionally,
the AHM and ACM were calculated as Eqgs. (4) and (5), respectively:

AHM = HNIUC_HN[rural (4)
ACM = ClleC_CN[rural (5)

where the HMyc and the HM,y4 are the HM in UC and rural area, re-
spectively. If the AHM was greater than zero, it suggested that in hot
summers, the increase in LST was more in UC than in rural area and
the SUHII increased (and vice versa). If the ACM was greater than zero,
it suggested that in cold winters, the decrease in LST in cold winters was
less in UC than in rural area and the SUHII increased (and vice versa).

(3) Studying the stabilities of LST, EVI and WSA in each city. We used
the standard deviation (0) to reflect the stability of LST:

1 2016

== LST;—u)? 6
o 161:;01( u) 6)

where the LST; is the LST in the year i, u is the average LST for the whole
study period. The standard deviation of LST was calculated for each pixel
separately. The standard deviation of LST in UC was computed as the av-
erage standard deviation of all pixels in UC (the same as rural area). The
standard deviations of EVI and WSA were calculated using the same
method as Eq. (6). In addition, the Ao was calculated using Eq. (7):

Ao = Ouc—Orural (7)

where the oyc and the Oy are the 0'in UC and rural area, respectively.
If the Ao'was less than zero, it suggested that the LST (or EVIor WSA) in
UC was more stable and less sensitive to climate variability than in rural
area across 2001-2016 (and vice versa).

(a) WD

There are many gaps in MCD43B3 WSA data. Therefore, the years
with proportion of gaps higher than 20% in UC or rural area were ex-
cluded in each city (Hu et al., 2016; Weng and Fu, 2014). Cities with pro-
portion of invalid years higher than 4 years (>20%) were excluded in
this study.

The monitoring time of MYD11A2 data (Aqua satellite, 1:30 am and
1:30 pm on local solar time) was different from MOD11A2 data (Terra
satellite). Therefore, we used the MYD11A2 data (for the period
2003-2016) as a supplement. The experiments in this study were per-
formed using MOD11A2 and MYD11A2 data separately. All of the re-
sults observed by Aqua satellite can be found in supporting information.

4. Results
4.1. The relationships between SUHII and background climate variability

Background climate variability has great impacts on interannual var-
iations in SUHII on SDs and WDs in Northern China (Fig. 4). The SUHII
was negatively correlated with the background LST in all of the northern
cities in SDs and WDs, over half of the northern cities showed significant
(p < 0.05) negative correlations (Fig. 4). Similarly, the plateau city
(Lhasa) also presented significant negative correlation between SUHII
and background LST on SDs and WDs. However, most cities in Southern
China exhibited insignificant correlations (Fig. 4).

The SUHII in SNs was generally invariant with background climate,
the significant correlations were only found in few cities (Fig. 4). Addi-
tionally, there were 5 of 15 northern cities exhibiting significant nega-
tive correlations between SUHII and background LST on WNs. Finally,
all of the results observed by Terra satellite were similar to Aqua satellite
(Fig. S1).

4.2. The HM in hot summers and the CM in cold winters

The increase in daytime LST in hot summers was generally lower in
UCs than in rural areas, as the AHM were less than zero in most cities
(26 of 31 cities), especially in Northern China (15 of 15 cities, Fig. 5).
In other words, the daytime SUHII decreased in hot summers in most

(b) WN
Legend

® ACM=>1
05<ACM<1
0<ACM=<05
05<ACM=<0

®-1<ACM<-05

® ACM <-1

Dividing line

Fig. 6. The Acold magnitudes (CMs) on (a) WDs and (b) WNs.
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Fig. 7. The Astandard deviations of LST in (a) SDs; (b) SNs; (c) WDs and (d) WNs.

cities. For all cities combined, the HM on SDs in UC was 1.072 °C, which
was lower than in rural area (1.577 °C; Table 1). It suggested that the
daytime SUHII in hot summers was 0.505 °C lower than other summers.
These were more prominent in Northern China (UC: 1.141 °C, rural:
1.890 °C; Table 1). On the contrary, for 31 cities averaged, the HM on
SNs was a little higher in UC (0.843 °C) than in rural area (0.720 °C). It
means that the nighttime SUHII in hot summers was 0.123 °C higher

19 © Northern cities
— © Lhasa
2] © Southern cities -
- 0 g
2 04 °© "&.”
5 o e
3 © q96 ©
g =
) e o
o - o
T 14
1]
|- Hohhot®
3 r=0.659 p <0.01 R2 = 0.435
oy - T T 1
0 500 1000

Precipitation

Fig. 8. Pearson's correlation analyses between precipitation and Astandard deviation of
LST on SDs across 31 cities in China.

than other summers. Moreover, for 31 cities combined, the HM on SNs
(UC: 0.843 °C; rural: 0.720 °C) was lower than in SDs (UC: 1.072 °C;
rural: 1.577 °C; Table 1).

In cold winters during the daytime, the decreases in LST were nor-
mally less in UCs than in rural areas, as the ACM was greater than
zero in 26 of 31 cities, particularly for Northern China (15 of 15 cities;
Fig. 6). It suggested that the daytime SUHII generally increased in cold

©O Northern cities
O Lhasa o o
O Southern cities o

01 oo °

(o]
o % i
6 &

-
-14 O' o
o
r=0.789p < 0.01 R2 = 0.623

-20 0 20
Background LST

/\Standard deviation of LST

Fig. 9. Pearson's correlation analyses between background LST and Astandard deviation of
LST on WDs across 31 cities in China.
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Fig. 10. The A standard deviations of enhanced vegetation index (EVI) in (a) summer and (b) winter in China across 2001-2016.

winters. For all cities combined, the CM in WDs in UC (—2.130 °C) was
higher than in rural area (—2.756 °C; Table 1). In other words, the SUHII
was 0.626 °C higher in cold winters than other winters. It was more ev-
ident in Northern China (UC: —2.535 °C; rural: —3.377 °C). In addition,
the higher CM in UC than in rural area was also observed in WNs in
Northern China (UC: —2.385 °C; rural: —2.733 °C). Spatially, the CM av-
eraged for northern cities was lower than southern cities in both WDs
and WNs (Table 1). The AHM and ACM in Lhasa were similar to north-
ern cities (Figs. 5 and 6). Finally, all of the results observed by Terra sat-
ellite were consistent with Aqua satellite (Figs. S2 and S3).

4.3. Less sensitive of LST to climate variability in UC than rural in Northern
China

In Northern China, the LST in SDs and WDs across 2001-2016 was
normally more stable and less sensitive to climate variability in UCs
than in rural areas (Fig. 7). The standard deviations of LST in UCs were
lower than in rural areas in all of the northern cities in SDs (Fig. 7a).
For 15 northern cities combined, the standard deviation of LST in SDs
in UC (0.994 °C) was much lower than in rural area (1.431 °C). However,
the opposite results were found in southern cities: a) the numbers of cit-
ies with A standard deviation of LST higher and lower than zero were 9
and 6, respectively, and b) for 15 southern cities combined, the standard
deviation of LST in SDs in UC (1.050 °C) was nearly equal to rural area
(0.993 °C).

In WDs, all northern cities showed lower standard deviations of LST
in UCs than in rural areas (Fig. 7c). The standard deviation of LST aver-
aged for 15 northern cities in WDs in UC (1.577 °C) was much lower
than in rural area (2.077 °C) (Table 2). However, these were different
from southern cities: a) the number of cities with A standard deviation
of LST higher or lower than zero were 10 and 5, respectively; and b) for
15 southern cities averaged, the standard deviation of LST in WDs in UC
(1.689 °C) was a little higher than in rural area (1.504 °C).

We used the precipitation (in summer averaged for 2001-2015) and
background LST (in winter averaged for 2001-2016) to reflect the back-
ground climate of a city. Correlation analyses between precipitation or
background LST and Astandard deviation of LST were performed across
31 cities to explain the spatial variations in stability of LST. It was found
that drier (northern) cities usually showed lower Astandard deviation
of LST in SDs, since the Astandard deviation of LST was significantly (p

(a) Summer

(b) Winter

<0.01) and positively (r = 0.659) related to precipitation across 31 cit-
ies (Fig. 8). In addition, there were two outliers (Hohhot and Lhasa) in
the correlation analyses (Fig. 8). Furthermore, colder (northern) cities
normally presented lower Astandard deviation of LST in WDs, as the
Astandard deviation of LST was significantly (p < 0.01) and positively
(r = 0.789) correlated with background LST across 31 cities (Fig. 9).

In SN, the LST in UCs was more sensitive to climate variability than
in rural areas in 26 out of 31 cities (Fig. 7b). However, the differences in
Astandard deviations of LST in SNs between UCs and rural areas were
usually small (<0.3 °C; Fig. 7b). For 31 cities combined, the standard de-
viation of LST in SNs in UC was 0.839 °C, which was a little higher than in
rural area (0.726 °C, Table 2). In WNs, the standard deviation of LST av-
eraged for 15 northern cities was 1.415 °C in UC, which was lower than
in rural area (1.648 °C). The reverse results were found in Southern
China (UC: 1.366 °C, rural: 1.199 °C). Furthermore, Lhasa exhibited sim-
ilar results with northern cities (Fig. 7). Finally, all findings observed by
Terra satellite were similar to Aqua satellite (Fig. S4).

4.4. Less sensitive of EVI and WSA to climate variability in UC than rural in
Northern China

Interestingly, the standard deviations of EVI in summer were lower
in UCs than in rural areas in all of the 31 cities (Fig. 10a). It suggested
that the EVI in summer was more stable and less sensitive to climate
variability in UCs than in rural areas. For 31 cities averaged, the standard
deviation of EVI in summer in UC was 0.0248, which was much lower
than in rural area (0.0443; Table 3). These were more prominent in
Northern China (UC: 0.0215, rural: 0.0465; Table 3). In contrast, these
phenomena were more evident in Southern China than Northern
China in winter: a) the Astandard deviations of EVI were less than
zero in all of the southern cities and in 11 of 15 northern cities
(Fig. 10b); and b) the Astandard deviation of EVI averaged for northern
cities was —0.0058, which was much higher than southern cities (—
0.0145; Table 3).

The Astandard deviations of WSA were only analyzed in the minor-
ity of the cities due to a great number of gaps in the MCD43B3 product.
The interesting findings were that all of the 8 cities in winter showed
lower standard deviations of WSA in UCs than in rural areas
(Fig. 11b). For 8 cities combined, the Astandard deviation of WSA was
—0.0229 (UC: 0.0183, rural: 0.0412). It suggested that the WSA in

Legend

0 < Astandard deviation < 0.02
-0.02 < Astandard deviation < 0
® -0.04 < Astandard deviation < -0.02
® Sustandard deviation < -0.04
s Dividing line

Fig. 11. The Astandard deviations of white sky albedo (WSA) in (a) summer and (b) winter in China across 2001-2016.
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(a) Background LST WSA (b)Background LST & AWSA

Legend
® Significant positive correlation
* Insignificant positive correlation
* Insignificant negative correlation

® Significant negative correlation
=== Dividing line

® 0.04 < Value 0.02 < Value <0.04 0 < Value<0.02
-0.02<Value<0 @ -0.04<Value<-0.02 @ Value<-0.04

= Dividing line

Fig. 13. (a) The EVI difference between hot summers (EVIjo summer) and other summers (EVigher summer); (b) the AEVI difference between hot summers (AEVIyot summer) and other
summers (AEVIother summer); (€) The WSA difference between hot summers and other summers; (d) the AWSA difference between hot summers and other summers.
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Table 1

The heat magnitudes (HMs) and cold magnitudes (CMs) averaged for southern cities,
northern cities and 31 cities in China. SD: summer day, SN: summer night, WD: winter
day, WN: winter night, UC: urban core.

SD SN
HM uc Rural area uc Rural area
Northern cities 1.141°C 1.890 °C 0.637 °C 0.565 °C
Southern cities 0.834°C 1.001 °C 0.887 °C 0.798 °C
31 cities in China 1.072 °C 1.577 °C 0.843 °C 0.720 °C
WD WN
M uc Rural area uc Rural area
Northern cities —2.535°C —3.377°C —2.385°C —2.733°C
Southern cities —1.804 °C —2.198 °C —2.080 °C —1.908 °C
31 cities in China —2.130°C —2.756 °C —2.195°C —2.284 °C

winter in UCs was more stable than in rural areas. However, these were
less evident in summer: a) the numbers of cities with Astandard devi-
ation of WSA higher and lower than zero were 5 and 7, respectively
(Fig. 11a); and b) for 12 cities averaged, the Astandard deviation of
WSA was 0.00014 (UC: 0.00788, rural: 0.00774).

5. Discussion
5.1. The relationships between background LST and SUHII

In the present study, over half of the northern cities presented signif-
icant negative correlations between SUHII and background LST in SDs
(Fig. 4). These can be explained by vegetation and soil moisture. In sum-
mer, elevated LST in rural areas can decrease the soil moisture, then in-
crease the increasing rate of LST in rural area during the daytime and
finally decrease the SUHII (Winguth and Kelp, 2013; Yao et al., 2017c).
In addition, high temperature and low soil moisture were harmful to
vegetation growth in semi-arid and arid region, for example, most
parts of the Northern China (Piao, 2003). The decreasing EVI can in-
crease the LST in rural area and then decrease the SUHII, since vegeta-
tion can pose a cooling effect (Haashemi et al., 2016; Peng et al., 2012;
Taheri Shahraiyni et al.,, 2016). These mechanisms were demonstrated
by Yao et al. (2017c). Spatially, Lhasa also showed significant negative
correlation between SUHII and background LST on SDs, probably be-
cause the similar background climate (dry) between Lhasa and north-
ern cities (Fig. 8). In Southern China, no cities presented significant
negative correlations, probably because the abundant precipitation
and saturated soil moisture in summer.

In over half of the northern cities, the SUHIl on WDs was significantly
and negatively correlated with background LST (Fig. 4). These were sim-
ilar to Schatz and Kucharik (2015) and Yao et al. (2017c). These can be
explained by albedo effects. In rural areas, a reduction in LST can in-
crease the snow and ice in winter, thus increase albedo since ice and

Table 2
The standard deviation of land surface temperature (LST) averaged for southern cities,
northern cities and 31 cities in China.

SD SN
Standard deviation uc Rural area uc Rural area
Northern cities 0.994 °C 1.431°C 0.761 °C 0.697 °C
Southern cities 1.050 °C 0.993 °C 0.797 °C 0.688 °C
31 cities in China 1.060 °C 1.291 °C 0.839°C 0.726 °C
WD WN
Standard deviation uc Rural area uc Rural area
Northern cities 1.577 °C 2.077 °C 1.415°C 1.648 °C
Southern cities 1.689 °C 1.504 °C 1.366 °C 1.199 °C
31 cities in China 1.609 °C 1.771°C 1.369 °C 1.403 °C

Table 3
The standard deviation of enhanced vegetation index (EVI) averaged for southern cities,
northern cities and 31 cities in China.

Summer Winter
Standard deviation uc Rural area uc Rural area
Northern cities 0.0215 0.0465 0.0097 0.0155
Southern cities 0.0282 0.0423 0.0163 0.0308
31 cities in China 0.0248 0.0443 0.0128 0.0226

snow have higher albedo than other land cover types. The snow and
ice can reflect more sunlight and further decrease the LST in rural
areas. On the contrary, snow and ice in UCs are often removed by
human beings. Thus the AWSA will decrease and then the SUHII will in-
crease. These can be demonstrated by a series of correlation analyses:
a) in most cities, the background LST was negatively and positively re-
lated to the WSA (in rural areas; Fig. 12a) and AWSA (Fig. 12b), respec-
tively; and b) in most cities, the SUHII in WDs was negatively related to
the AWSA (Fig. 12c). Spatially, Lhasa also exhibited significant negative
correlations, probably because the similar background climate (cold)
between Lhasa and northern cities (Fig. 9). In Southern China, few cities
showed significant negative correlations between SUHII and back-
ground LST in WDs, mostly owing to warm climate (Fig. 9).

5.2. The HM in hot summers and the CM in cold winters

The increase in LST in hot summers was generally higher in rural
areas than in UCs in SDs, particularly for Northern China (Fig. 5 and
Table 1). These can be attributed to soil moisture and vegetation. We
calculated the average EVI (in rural areas) and AEVI (EVIin UC minus
rural) differences between hot summers and other summers (the
same method as Eq. (2)). The EVI was lower in hot summers than
other summers in 24 of 31 cities, particularly for Northern China (13
of 15 cities; Fig. 13a). In addition, the AEVI was higher in hot summers
than other summers in 27 of 31 cities, especially in Northern China (14
of 15 cities, Fig. 13b). The increase in AEVI may be one of the reasons for
reduction in SUHII in hot summers. In addition, the decreasing SUHII in
hot summers during the daytime was different from previous studies,
which showed that the UHII increased during heatwaves (Li and Bou-
Zeid, 2013; Ramamurthy and Bou-Zeid, 2017; Ramamurthy et al.,
2015). These were possibly due to different methods, previous studies
compared the UHI between heatwave days and neighboring non-
heatwave days in the same year, the vegetation may not change
substantially.

The decrease in LST in cold winters was lower in UCs than in rural
areas in WDs, particularly for northern cities (Fig. 6 and Table 1).
These can be attributed to albedo effects. We analyzed the WSA (in
rural area) and AWSA (WSA in UC minus rural) differences between
cold winters and other winters (the same method as Eq. (3)). The
WSA was higher in cold winters than other winters in 18 of 24 cities,
while the AWSA was lower in cold winters than other winter in 8 of 9
cities (Fig. 13). The decreased AWSA may be one of the reasons for
the increasing SUHII in cold winters.

For 31 cities combined, the HM in SDs was higher than SNs, espe-
cially in rural areas (Table 1). This can be attributed to soil moisture.
In hot summers, the decreased soil moisture can increase the changing
rate of LST, thus the LST decreased quickly at night and the HM also de-
creased. Moreover, for 31 cities combined, the HM in SNs in UC was
0.123 °C higher than in rural area (Table 2), it suggested that the night-
time SUHII was 0.123 °C higher in hot summers than in other summers.
This was similar to previous studies, which showed that the nighttime
air UHI can be strengthened by heatwaves (Founda et al., 2015;
Ramamurthy and Bou-Zeid, 2017; Winguth and Kelp, 2013). The de-
creased soil moisture and increased anthropogenic heat release may
play important roles.
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5.3. Less sensitive of LST to climate variability in UC than rural in northern
cities

In this study, for 15 northern cities averaged, the LST in SDs, WDs
and WNs was more stable in UCs than in rural areas. In SDs, the more
stable LST in UCs than in rural areas can be explained by soil moisture
and vegetation. The soil has high water retention ability. The back-
ground climate variability can influence the soil moisture significantly,
and the soil moisture may change substantially across years, particularly
for drier Northern China (Fig. 8). By contrast, the urban surface has low
water retention ability and may often be dry (Du et al,, 2016). In addi-
tion, the more stable EVI in UCs than in rural areas may also be the rea-
sons for the more stable LST in UCs than in rural areas (Fig. 10), since EVI
had been proved strongly correlate with LST (Peng et al., 2012; Weng,
2009; Yao et al,, 2017a). In addition, it was clear that the Astandard de-
viation of LST in Hohhot and Lhasa in SDs were lower than other cities
(Fig. 8), which can be attributed to the plateau climate of these two cit-
ies. The plateau region is sensitive to climate and the standard deviation
of LST in SDs in rural areas (Hohhot: 2.594 °C, Lhasa: 3.659 °C) were
higher than other cities (other 29 cities averaged: 1.164 °C).

In WDs, the more stable LST in UCs than in rural areas in northern
cities can be explained by its cold climate and human activities. Cold cit-
ies usually have lower Astandard deviation of LST (Fig. 9). Low temper-
ature can increase the snow, ice and WSA. The human activity can lead
to more stable WSA in UCs than in rural areas (Fig. 11).

The soil moisture has the opposite effects on LST in SDs and SNs as
mentioned in Section 4.2. Thus the correlations, HMs and standard devi-
ations in northern cities in SDs were different from SNs (Figs. 4, 5, 6 and
7). However, the water in the soil was generally replaced by ice and
snow in Northern China in WNs. The specific heat capacity of water is
much higher than ice, thus the correlations, CMs and standard devia-
tions in northern cities in WNs were similar to WDs (although the re-
sults were less prominent on WNs; Figs. 4, 5, 6 and 7).

5.4. Less sensitive of EVI and WSA to climate variability in UC than rural in
northern cities

In the present study, the EVI was more stable in UCs than in rural areas
(Fig. 10). The amount of vegetation and the EVI were generally higher in
rural areas than in UCs. Thus more vegetation will be affected by climate
variability and the changes in EVI may be greater in rural areas than in
UGs. In addition, the vegetation may be affected by human activity in
UCs (e.g. irrigation), thus the influences of climate variability (e.g. high
temperature and drought) may be mitigated and the EVI may be more
stable in UCs than in rural areas. This phenomenon was less evident in
Northern China in winter (Fig. 10b), mostly owing to the vegetation
types (larch and seasonal crop) in Northern China (Zhou et al,, 2014).

The Astandard deviations of WSA were less than zero in all of the 8
cities in winter (Fig. 11b). These can be attributed to human activities.
Spatially, this was less obvious in summer, probably because less
snow and ice. Finally, Lhasa exhibited similar Astandard deviations of
LST, EVI and WSA with northern cities, mostly owing to similar back-
ground climate (cold and dry) between them (Figs. 8 and 9).

5.5. Possible benefits of the insensitivity of urban surface

This study focused on the LST and SUHII, which were completely dif-
ferent from the air temperature and air UHI. Although human health
and comfort may be more affected by air UHI than SUHI (Anniballe
et al., 2014; Zhou et al., 2016b), the SUHI was a primary driver of air
UHI and closely relating to the air UHI (Clinton and Gong, 2013;
Weng, 2009).

The UHI in winter can effectively mitigate the impacts of low temper-
ature, and have some benefits such as reducing heating needs and save
lives, especially in cold region such as Northern China (Kolokotroni
et al,, 2012; Schatz and Kucharik, 2015; Yao et al., 2017c). These positive

effects may become more prominent in cold winters when the SUHII in-
creased according to the present study. If the global cooling occurred in fu-
ture, rapid urbanization may effectively mitigate its impacts. Therefore, in
cold regions such as Northern China, people should consider the possible
benefits of UHI when designing and applying mitigation strategies of UHL
Moreover, we suggest removing the snow and ice in cold winter, since it
can relief the influences of low temperature according to this study.

Dry regions are known to be more sensitive to climate change than
humid regions. Global warming over dry regions was much higher
than over humid regions over the past century (Huang et al., 20173,
2017b). Fortunately, in hot summers, the SUHII usually decreased in
dry Northern China according to the present study, the impacts of
high temperature in UCs may be relieved. In addition, the hotter the
summer, the lower the SUHII (Fig. 4). However, rapid urbanization
can increase both LST and air temperature in urban areas, increasing
the duration and intensity of heatwaves undoubtedly (Luo and Lau,
2017; Schatz and Kucharik, 2015). If the global warming and rapid ur-
banization continued, people will suffer from more severe heat waves.

6. Conclusions

In this study, the relationships between SUHII or LST and back-
ground climate variability were systematically analyzed in 31 cities of
China for the period 2001-2016.

For northern cities, the major findings in this study include: (1) The
SUHII in SDs and WDs was significantly and negatively related to the
background LST in more than half of the northern cities. These can be at-
tributed to vegetation and soil moisture in SDs, and albedo effects in
WDs. (2) The HMs in SDs was usually lower in UCs than in rural areas,
while the CMs in WDs and WNs was normally higher in UCs than in
rural areas. In rural areas, the EVI generally decreased in hot summers
and the WSA normally increased in cold winters. (3) The standard devi-
ations of LST in SDs and WDs were usually lower in UCs than in rural
areas due to the cold and dry climate. (4) The standard deviations of
EVIand WSA (winter) were lower in UCs than in rural areas in most cit-
ies in China. Comparatively, nearly all of the findings were less evident
in hot and humid Southern China.

This study revealed an interesting characteristic of urban surface,
which was helpful for better understanding the urban environment
and the relationships between SUHII and climate variability. In present
study, urban surface was less sensitive to climate variability than rural
in Northern China. However, it does not mean that urbanization is
good since it can increase the duration and intensity of heatwaves
(and lead to many other environmental issues). In addition, the quanti-
tative impacts of the insensitivity of the urban LST on air temperature,
and the relationships between air UHI and climate variability should
be comprehensively studied in future.
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