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An object-oriented mapping approach based on subspace analysis of airborne hyperspectral images was
investigated in this paper. Hyperspectral features were extracted based on subspace learning
approaches, in order to reduce the redundancy of spectral space and extract the characteristic images
for the further object-oriented classification. In this paper, three kinds of spectral feature extraction (FE)
methods were utilized to obtain the subspace of airborne hyperspectral data: (1) unsupervised FE, such
as PCA (principal component analysis), ICA (independent component analysis) and MNF (maximum
noise fraction); (2) supervised FE, e.g. DBFE (decision boundary feature extraction), DAFE (discriminant
analysis feature extraction) and NWFE (nonparametric weighted feature extraction); and (3) linear
mixture analysis. Afterwards, the extracted subspace features were fed into the object-based
classification system. The FNEA (fractal net evolution approach) was utilized to extract objects from
the subspace images and SVM (support vector machines) was then used to classify the object-based
features. Experiments were conducted on two airborne hyperspectral datasets: (1) the AVIRIS dataset
over the northwest Indiana’s Pine with 220 spectral bands (agricultural region), and (2) the ROSIS
dataset over Pavia University, northern of Italy with 102 spectral bands (urban region). Results revealed
that the proposed object-based approach could give significantly higher accuracies than the traditional

pixel-based subspace classification.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral sensors record the spectrum of solar radiation
reflected by the Earth’s surface. The value of using a hyperspectral
sensor lies in its ability to provide a high-resolution reflectance
spectrum for each pixel in the image [1]. The hyperspectral data
provide contiguous or noncontiguous 10 nm bands throughout the
400-2500 nm region of the electromagnetic spectrum, and hence
it is potential to precisely discriminate different land cover types
using the sufficient spectral information. Such identification is of
great significance for detecting minerals, precision farming, and
urban planning, etc.

However, the high-dimensional feature space of hyperspectral
data poses challenges to image processing and classification
techniques. The problem is due to the high number of spectral
channels and the relatively small number of labels samples.
Therefore, feature extraction (FE) methods are commonly used to
reduce the data dimensionality and computational cost. Many
algorithms have been reported to be effective in reducing the
dimensions of input space and achieving better performance, such
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as linear and nonlinear principal component analysis (PCA) [2,3],
linear discriminant analysis (LDA) [4,5], locally linear embedding
(LLE) [6], non-negative matrix factorization (NMF) [7], wavelet
feature extraction [8], and independent component analysis (ICA)
[9]. More recently, Tao et al. [10] proposed a tensor rank one
discriminant analysis (TR1DA) for feature selection and pattern
classification, which allows more effective image representation
with a relatively small number of parameters. Tao et al. [11]
pointed out that although the Fisher's LDA was one of the
important subspace methods, for the c-class problem, it had a
tendency to merge nearby classes under projection of the feature
space since the dimension of the projected subspace was lower
than c-1. Consequently, they proposed three new criteria for
subspace selection based on the geometric mean of the diver-
gences between different classes. Li et al. [12] proposed a new
manifold learning technique called discriminant locally linear
embedding (DLLE), in order to preserve the local geometric
properties within each class and enhance the separability
between different classes. Furthermore, the miltilinear version
of DLLE was also proposed for the out-of-sample problem with
high-order tensor input.

By summarizing the exiting literature about subspace extrac-
tion and classification methods, it can be found that it always
focuses on the pixel-based classification, without considering the
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spatial relationship of neighboring pixels. The pixel-based
approach often results in pepper-salt effects [7] and it is difficult
to discriminate the spectrally similar objects when contextual
information is not considered. Recent studies show that the
exploitation of spatial information is necessary for classification of
hyperspectral imagery, but few such approaches have been
proposed [13], which is partly due to the high dimensionality of
the data and the spectral and spatial heterogeneity of remote
sensing images [14]. In this context, the objective of this research
is to exploit both spectral and spatial information contained in the
hyperspectral remote sensing images, in order to precisely map
land covers. To this end, we propose an object-oriented subspace
analysis approach for classification of airborne hyperspectral
remote sensing data. The flow chart is shown in Fig. 1. The
proposed framework consists of two blocks:

(1) Subspace extraction for pre-processing: it aims to reduce the
dimensionality and extract the spectral subspace from
hyperspectral data. In this paper, three kinds approaches are
employed, including unsupervised and supervised FE, and the
linear spectral unmixing (LSU).

(2) Object-based analysis (OBA) of the spectral subspace: the
object-oriented approach is used to classify the subspace
features, and take the spatial and contextual information into
account for classification. The basic idea of OBA is to group the
spatially adjacent pixels into spectrally homogeneous objects
and then conduct classification on objects as the minimum
processing unit. In this paper, the fractal net evolution
approach (FNEA) [15] was utilized to extract objects from
subspace images and SVM was then used to classify the
object-based subspace features. SVM is of interest due to its
insensitivity to the high dimensionality of the feature space
and the adaptive and fast learning ability [16,17].

The experiments were conducted on two airborne hyperspectral
datasets: (1) the AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) hyperspectral dataset over the Indian Pines test
site (agricultural region) and (2) the ROSIS (Reflective Optics
System Imaging Spectrometer) hyperspectral image over Pavia
University, northern of Italy (urban region). In experiments, the
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Fig. 1. Flow chart for the object-oriented classification approach of the spectral
subspace of hyperspectral remote sensing images.
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classification accuracies resulted from the pixel-based and object-
based subspace were compared and analyzed. In addition, GLCM
(gray level co-occurrence matrix), and wavelet-based texture
features were implemented based on the extracted subspace
images, and the results were used as benchmarks to evaluate the
proposed algorithm.

The remainder of this paper was organized as follows.
Section 2 introduced the unsupervised/supervised subspace
analysis methods and the linear spectral unmixing. The proposed
object-oriented subspace analysis and classification framework
was described in Section 3. Section 4 presented the experimental
results and comparisons, and the last section concluded.

2. Subspace feature extraction
2.1. Unsupervised FE

(1) PCA (principal component analysis)
The PC images of a hyperspectral data can be calculated as:

Zpea = VT (z —m) 1

where m is the mean, and z and z,., are pixel vectors before and
after the PCA transformation, respectively. V =[vq, v,, ..., vg] is the
eigenvector of the hyperspectral data covariance matrix 2, and it
can be expressed as:

Vvizv=4 )

where A =[/1, 42, ..., 4g] is the eigenvalue matrix of X, and B is the
number of hyperspectral channels. PCA has been shown not to be
optimal for classification and it is also not appropriate for material
identification and separability. However, from the feature extrac-
tion point of view, PCA can represent the hyperspectral feature
space using several principal components. In addition, it is
interesting to test the performance of PCA when the neighboring
pixels are considered for classification.

(2) ICA (independent component analysis)

Recently, ICA-based blind source separation technique has
received attention for hyperspectral remote sensing imagery. The
goal of ICA is to recover independent sources given only sensor
observations that are unknown linear mixtures of the unobserved
independent source signals [18]. In contrast to correlation-based
transformations such as principal component analysis (PCA), ICA
not only decorrelates the signals (2-order statistics) but also
reduces higher-order statistical dependences, attempting to make
the signals as independent as possible [18].

The basic model of ICA is:

x=A-s 3

where x=[xq,...,x;]” is an observation vector, A is an nxm
mixing matrix, and s=[sy,...,sn]’ are mutually independent
components. ICA aims to find a linear transformation matrix W
such that the sources can be estimated from the observed vector x
by optimizing the statistical independence criterion,

u=W.x @

where u is an estimate of the sources. Starting from an
information theoretic viewpoint, the ICA problem is formulated
as the minimization of mutual information between the trans-
formed variables, since mutual information is a natural measure
of the dependence between random variables. ICA is a frequently
used unsupervised feature extraction method, and it shows good
classification ability, however, it is difficult to determine the
appropriate dimensionality of ICs. Quite a few ICA algorithms
exist. In this study, the information maximization [19] is used to
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extract the spectral subspace from the airborne hyperspectral
images.

(3) MNF (maximum noise fraction)

PCA chooses the new components by maximizing variance,
which is questionable since the variance can be contributed from
both signals and noise. MNF is an improved version of PCA, and it
is a subspace extraction technique in terms of image quality
(signal-to-noise ratio) [20]. It is able to determine the inherent
dimensionality of feature space, to segregate noise in the data, and
to reduce the computational cost for subsequent processing. MNF
is based on the additive noise model:

Z(x) =S(X)+N(x) )]

where Z(x) is the original signal, and S(x) and N(x) are the
uncorrelated signal and noise components of Z(x), respectively.
The covariance matrices can be related by:

CoviZx) =2 =2s+2N (6)

where X5 and Xy are the signal and noise covariance matrices,
respectively. The noise fraction for band b is defined as:
Var(Np(x))/Var(Zy(x)). MNF transformation results in new uncor-
related images based on a linear transformation of the original
data set: Y =A"Z where the transformation matrix A is calculated
by solving the eigenvalue equation:

AZNE T=AA (7)

where A = (11, 42,...,4p) is a diagonal matrix of the eigenvalues.
The MNF transformation arranges the feature bands with
decreasing noise fraction, therefore, the subspace of a hyperspec-
tral image can be extracted by analyzing the proportion of the
noise variance described by the first several MNF bands.
Consequently, the hyperspectral feature space can be divided into
two parts: one part associated with large eigenvalues and
coherent eigenimages, and a complementary part with near-unity
eigenvalues and noise-dominated images. By using only the
coherent portions, the noise is separated from the data, thus
improving performance of spectral analysis.

2.2. Supervised FE

(1) DAFE (discriminant analysis feature extraction)

DAFE is a well-known feature extraction method to enhance
separability of the subspace [21]. It is based on the maximization
of separability by defining a within-class matrix Xy and a
between-class scatter matrix Xpg:

J=tr(Zy/ Zp) 8

where tr(-) is the trace of a matrix. The transformation matrix can
be expressed by the normalized eigenvectors of Z‘]}ZB corre-
sponding to the eigenvalues in a decreasing order.

(2) DBFE (decision boundary feature extraction)

DBEFE is a feature extraction approach for classification based
on the decision boundaries [22]. DBFE defines the ‘discriminantly
informative feature’ and ‘discriminantly redundant feature’ since
feature extraction is equivalent to retaining informative features
or eliminating redundant features. Lee and Landgrebe [22]
revealed that only a portion of the decision boundary is effective
for discrimination between different classes. It was also shown
that discriminantly informative feature vectors have a component
that was normal to the decision boundary at least at one point on
the boundary, while discriminantly redundant feature vectors are
orthogonal to a vector normal to the decision boundary at every
point on the boundary. Both the discriminantly informative and
discriminantly redundant features are defined using a decision
boundary feature matrix (DBFM), based on which the optimum

features can be selected in terms of the accumulation of the
eigenvalues.

(3) NWFE (nonparametric weighted feature extraction)

NWEFE proposed by Kuo and Landgrebe [23] is based on a
nonparametric extension of scatter matrices, and it is an improved
version of NDA (nonparametric discriminant analysis) [24]. NWFE
focuses on samples near the eventual decision boundary location,
and different weights are put on every sample to compute the
local means and defining new nonparametric between-class and
within-class scatter matrices [23]. The extracted n features are the
n eigenvectors with largest n eigenvalues of the following matrix:

S~y C)

where SN and S{W are the nonparametric within-class and
between-class scatter matrices, respectively.

2.3. LSU (linear spectral unmixing)

LSU is based on the linear mixture model (LMM), which is a
widely used method to quantify endmember materials from
hyperspectral imagery [25]. The spectrum signature of an
observed pixel can be expressed as:

z=So+n (10)

where S= (51,53, ...,Sp) is the endmember signature matrix with
S; (ie[1,p]) representing the ith endmember in an image, and
o =(01,0,...,0p) is the abundance vector, where the ith element
indicates the proportion of the ith endmember material in the
pixel z. The n is noise or measurement error.

There are two constraints due to the physical meaning of LMM:
the abundance non-negative and the abundance sum-to-one
constraints, which can be expressed as follows,

p
> oi=1 and 0<o<1 for 1<i<p an
i=1

When S is known (supervised linear unmixing), a constrained
optimization process can be used to estimate the o by minimizing
the estimation error in (10) when the constraints in (11) are
satisfied.

In this paper, the abundance components « in the LSU are used
to represent the hyperspectral feature space since the number of
endmembers is substantially smaller than the number of available
bands. Furthermore, the abundance components have clear
physical meaning, and hence LSU can be viewed as a feature
extraction approach based on the physical constraints. In addition,
the abundance components are appropriate to be fed into the
object-based classifier since combination of pixel-based and
parcel-based physical information results in more meaningful
hyperspectral data representation.

3. Object-based subspace classification
3.1. FNEA segmentation

In this study, the fractal net evolution approach [15] is adopted
to segment the spectral subspace images extracted from the original
hyperspectral data. It utilizes fuzzy set theory to extract the objects
of interest, at the scale of interest, segmenting images simulta-
neously at both fine and coarse scales. FNEA is a bottom-up region
merging technique starting from a single pixel. In an iterative way,
at each subsequent step, image objects are merged into larger ones.
The region merging decision is made with local heterogeneity
criterion, which consists of spectral and spatial criteria:

h=w-. hspectral +(‘l -w)- hspatial (]2)
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where w is the weight for spectral (against spatial) information with
0 <w <1, and hgpeciral and hgpiia) Tepresent the spectral and spatial
change criteria in heterogeneity that occurs when merging two
different image objects, respectively. The spectral heterogeneity is
defined using the weighted standard deviations:

B
hspectral = Z W) [NMerge OMerge — (Nobj1 Tobj1 +Nobj2Tobj2)] (13)
b=1
where B is the dimensionality of subspace, and W), is the weight of
band b. Nwmerge, Nobj1, and Nopjp represent the numbers of pixels
within the merged object, object 1 and object 2, respectively. overge,
Oobj1» and ooy, are respective standard deviations. On the other
hand, the spatial heterogeneity consists of smoothness and
compactness criteria:

hspatial = Wcompact . hcompact +(] - Wcompact) . hsmooth (14)

with 0 < Weompact < 1 being the weight for the compactness (against
smoothness) criterion. The spatial heterogeneity is also calculated
by comparing the difference between the situation after and before
the merge, and the compactness and smoothness are defined as,

. loﬂ) (15)

Tob2

I Merge
rMerge

lob1
hsmooth = NMerge . - (Nom T +N0b2
Tob1

hcompact :NMerge' lMerge Nobl . lObl +N0b2 : lObz
/Nterge v/Nob1 V/Nobz

where [ is the object perimeter and r is the perimeter of the
rectangles that contain the object. When a possible merge of a pair
of image objects is examined, the fusion heterogeneity value h
between those two objects is calculated and compared to the scale
parameter T. The two objects are merged when H<T. The scale
parameter is a measure of the maximum change in heterogeneity
that may occur when merging two image objects.

(16)

3.2. Object-based subspace classification using SVM

The basic idea of OBA (object-based analysis) is to group the
spatially adjacent pixels into spectrally homogeneous objects and
then conduct classification on objects (not pixels) as the
minimum processing unit. OBA is potential to reduce the local
spectral variation in homogeneous regions, avoid the salt-pepper
effect of pixel-based methods, and mimic human perception in
identifying objects. Most of existing literature about the OBA
technique was related to the high spatial-resolution multispectral
image [26-28], since it is able to exploit rich spatial information
contained in images. It should be noted that high spatial-
resolution images often include several spectral bands. For
instance, the well-known high spatial-resolution satellite sensors
such as Quickbird, IKONOS, and GeoEye only contain four spectral

bands. However, hyperspectral data always includes hundreds of
channels, therefore, the OBA approach cannot be directly applied
to hyperspectral data since the hyper-dimensional spectral space
will significantly increase the computational time of object-based
analysis. In this context, this study proposed to integrate the
subspace analysis and the object-based classification technique in
order to exploit both spectral and spatial information contained in
the hyperspectral data and reduce computational cost of OBA.

The proposed object-oriented subspace analysis with SVM
classifiers is described as follows:

Step 1, Preprocessing: subspace feature extraction from the
original hyperspectral channels. This step aims to extract
hyperspectral information and reduce computational cost for
subsequent processing.

Step 2, FNEA segmentation: object extraction from the sub-
space images. FNEA algorithm is used to yield meaningful objects
or segments by considering both spectral and spatial criteria.

Step 3, Spectral characteristics of objects: after Step 2, the
subspace image has been represented based on objects rather
than pixels. Accordingly, the pixel-by-pixel spectral information
within each segment is integrated for object-based features. In
this paper, the spectral characteristic for each segment is
calculated by averaging the spectral vectors of all pixels within
this segment:

Fy(i)= %ZFb(x) with F(x)={F1(x),...,Fy(x),...,Fx)} 17)
Xel

where F(x) is the spectral vector with B-dimensional subspace for

pixel x. After this step, each segment i is represented using an

averaged spectral vector with dimension of B.

Step 4, SVM-based classification: this step aims to classify each
segment using SVM classifier. The RBF (radial basis function)
kernel is chosen due to its effectiveness in many classification
problems. The regularization parameter and the spread factor of
RBF kernel are determined using cross-validation approach.

Step 5, Accuracy assessment.

4. Experiments and analysis
4.1. Experiments on the AVIRIS dataset

This experiment was conducted on the AVIRIS hyperspectral
data set over Indian Pines. From the 220 spectral channels
acquired by the AVIRIS sensor, 11 bands were discarded because
they were affected by atmospheric problems. The image shows a
typical agricultural site with many kinds of crops. The RGB image
and the ground-truth reference were displayed in Fig. 2. The
numbers of training-test samples were listed in Table 1.

n Corn-notill
. Corn-min

Corn

Grass/Pasture
. Grass/Trees
- Hay-windrowed
- Soybeans-notill

Soybeans-min
. Soybeans-clean
B Wheat

Woods

Bldg-Grass-Tree-Drives

Fig. 2. RGB composites of the Indian Pines (channels 47, 24, and 14 for RGB), and the ground-truth reference map.
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Table 1
Number of training and test samples for the AVIRIS data set.

Table 2
Eigenvalues of the DAFE transformation.

Class Label No. of training samples No. of test samples Component Eigenvalue Cumulative percentage (%)
Corn-notill C1 143 1434 1 18.2056 44.58
Corn-min c2 83 834 2 9.8312 68.66
Corn C3 23 234 3 5.1552 81.28
Grass/pasture C4 50 497 4 2.5056 87.42
Grass/trees C5 75 747 5 1.5092 91.11
Hay-windrowed Cc6 49 489 6 1.2620 94.20
Soybeans-notill Cc7 97 968 7 0.9666 96.57
Soybeans-min Cc8 247 2468 8 0.7833 98.49
Soybeans-clean c9 61 614 9 0.3354 99.31
Wheat C10 21 212 10 0.1912 99.78
Woods C11 129 1294 11 0.0908 100.0
Bldg-grass-tree-drives C12 38 380
Total - 1016 10,171
100.00%
a
100.00% btk e i bbb etk 90.00%
#0.00% _-" {_':'_'_'_.,....J——f'.-IAI’I-.'I"" *
80.00% gt ®? - 80.00%
‘.' 4.;'
70.00%
60.00% (5 70.00%
50.00%
40.00% DRFE — 60.00%% ;
30.00% B — w*
20.00% s PCA 50.00% ¥ . . . . L L . . L . .
3 4 5 6 7 8 9 10 11 12 13 14 15
I et
1 4 7 10 13 16 19 22 5 28 Fig. 4. Overall accuracies in percentage for the pixel-based subspace classification
b using different feature images.
46 1
5 ‘l —+— MNF Ei 1
1genvalues . . . . .
36 l‘ g must be kept in mind that the dimensionality of the LSU-based
3l =I subspace is equivalent to the number of information classes.
26 [
21
16 ".‘ 4.1.2. Comparison of pixel-based and object-based subspace
1 £ classification
i . . . . . .
6 oo The pixel-based classification accuracies were shown in Fig. 4.
l L V- il 1 e

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 4

Fig. 3. (a) The cumulative eigenvalues in percentage for the DBFE, NWFE and PCA
transformations, and (b) MNF eigenvalues for the AVIRIS data set.

4.1.1. Subspace feature extraction

The cumulative eigenvalues in percentage for the PCA, DBFE
and NWFE were shown in Fig. 3(a), where the x and y axes
represented the dimensionality of subspace and the cumulative
percentages, respectively. From the figure, it can be seen that only
3-dimensional PCA subspace contains over 99% variance of the
original hyperspectral data, while 15-dimensional NWFE and
DBFE features give 85% and 75% variance, respectively. The
eigenvalues of MNF transformation were arranged in Fig. 3(b),
from which we can choose the first 15-dimensional MNF features
corresponding to the largest 15 eigenvalues as the spectral
subspace. The MNF eigenimages with near-unity eigenvalues can
be viewed as noise-dominated features and hence removed.
Table 2 shows the eigenvalues of DAFE transformation. It should
be noted that at maximum 11-dimensional subspace is available
for DAFE since the maximum rank of X is (N—1) for an N-class
problem. In addition, 12-dimensional abundance components
were obtained based on the constrained LSU method, and it

The overall accuracies (OA) based on the confusion matrix were
used to assess the classification results. The statistics in Fig. 4
were obtained using a pixel-by-pixel SVM classification without
considering the spatial relationship of neighboring pixels. In the
figure, the x and y axes represented the dimensionality of
subspace and the OA, respectively. The first comment to this
figure is that MNF and DAFE outperformed other FE methods,
since they gave higher accuracies with less dimensionality. It can
be found that the supervised methods (e.g. DBFE, NWFE) did not
necessarily outperform the unsupervised methods (e.g. PCA, ICA
and MNF), which may be due to the subsequent use of a
supervised classifier (SVM). It can be also observed that overall
accuracies did not improve much after 10-dimensional subspace
was included in the feature sets for MNF, PCA and NWEFE.
Considering that the pixel-wise classification of SVM with the
originally 209-dimensional AVIRIS channels gave OA=77.7%, it can
be said that subspace analysis is effective in extracting spectral
information from the hyperspectral data, furthermore, it is able
to reduce the computational cost for the subsequent OBA
classification.

The pixel-based (P) and object-based (O) classification results
were compared in Table 3, where the overall accuracies (OA) for
different FE algorithms were reported. The table shows that the
object-oriented subspace classification can provide substantially
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Comparison between pixel-based and object-based subspace classification (‘O’ and ‘P’ denote object-based and pixel-based classification).

Dimension of subspace ICA PCA MNF NWEFE DBFE DAFE
P (] P 0 P (0] P (] P o P (0]

3 51.3 69.5 63.0 67.8 69.0 74.8 68.1 74.0 56.3 69.5 59.5 79.8
4 55.4 74.4 67.4 73.9 72.9 77.6 72.8 81.3 61.1 75.9 66.6 89.0
5 65.3 80.5 70.3 81.0 75.5 814 77.6 85.6 64.1 77.0 73.0 92.1
6 67.9 82.8 76.0 85.4 78.1 87.8 78.9 86.8 66.4 79.7 74.9 92.8
7 70.8 86.7 771 87.1 79.8 89.5 81.3 88.2 69.0 822 80.9 96.7
8 73.5 87.9 79.7 90.9 84.7 93.3 82.4 89.8 69.8 84.2 81.5 97.5
9 74.9 89.0 80.9 91.7 86.3 94.0 82.7 92.2 70.8 84.7 83.7 97.7
10 76.7 91.0 824 94.4 86.6 94.8 82.8 92.9 73.8 87.5 84.1 97.6

higher accuracies than the pixel-wise classification, regardless of
the dimensionality of subspace images. With the OBA
classification, the OA improvements were 14.2%, 12.0%, 8.3%,
10.2%, 13.7%, and 13.5% for 10-dimensional ICA, PCA, MNF, NWFE,
DBFE and DAFE features, respectively. The OBA-based DAFE
achieved over 97% overall accuracy with less than 10-
dimensional subspace, in addition, the OBA-based PCA and MNF
features gave over 92% overall accuracies. Therefore, it can be
stated that the object-based analysis can exploit the spatial
relationship of pixels effectively and give much more accurate
classification results.

Fig. 5 compared the classification maps of the PCA, MNF,
NWEE, LSU, DBFE and DAFE features for the pixel-based and
object-based classification. From the figure, it can be observed
that the OBA method reduced the pepper-salt effects resulted
from the pixel-wise classification, and it avoided the
misclassifications and uncertainty in homogeneous regions. In
addition, the OBA method classified the image based on objects,
consequently, it is more appropriate for the vector-based post-
processing and GIS (Geographic Information System) spatial
analysis. Table 4 provided the class-specific accuracies
for different subspace features with and without OBA, and
the accuracies obtained by all-bands AVIRIS hyperspectral data
(209 channels) were used for comparison.

4.1.3. Comparison with the texture-based classification

Textural measures are compared because they have been
proven an effective approach for spatial information extraction.
Therefore, in order to further validate the proposed OBA subspace
classification method, some texture features (e.g. GLCM and
wavelet features) were implemented as benchmarks. Three sub-
space images: PCA (10-dimensional), MNF (10-dimensional) and
DAFE (11-dimensional) features, were selected for the texture
analysis considering their good performance in both pixel-based
and object-based classification. As suggested in [29], four GLCM
measures, homogeneity, angular second moment, dissimilarity
and entropy, were used to extract texture features from each band
of the PCA, MNF and DAFE subspace:

P(i.j)

Homogeneity : HOM = — (18
senely 22 i :
Angular second moment : ASM = E E (P(i.j))? (19)
i
Entropy : ENT = — E E P(i, j)log(P(i,j)) (20)
i
21

Dissimilarity : DIS= — > ~> "P(i,j)li — j|
i

i

where (i,j) is the coordinate in the co-occurrence matrix space and
P(i,j) is the co-occurrence matrix value at (i,j). The texture
features were stacked with the spectral subspace images, leading
to 50-, 50-, and 55-dimensional spectral-textural hybrid feature
space for PCA, MNF and DAFE, respectively. The resulted hybrid
features were classified using SVM classifiers.

On the other hand, the stationary wavelet transformation was
also used to extract the multiscale texture features from different
subspace images. The following equation is defined to extract the
multilevel wavelet-based features:

Hi(b)+Vi(b)+D(b)
3 (22)

F:{F,(b): I=[1,1], b:[l,B]}
where | and b represent the level of wavelet decomposition and
the bth band of subspace, respectively. H(b), Vi(b), and D(b)
indicate the horizontal, vertical and diagonal wavelet coefficients
for level | and band b. The wavelet coefficients in different
directions were summed to represent texture information and
spectral variation [30,31]. The multilevel wavelet textures were
combined with the spectral subspace images and the resulted
hybrid vectors were then classified using SVMs. In this experi-
ment, three levels of wavelet decomposition were used (L=3).

Their overall accuracies were compared in Fig. 6. It was seen
that both wavelet and GLCM textural features improved the pixel-
wise classification. The accuracy improvements resulted from the
wavelet textures were 2.6%, 1.9%, and 0.3% for PCA, MNF and DAFE,
respectively, and the respective improvements from the GLCM
textures were 9.2%, 6.0%, and 7.7%. However, it can be clearly seen
that the object-based classification give the most accurate results.
Especially, it should be noted that the dimensionality of the
object-based features is equivalent to that of the subspace (10, 10
and 11 for PCA, MNF and DAFE), however, the utility of GLCM
and wavelet textures substantially increased the dimensionality
of subspace (50, 50 and 55 for PCA, MNF and DAFE). Therefore, it
can be said that the proposed OBA subspace classification
algorithm is more effective in simultaneously exploit spectral
and spatial information in terms of accuracies and computational
cost.

4.2. Experiments on the ROSIS dataset

In order to further evaluate the proposed algorithm, another
airborne hyperspectral dataset was used. The dataset used in this
experiment was collected in the framework of the HySens project,
managed by DLR (the German Aerospace Center) and sponsored
by the European Union. The images were acquired by the ROSIS
sensor during a flight campaign over Pavia, northern Italy
(45°11'N, 9°9E), on the 8th of July 2002. The ROSIS dataset
recorded the 0.43-0.86 um region of the visible and infrared
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Fig. 5. Classification maps for (a) PCA, (b) MNF, (¢) NWFE, (d) LSU, (e) DBFE, and
(f) DAFE features for the pixel-based (left) and object-based (right) classification.

spectrum with spatial resolution of 1.3 m. The test image in this
experiment is around the Engineering School at the University of
Pavia with 103 hyperspectral channels. The test image and the
ground-truth reference map were shown in Fig. 7, and the
numbers of training-test samples were listed in Table 5.
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Table 4
Class-specific accuracies for different subspace features.

Class 209 PCA MNF NWEE LSU DAFE
no. Bands
P O P O P O P O P O
1 69.9 77.9 90.6 86.6 92.8 79.0 92.3 82.1 86.6 848 972
(@) 53.7 610 921 704 964 648 91.5 50.8 89.1 733 9638
c3 66.2 67.5 92.3 71.8 85.0 72.7 92.7 432 551 714 944
c4 871 934 938 946 944 932 958 89.7 887 932 992
C5 926 960 993 992 100.0 97.7 985 96.7 960 97.7 99.1
C6 994 994 994 996 992 99.6 99.6 992 98.0 994 100.0
c7 61.7  63.1 882 70.7 879 629 723 659 80.7 683 91.9
] 84.1 857 97.1 859 947 835 958 864 915 851 98.7
9 604 823 886 883 956 845 945 88.3 899 834 964
Cc10  90.1 98.1 995 99.1 98.1 99.1 99.5 98.6 94.8 99.5 99.1
Cc11  96.1 97.6 985 974 98.1 96.1 963 92.8 98.1 944 99.7
C12 550 605 91.1 768 934 663 92.1 750 945 834 99.7
OA 777 824 944 866 948 82.8 929 822 902 855 97.7
Pixel Wavelet
100.00% 1 g8 GLCM OBA
o
90.00% R
w_w
% 2o
80.00% (= e
e
ot
70.00% 2o
iili
iiii
illi
i0.00%% ::::
=
2%
50.00% . =
PCA MNF DAFE

Fig. 6. Overall accuracies of the pixel-based, texture-based and object-based
classification for PCA (10-dimensional)) MNF (10-dimensional) and DAFE
(11-dimensional) subspace components.

Asphalt
. Meadows
. Metal

Gravel
. Trees

Shadow
M ss
. Bitumen
. Bricks

Fig. 7. RGB composites of the Pavia University (channels 90, 60, and 40 for RGB),
and the ground-truth reference.

Five subspace feature extraction methods were utilized in this
experiment: (1) unsupervised FE: PCA, ICA, (2) supervised FE:
NWEE, and (3) the LSU model. The accumulative eigenvalues in
percentage for PCA and NWFE were shown in Fig. 8(a), and the
eigenvalues of MNF transformation were shown in Fig. 8(b).
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Table 5
The training and test samples for Pavia University data.

Classes No. of training set No. of test set
Trees 524 3064
Asphalt 548 6631
Bitumen 375 1330
Gravel 392 2099
Metal sheets 265 1345
Shadow 231 947
Bricks 514 3682
Meadows 540 18,649
BS (bare soil) 532 5029
Total 3921 42,776
a
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90.00% — —a i
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Fig. 8. (a) The cumulative eigenvalues in percentage for PCA and NWFE, and (b)
MNF eigenvalues for the Pavia University data set.

According to the statistics in Fig. 8, we can determine the
appropriate subspace dimensionality. In this experiment,
4-dimensional PCA and 9-dimensional NWFE images were used
since they contained over 99% and 90% accumulative eigenvalues,
respectively. 9-dimensional MNF images were used since the
remaining eigenvalues were near unity and hence resulted in
noise-dominated images. In addition, the dimensions of
independent components (ICs) and abundance components were
equivalent to the number of information classes (in this
experiment, the number is 9).

The pixel-based, OBA-based, and GLCM texture-based classifi-
cations were compared in Table 6, where both accuracies (%) and
dimensionality of features were shown. From the statistics in the
table, we can obtain the following observations:

(1) By observing the results of pixel-based classification, it can be
found that the ICA and NWFE subspace features gave higher

Table 6
Overall accuracies in percentage for pixel-based, OBA-based, and GLCM-based
classification of Pavia University dataset.

Subspace All PCA ICA MNF NWEFE LSU
No. of dimension 103 4 9 9 9 9
Pixel-based 73.5 68.0 76.3 71.5 75.0 63.5
No. of dimensions NA 20 45 45 45 45
GLCM-based NA 80.0 76.9 77.7 80.2 50.3
No. of dimensions NA 4 9 9 9 9
OBA-based NA 82.2 85.5 84.5 85.8 73.6

“All” indicates the original 103-dimensional hyperspectral channels.

Fig. 9. (a) and (b) are pixel-based and object-based classification maps for NWFE
subspace features, respectively.

accuracies than the original hyperspectral data with 103
channels. The improvements of OA were 2.8% and 1.5%,
respectively. In addition, the MNF subspace features achieved
comparable results with the original hyperspectral data.
(2) When the GLCM textures were combined with the subspace
spectral features, overall accuracies increased except the LSU,
the additional accuracies achieved by GLCM were 12.0%, 0.6%,
6.2%, and 5.2% for PCA, ICA, MNF and NWEFE, respectively. It
was shown that GLCM textures were able to exploit the spatial
relationship of neighboring pixels and gave more accurate
results than the spectral classification alone.
From the results of OBA-based classification, it was clearly
seen that the object-oriented analysis could be successfully
applied to subspace image classification, and give substan-
tially higher accuracies. Compared with the pixel-based
classification, the improvements of OA achieved by the OBA
algorithm were 14.2%, 9.2%, 13.0%, 10.8%, and 10.1% for PCA,
ICA, MNF, NWFE and LSU, respectively. It was also noted that
the OBA approach obtained higher accuracies than GLCM but
with much smaller feature dimensionality. The ICA-, MNF-
and NWFE-based OBA classification gave about 85% overall
accuracy, which were very promising considering that the OA

(3

~
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of original 103-dimensional data was 73.5%. The classification
maps before and after the OBA for NWFE subspace were
compared in Fig. 9.

5. Conclusion

The contribution of this paper is to investigate the object-
oriented analysis for hyperspectral image classification, in order to
simultaneously exploit the spectral and spatial information
contained in the images. To this end, the subspace analysis
techniques are used to reduce the computational cost, since the
object-based classification is time-consuming and unacceptable
for hyperspectral data with hundreds of channels. On the other
hand, subspace analysis is able to reduce the information
redundancy in hyperspectral data as the huge spectral channels
are highly correlated. Therefore, we proposed to integrate the
subspace analysis and object-oriented classification for hyper-
spectral image interpretation.

Two hyperspectral datasets were used for validation of the
proposed method. The first experiment was conducted on the
AVIRIS airborne hyperspectral data set over the Indian Pines with
209 channels and spatial resolution of 20 m (agricultural area at
the west of West Lafayette). The other dataset is the Pavia
University image acquired by the ROSIS airborne sensor with
103 channels and spatial resolution of 1.3m (urban region
at Pavia city, northern of Italy). The experimental results revealed
that:

(1) The subspace images were effective in extracting spectral
information from the hyperspectral data. This conclusion was
supported since PCA, MNF, NWFE, DAFE, LSU features gave
higher accuracies than the 209-dimensional AVIRIS image,
and ICA, MNF and NWFE images achieved comparable or
higher accuracies than the 103-dimensional ROSIS data, but
with much smaller dimensionality.

(2) The OBA-based subspace features gave much more accurate
mapping results than the pixel-based subspace in both
agricultural and urban regions. It can be said that the
integration of subspace analysis and object-based processing
is effective for spectral/spatial information extraction and
classification from hyperspectral data. In addition, in compar-
ison with results obtained by GLCM textures, the proposed
approach gave obviously higher accuracies but with much
smaller feature dimensionality.
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