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Abstract— Due to the urgent demand for remote sensing
big data analysis, large-scale remote sensing image retri-
eval (LSRSIR) attracts increasing attention from researchers.
Generally, LSRSIR can be divided into two categories as
follows: uni-source LSRSIR (US-LSRSIR) and cross-source
LSRSIR (CS-LSRSIR). More specifically, US-LSRSIR means the
inquiry remote sensing image and images in the searching data
set come from the same remote sensing data source, whereas
CS-LSRSIR is designed to retrieve remote sensing images with
a similar content to the inquiry remote sensing image that are
from a different remote sensing data source. In the literature,
US-LSRSIR has been widely exploited, but CS-LSRSIR is rarely
discussed. In practical situations, remote sensing images from
different kinds of remote sensing data sources are continually
increasing, so there is a great motivation to exploit CS-LSRSIR.
Therefore, this paper focuses on CS-LSRSIR. To cope with
CS-LSRSIR, this paper proposes source-invariant deep hashing
convolutional neural networks (SIDHCNNs), which can be opti-
mized in an end-to-end manner using a series of well-designed
optimization constraints. To quantitatively evaluate the proposed
SIDHCNNs, we construct a dual-source remote sensing image
data set that contains eight typical land-cover categories and
10 000 dual samples in each category. Extensive experiments show
that the proposed SIDHCNNs can yield substantial improvements
over several baselines involving the most recent techniques.

Index Terms— Cross-source large-scale remote sensing image
retrieval (CS-LSRSIR), dual-source remote sensing image data
set (DSRSID), remote sensing big data (RSBD) management
and mining, source-invariant deep hashing convolutional neural
networks (SIDHCNNs).
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I. INTRODUCTION

W ITH the rapid development of remote sensing observa-
tion technologies, our ability to acquire remote sens-

ing data has increased to an unprecedented level. Remote
sensing data owes its remarkable characteristics to the four
V’s (i.e., volume, variety, velocity, and veracity) of big data.
We have entered an era of remote sensing big data (RSBD) [1].
Although RSBD provides a data-driven possibility for coping
with various challenges, new theories and methods for address-
ing RSBD should be redeveloped as traditional methods with
high computation and storage complexity that may not be
applicable to RSBD [2]. As one of the most fundamental
techniques for the management and mining of RSBD, content-
based large-scale remote sensing image retrieval (LSRSIR) has
many potential applications, such as for disaster rescue, and
attracts increasing attention from the researchers [3]–[6].

Generally speaking, LSRSIR can be roughly divided into
two categories: uni-source LSRSIR (US-LSRSIR) and cross-
source LSRSIR (CS-LSRSIR). More specifically, US-LSRSIR
is intended to retrieve remote sensing images with a similar
content to the inquiry remote sensing image where all remote
sensing images come from the same remote sensing data
source, and CS-LSRSIR is intended to retrieve remote sensing
images with a similar content to the inquiry remote sensing
image where the inquiry image and the images in the searching
data set come from different remote sensing data sources.

In the early stage, high-dimensional feature descriptors such
as local invariant [7], morphological [8], and textural [9], [10]
have been introduced to address the content-based remote
sensing image retrieval task. As is well known, exhaus-
tively comparing the high-dimensional feature descriptor of
an inquiry remote sensing image with each image in a data
set is computationally expensive and becomes impossible
when the volume of a data set is very huge. To pursue
the scalability, there exist two potential solutions: improving
the feature search strategy and reducing the dimension of
feature descriptors. The former solution can be implemented
by tree-based methods [3], [11], [12], which split data spaces
into subspaces and record the divisions via a tree structure.
The tree-based methods indeed lift the search speed, but
would significantly hurt the retrieval performance, especially
when the dimension of the original feature descriptor is very
high. In fact, the dimension of feature descriptors of remote
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sensing images is often very high. To avoid the drawback
of tree-based methods, researchers turn to the alternative
solution (i.e., feature reduction methods). Recently, hashing
learning methods [4]–[6], [13] are introduced to address
LSRSIR and show promising results. These hashing learning
methods [4]–[5], [13] take the high-dimensional feature vec-
tor (HDFV) as the input, and project it to the low-dimensional
binary feature vector (LDBFV). As the dimension of LDBFV
is very low and each element in LDBFV is binary, the similar-
ity between LDBFVs can be efficiently measured by a small
number of bit operations (e.g., the hamming distance). Accord-
ingly, the complexity of exhaustive searches using LDBFV is
dramatically reduced relative to that of HDFV. To incorporate
the powerful feature representation merit of deep learning,
Li et al. [6] propose deep hashing convolutional neural net-
works (DHCNNs) to automatically extract the semantic feature
from the raw image and map the semantic feature to LDBFV in
one unified framework. Benefiting from the respective merits
of deep learning and hashing learning, DHCNNs remarkably
outperform the hand-crafted feature-based hashing learning
methods [4], [5], [13]. As a whole, all of the aforementioned
achievements work around the single source remote sensing
image retrieval task, and tree-based methods [3], [11], [12] and
hashing learning methods [4]–[6], [13] are potential candidates
to address US-LSRSIR. In reality, remote sensing images
from different sources are continually increasing, so there
emerge more and more demands on CS-LSRSIR. Although
kinds of methods [3]–[6], [11]–[13] have been proposed for
US-LSRSIR, they cannot be readily extended to address
CS-LSRSIR because of the source shift problem, which is
also called the data shift problem [14]. To the best of our
knowledge, there do not exist any effective methods to support
CS-LSRSIR. With this consideration, this paper, for the first
time, exploits the method for CS-LSRSIR.

In the artificial intelligence domain, the cross-modal
retrieval technique [15]–[17] has been widely exploited. It first
trains mapping functions to project the information from
different modalities to a unified feature space, and then, the
cross-modal retrieval can be implemented by the similarity
measurement based on the unified feature space. At first
glance, we may transfer the cross-modal retrieval technique
employed in the machine-learning domain to CS-LSRSIR.
In the literature, all existing cross-modal retrieval meth-
ods [15]–[17] work for cross-modal retrieval between nat-
ural images and documents. More specifically, based on the
hand-crafted features of images and documents, unsuper-
vised canonical correlation analysis (CCA) [15], and super-
vised semantic correlation maximum (SCM) [16] have been
proposed. To fully incorporate the merits of deep learn-
ing [18]–[20], deep cross-modal hashing (DCMH) [17] could
jointly learn the feature representation and projection way and
significantly outperform cross-modal retrieval methods based
on hand-crated features. In addition, DCMH was composed
of deep convolutional neural networks (DCNNs) for images
and deep fully connected networks (DFCNs) for documents.
In DCMH, DCNNs were inherited from the deep networks
that were pretrained on a similar natural image data set that
can effectively decrease the training difficulty, and the input

of DFCNs is still the hand-crafted feature (i.e., the word
frequency feature). As remote sensing images differ consid-
erably from natural images in terms of the spatial and spectral
resolution, the deep networks pretrained on a natural image
data set cannot be directly transferred to initialize the deep
feature representation networks for remote sensing images,
which significantly increases the training difficulty, especially
in a cross-modal optimization circumstance. Hence, DCMH
cannot be directly utilized to tackle with CS-LSRSIR. Due to
the particular complexity of CS-LSRSIR, how to design and
optimize cross-modal deep networks for CS-LSRSIR should
be explored further.

With the aforementioned consideration, this paper pro-
poses source-invariant deep hashing convolutional neural
networks (SIDHCNNs) to cope with CS-LSRSIR. More
specifically, SIDHCNNs are composed of two networks with
different architectures, which are specifically designed based
on the spatial–spectral resolution of the remote sensing images
from two different data sources. To pursue the scalability,
the networks in SIDHCNNs contain hashing layers, which
makes the optimization of SIDHCNNs be a discrete optimiza-
tion problem. Compared with US-LSRSIR [6], SIDHCNNs
further suffers from the source shift problem as SIDHCNNs
aim at measuring the similarity between remote sensing
images from different data sources, and two hybrid networks
need to be optimized simultaneously. Considering the afore-
mentioned challenges, we propose a series of optimization
constraints, including the intersource pairwise similarity con-
straint (IRSC), the intrasource pairwise similarity constraint
(IASC), the binary quantization loss constraint, and the feature
distribution constraint (FDC) to pursue a robust optimization
of SIDHCNNs. In addition, the intuitive description and
experimental validity of the advocated optimization constraints
are given in Sections III-A and IV-B, respectively. Since
there does not exist any publicly open multisource remote
sensing image data set, this paper proposes a new dual-source
remote sensing image data set (DSRSID), which contains
eight typical land-cover categories and 10 000 dual samples
in each category. Extensive experiments on the proposed
DSRSID show that the proposed cross-source remote sensing
image retrieval approach that is based on SIDHCNNs can
significantly outperform several baselines, including the most
recent technique. The main contributions of this paper can be
summarized as follows.

1) To the best of our knowledge, this paper, for the first
time, reveals the possibility of conducting CS-LSRSIR
and shows the potential applications of CS-LSRSIR.

2) This paper proposes SIDHCNNs to cope with
CS-LSRSIR where SIDHCNNs can be optimized from
scratch in an end-to-end manner. In addition, a series of
optimization constraints are advocated to pursue a stable
optimization of SIDHCNNs.

3) This paper collects and releases a new DSRSID which
is used to evaluate CS-LSRSIR in this paper and ben-
efits promoting the multisource remote sensing image
processing technology.

The remainder of this paper is organized as follows.
Section II specifically introduces the collected DSRSID.
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TABLE I

DESCRIPTION OF THE DUAL SAMPLE

Section III presents the CS-LSRSIR approach based on
SIDHCNNs. Section IV depicts the experimental results in
detail. Finally, Section V gives the conclusion of this paper,
the applications of our SIDHCNNs, and our future prospects.

II. DUAL-SOURCE REMOTE SENSING IMAGE DATA SET

Yang and Newsam [21], Basu et al. [22], and
Cheng et al. [23] in the remote sensing community have
proposed a large number of remote sensing image scene data
sets, which have effectively promoted the development of
remote sensing image scene understanding [24]–[27]. These
existing data sets were constructed by only one kind of
remote sensing data source and are called uni-source data sets
in the following. Intuitively, these uni-source data sets would
not be competent for evaluating CS-LSRSIR. To promote
the multisource remote sensing image analysis techniques,
including the discussed CS-LSRSIR in this paper, it is very
urgent to construct a remote sensing image data set containing
at least two kinds of remote sensing data sources. To this
end, this paper collects a new DSRSID (DSRSID is available
at https://pan.baidu.com/s/15ZWaZ2yArnvwcwtead_rpQ).

More specifically, the DSRSID is tiled from two kinds of
remote sensing data sources (i.e., panchromatic images and
multispectral images) and is manually annotated. The DSRSID
is composed of large numbers of dual samples where each dual
sample is a combination of one panchromatic image and one
multispectral image covering the same ground region. It is
noted that the panchromatic image and multispectral image
in one dual sample belong to the same land-cover type, but
reflect different aspects of the captured ground region because
of the spatial and spectral variations. Table I gives a specific
description of the dual sample. In Table I, GF-1 is the civil
optical satellite that was launched by China in 2013.

In the following, the construction process of the DSRSID
is given in detail. Based on the geographical correspondence,
dual samples are randomly tiled from over 100 pairs of
remote sensing images where each pair of remote sensing
images are composed of one large panchromatic image and
one large multispectral image that were shot at the same
time. To make the constructed data set be universal, over
100 pairs of remote sensing images are randomly sampled
from a large span between 116°4′E to 120°44′E and 35°23′N
to 36°58′N. Furthermore, the DSRSID is generated by the
manual annotation of the dual samples. As a first attempt,
the DSRSID contains eight typical land-cover types including
aquafarm, cloud, forest, high building, low building, farm land,
river, and water. In addition, there are 10 000 dual samples in

each land-cover type. Three dual-examples per land-cover type
from the DSRSID are visually shown in Fig. 1. In our future
work, we may further enrich the DSRSID in terms of the
number of land-cover types and the volume of dual samples.

The DSRSID is formulated as D =
{(Pi , Mi , Li )|i = 1, 2, . . . , N }, where D denotes the set
of dual samples, i denotes the index of the dual sample, N
stands for the volume of the DSRSID (i.e., the number of
dual samples), Pi ∈ R256×256 is the panchromatic image,
Mi ∈ R64×64×4 denotes the multispectral image, and Li

denotes the land-cover type.
In this paper, D = {(Pi , Mi , Li )|i = 1, 2, . . . , N } is ran-

domly split into two nonoverlapped parts: a training data set
DU

Tr = {(Pi , Mi , Li )|i = 1, 2, . . . , V } and a testing data set
DU

Te = {(Pi , Mi , Li )|i = 1, 2, . . . , Q}, where N = V + Q,
V is the volume of the training data set, and Q is the volume
of the testing data set.

III. CROSS-SOURCE LARGE-SCALE REMOTE

SENSING IMAGE RETRIEVAL

To facilitate understanding, we will specifically introduce
the CS-LSRSIR method on the basis of the DSRSID that
is introduced in Section II. As the DSRSID is a general
case, conducting the CS-LSRSIR method on other data sets is
straightforward.

As shown in Fig. 2, the proposed CS-LSRSIR approach is
composed of two stages: the training stage and the testing
stage. More specifically, the training stage is responsible
for training SIDHCNNs and the testing stage presents the
cross-source remote sensing image retrieval process based
on SIDHCNNs. In the following, Section III-A introduces
the training stage and Section III-B presents the testing
stage.

A. Learning Source-Invariant Deep Hashing Convolutional
Neural Networks

As an early attempt to cope with large-scale image
retrieval, the hand-crafted feature-based hashing learning
methods [4], [5], [13], [28] have been widely exploited as an
effective way to reduce the dimension of the high-dimensional
hand-crafted feature descriptor. Despite these hashing learning
methods having achieved some degree of success, they still do
not fulfill the practical application demand. To fully incorpo-
rate the merits of deep learning [20], [29]–[31] and hashing
learning, deep hashing neural networks [6], [32], [33] have
been proposed to automatically learn feature representation
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Fig. 1. Visual illustration of the collected DSRSID. In each land-cover type, three randomly sampled dual samples are shown. The images with black solid
rectangles were shot by the panchromatic sensor, and the images surrounded by red solid rectangles were captured by the multispectral sensor.

Fig. 2. Workflow of the proposed CS-LSRSIR approach via SIDHCNNs. The proposed CS-LSRSIR method includes two stages: the training stage works
on training SIDHCNNs and the testing stage carries out the cross-source remote sensing image retrieval tasks based on the learned SIDHCNNs.

and reduction from data, and become the state-of-the-art
technology in the large-scale image retrieval field. Due to the
lack of the consideration of multisource data characteristics,

these deep hashing neural networks cannot be directly uti-
lized to cope with CS-LSRSIR. Inspired by the success of
cross-modal retrieval between images and documents [17], this
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TABLE II

ARCHITECTURE OF PAN-DHCNNS

TABLE III

ARCHITECTURE OF MUL-DHCNNS

paper proposes a series of cross-source constraints to train
SIDHCNNs to address CS-LSRSIR.

In the following, we introduce the detail of the constructed
SIDHCNNs, the formulated objective function for optimizing
SIDHCNNs, and how to learn SIDHCNNs from scratch,
respectively.

1) Architecture of SIDHCNNs: Instead of using one uni-
fied DHCNNs architecture in US-LSRSIR [6], [32], [33],
we design two different DHCNNs architectures for differ-
ent remote sensing image sources to fully mine the visual
cues in images from different sources. Based on the spe-
cific remote sensing image types in the DSRSID, we craft
two different DHCNNs architectures for the panchromatic
and multispectral images. More specifically, the DHCNNs
for panchromatic images are called PAN-DHCNNs, and the
DHCNNs for multispectral images are called MUL-DHCNNs.
The combination of PAN-DHCNNs and MUL-DHCNNs con-
stitutes SIDHCNNs. The architectures of PAN-DHCNNs and
MUL-DHCNNs are visually shown in Fig. 2.

The architectures of PAN-DHCNNs and MUL-DHCNNs
are provided in Tables II and III, respectively.
In Tables II and III, “filter” specifies the number of
filters, the height of the field, the width of the field, and
the channel number of the input data; “stride1” denotes the
sliding step of the convolutional operation; “pooling” denotes
the downsampling factor; “stride2” denotes the sliding step
of the local pooling operation; and l stands for the feature
length of the last fully connected layer (i.e., the hashing
feature coding layer). Compared with MUL-DHCNNs,
PAN-DHCNNs have larger fields to capture the high-
resolution structures in the high-resolution panchromatic

images. In contrast to PAN-DHCNNs, MUL-DHCNNs
have more filters in the convolutional layers to mine the
rich spectral information in the multispectral images. As a
whole, PAN-DHCNNs and MUL-DHCNNs are specifically
designed based on the characteristics of the remote sensing
images from different sources. The architectures given
in Tables II and III are just two of many candidates. This
paper merely introduces a general solution for designing
SIDHCNNs (i.e., the combination of PAN-DHCNNs and
MUL-DHCNNs). More architecture can be explored and
evaluated in the future works.

It is noted that the randomly initialized SIDHCNNs would
suffer from the source shift problem which is verified in
Section IV-D. To make SIDHCNNs possess the source-
invariant characteristic, we learn SIDHCNNs by the following
optimization method.

2) Objective Function for Optimizing SIDHCNNs:
This section uses the training data set DU

Tr =
{(Pi , Mi , Li )|i = 1, 2, . . . , V } which is introduced
in Section II to formulate the objective function
to learn SIDHCNNs. Let SU ∈ RV ×V ×2 denotes
the intersource pairwise similarity matrix, where
SU

i, j,1 = 1, SU
i, j,2 = 0, i = 1, 2, . . . , V ; j = 1, 2, . . . , V

if Pi and M j belong to the same land-cover type and
SU

i, j,1 = 0, SU
i, j,2 = 1 if Pi and M j come from different

land-cover types. S P ∈ RV ×V ×2 stands for the intrasource
pairwise similarity matrix on the panchromatic image data
set, where S P

i, j,1 = 1, S P
i, j,2 = 0 if Pi and Pj belong to the

same land-cover category and S P
i, j,1 = 0, S P

i, j,2 = 1 if Pi

and Pj do not belong to the same category. Furthermore,
SM ∈ RV ×V ×2 denotes the intrasource pairwise similarity
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matrix on the multispectral image data set, where SM

can be generated by a similar generation process to that
of S P .

Let �P and �M stand for the network hyper para-
meters of PAN-DHCNNs and MUL-DHCNNs, respectively.
�(Pi ,�

P ) ∈ Rl denotes the feature representation
of the panchromatic image Pi by PAN-DHCNNs, and
ϒ(Mi ,�

M ) ∈ Rl stands for the feature output of the multi-
spectral image Mi by MUL-DHCNNs. Furthermore, �P and
�M can be learned in an end-to-end manner under a series of
constraints including the IRSC, the IASC, the binary quantiza-
tion constraint (BQC), and the FDC. More specifically, IRSC
mainly serves to push the features of remote sensing images
from different sources with the same category to be near each
other and to separate the features of remote sensing images
from different categories. IASC is designed to keep the feature
similarity and dissimilarity of remote sensing images coherent
with the category distribution in each individual source. BQC
encourages the final feature representation to approach binary
to accord with the goal of hashing learning, and ingeniously
transforms the discrete optimization problem to the continuous
one. In addition, FDC is designed to keep each element of the
feature vector across the data set balanced, which means each
element should have the same number of −1 and +1 across
the data set. The contributions of these constraints will be
further quantitatively discussed in Section IV-B. Moreover, the
objective function for learning SIDHCNNs (i.e., �P and �M )
can be formulated as (1), as shown at the bottom of this page
where FP ∈ Rl×V with FP∗,i = �(Pi ,�

P ), FM ∈ Rl×V with
FM∗,i = ϒ(Mi ,�

M ) and B ∈ {−1,+1}l×V , p(·|FP, FM ) is
the intersource-likelihood function, and p(·|FP) and p(·|FM)

denote the intrasource-likelihood functions. In addition, α, β,
and γ stand for the penalty weights of the constraints.

More specifically, the intersource-likelihood function is
defined by the sigmoid function{

p
(
SU

i, j,1 = 1|FP, FM
) = σ

(
	U

i, j

)
p
(
SU

i, j,2 = 1|FP, FM
) = 1 − σ

(
	U

i, j

) (2)

where 	U
i, j = FP∗,i · FM∗, j/2 and σ(	U

i, j ) = 1/(1 + e−	U
i, j ).

For the panchromatic image source, the intrasource-
likelihood function can be expressed by (3). In addition,
the intrasource-likelihood function for the multispectral image
source can be expressed by (4){

p
(
S P

i, j,1 = 1
∣∣FP

) = σ
(
	P

i, j

)
p
(
S P

i, j,2 = 1
∣∣FP

) = 1 − σ
(
	P

i, j

) (3){
p
(
SM

i, j,1 = 1
∣∣FM

) = σ
(
	M

i, j

)
p
(
SM

i, j,2 = 1|FM
) = 1 − σ

(
	M

i, j

) (4)

where 	P
i, j = FP∗,i · FP∗, j/2, σ(	P

i, j ) = 1/(1 + e−	P
i, j ), and

	M
i, j = FM∗,i · FM∗, j/2.
If we plug the likelihood functions given in (2)–(4) into

(1), the objective function for optimizing SIDHCNNs (i.e.,
learning the network hyper parameters �P and �M ) can be
rewritten as (5), as shown at the bottom of this page.

Despite us advocating various constraints to pursue the
robust update of network hyper parameters, the final objective
function given in (5) is still convex, which guarantees the
efficiency of the optimization process. We give the specific
learning algorithm in Section III-A3 the following section.

min
�P ,�M ,B

E =

IRSC︷ ︸︸ ︷
V∑

i, j=1

2∑
k=1

(− SU
i, j,k log p

(
SU

i, j,k = 1
∣∣FP , FM))

+ α ·

IASC︷ ︸︸ ︷⎛
⎝ V∑

i, j=1

2∑
k=1

(− SP
i, j,k log p

(
SP

i, j,k = 1
∣∣FP)) +

V∑
i, j=1

2∑
k=1

(− SM
i, j,k log p

(
SM

i, j,k = 1
∣∣FM))⎞⎠

+ β ·
BQC︷ ︸︸ ︷(||FP − B||2F + ||FM − B||2F

)+γ ·
FDC︷ ︸︸ ︷(||FP · 1||2F + ||FM · 1||2F

)
(1)

min
�P ,�M ,B

E =

IRSC︷ ︸︸ ︷
V∑

i, j=1

(− SU
i, j,1 · 	U

i, j + log
(
1 + 	U

i, j

))

+ α ·

IASC︷ ︸︸ ︷⎛
⎝ V∑

i, j=1

(− SP
i, j,1 · 	P

i, j + log
(
1 + 	P

i, j

)) +
V∑

i, j=1

(− SM
i, j,1 · 	M

i, j + log
(
1 + 	M

i, j

))

+ β ·
BQC︷ ︸︸ ︷(‖FP − B‖2

F + ‖FM − B‖2
F

) +γ ·
FDC︷ ︸︸ ︷(‖FP · 1‖2

F + ‖FM · 1‖2
F

)
(5)
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3) Learning SIDHCNNs: As multiple variants need to be
optimized in the objective function in (5), we optimize them in
an alternative learning strategy where one variant is optimized,
while the others are fixed. Like [6] and [17], we adopt
the mini-batch stochastic gradient descent (SGD) to learn
the hyper parameters of SIDHCNNs including �P and �M

using the following three steps iteratively until all image are
processed over a fixed number of iterations. Let VP and VM

denote the mini-batch sizes for panchromatic and multispectral
images, and T stands for the number of iterations. In our
implementation, both VP and VM are set to 128 based on
the consideration of the memory space, and T is empirically
set to 30 as the objective function in (5) generally converges
to a stable state after dozens of iterations. We summarize the
whole alternating learning procedure in Algorithm 1.

1) Fix �P and �M , Optimize B: When �P and �M are
fixed, the objective function in (5) can be transformed
to

max
B

tr(BT (β(FP + FM ))) = tr(BT C) =
∑
i, j

Bi, j Ci, j

(6)

where C = β(FP + FM ) and B ∈ {−1,+1}l×V is the
binary feature matrix.
As shown in (6), it can be easily derived that the
optimized Bi, j should have the same sign as Ci, j . Hence,
B can be updated to be

B = sign(C) = sign(β(FP + FM )). (7)

2) Fix B and �M , Optimize �P : For each panchromatic
image Pi in the sampled mini batch, we calculate its
feature using FP∗,i = �(Pi ,�

P ) and update the feature
matrix FP ∈ Rl×V . With respect to the feature FP∗,i , we
obtain the closed-form gradient of the objective function
in (5), where the gradient can be expressed by (8). The
gradient is further utilized to update �P by SGD

∂ E

∂FP∗,i

= 1

2

V∑
j=1

(
σ
(
	U

i, j

)
FM∗, j − SU

i, j FM∗, j

)

+ α ·
V∑

j=1

(
σ
(
	P

i, j

)
FP∗, j − SP

i, j FP∗, j

)
+ β · (B∗,i − FP∗,i

) + γ · (FP · 1). (8)

3) Fix B and �P, Optimize �M : For each multispectral
image M j in the sampled mini batch, we calculate its
feature using FM∗, j = ϒ(M j ,�

M ) and update the feature
matrix FM ∈ Rl×V . With respect to the feature FM∗, j ,
we can obtain the closed-form gradient of the objective
function in (5), where the gradient is computed by (9)
and further utilized to update �M by SGD

∂ E

∂FM∗, j

= 1

2

V∑
i=1

(
σ
(
	U

i, j

)
FP∗,i − SU

i, j FP∗,i

)

+ α ·
V∑

i=1

(
σ
(
	M

i, j

)
FM∗,i − SM

i, j FM∗,i

)
+ β · (B∗, j − FM∗, j

) + γ · (FM · 1). (9)

Algorithm 1 Optimization Algorithm for Learning
SIDHCNNs

Input: Dual-source training data set DU
T r =

{(Pi , Mi , Li )|i = 1, 2, · · · , V }; the pairwise similarity
matrices SU , S P , and SM ; the constraint weights α, β, and
γ ; the feature length of the last hashing layer l.
Output: Hyper-parameters �P and �M of PAN-DHCNNs
and MUL-DHCNNs, and the subsidiary hashing features B.
Initialization: Random hyper-parameters �P and �M ,
the mini-batch size VP = VM = 128, the number of mini-
batches tP = V/VP and tM = V/VM , and the number of
iterations T = 30.
for t = 1, 2, · · · , T

Update B according to Eq. (7).
for n = 1, 2, · · · , tP

• Randomly sample VP panchromatic images from DU
T r

to construct a mini-batch;
• Calculate the output FP∗,i = �(Pi ,�

P ) of each panchro-
matic image Pi in the mini-batch and update the feature
matrix FP ∈ Rl×V ;

• Update the hyper-parameters �P based on the gradient
which is calculated by Eq. (8).

end
for n = 1, 2, · · · , tM

• Randomly sample VM multi-spectral images from DU
T r

to construct a mini-batch;
• Calculate the output FM∗, j = ϒ(M j ,�

M ) of each multi-
spectral image M j in the mini-batch and update the
feature matrix FM ∈ Rl×V ;

• Update the hyper-parameters �M based on the gradient
which is calculated by Eq. (9).

end
end

Benefiting from the closed-form gradients, the hyper para-
meters �P and �M of SIDHCNNs can be efficiently learned.
To reflect the dynamic convergence process of the advocated
objective function, Section IV-D visually shows the features of
images from different data sources using the hyper parameters
which are optimized with different iteration numbers.

B. Cross-Source Large-Scale Remote Sensing Image
Retrieval via SIDHCNNs

Cross-source remote sensing image retrieval includes two
subtasks: the cross-source PAN->MUL retrieval task and
the cross-source MUL->PAN retrieval task. The cross-source
PAN->MUL retrieval task takes the panchromatic image as the
inquiry image and aims at outputting the multispectral images
with a similar content to the inquiry image. In addition, the
cross-source MUL->PAN retrieval task takes the multispectral
image as the inquiry image and works to output the similar
panchromatic images with a similar content to the inquiry
image. The cross-source PAN->MUL retrieval task is shown
visually in the red rectangle in Fig. 2, and the cross-source
MUL->PAN retrieval task is intuitively depicted in the blue
rectangle in Fig. 2.
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In the following, we take the cross-source PAN->MUL
retrieval task as an example to depict the specific cal-
culation process. Given one inquiry panchromatic image
Pi , the cross-source PAN->MUL retrieval task works for
retrieving the similar multispectral images from DM

Tr =
{(Mi , Li )|i = 1, 2, . . . , V }. Based on the learned SIDHCNNS,
the cross-source PAN->MUL retrieval task is implemented
using the following four steps. First, the feature representation
b ∈ Rl of Pi is computed based on the hyper parameters �P

of SIDHCNNs. Second, the feature representations B ∈ Rl×V

of each Mi in DM
Tr are calculated based on the hyper para-

meters �M of SIDHCNNs. Third, we calculate the hamming
distances between b and B. Finally, the similar multispectral
images are automatically recommended by sorting the ham-
ming distances. To facilitate understanding, we summarize the
cross-source PAN->MUL retrieval task and the cross-source
MUL->PAN retrieval task in Algorithm 2.

Algorithm 2 CS-LSRSIR Approach Based on SIDHCNNs
(1) PAN->MUL: Given one inquiry panchromatic image
Pi from the testing panchromatic data set DP

T e =
{(Pi , Li )|i = 1, 2, · · · , Q}, we want to obtain the similar
multi-spectral images from the searching multi-spectral data
set DM

T r = {(Mi , Li )|i = 1, 2, · · · , V }.
• Calculate the feature representation b ∈ Rl of Pi with

b = sign(�(Pi ,�
P ));

• Calculate the feature representations B ∈ Rl×V of DM
T r

with B∗,i = sign(ϒ(Mi ,�
M ));

• Calculate the hamming distances between b and B;
• Output the most similar images by sorting the hamming

distances.

(2) MUL->PAN: Given one inquiry multi-spectral image
Mi from the testing multi-spectral data set DM

T e =
{(Mi , Li )|i = 1, 2, · · · , Q}, we want to obtain the similar
panchromatic images from the searching panchromatic data
set DP

T r = {(Pi , Li )|i = 1, 2, · · · , V }.
• Calculate the feature representation b ∈ Rl of Mi with

b = sign(ϒ(Mi ,�
M ));

• Calculate the feature representations B ∈ Rl×V of DP
T r

with B∗,i = sign(�(Pi ,�
P ));

• Calculate the hamming distances between b and B;
• Output the most similar images by sorting the hamming

distances.

Benefiting from the well-designed constraints, including
IRSC, IASC, BQC, and FDC, SIDHCNNs possess the source-
invariant feature representation ability, which makes it possible
to measure the content similarity of remote sensing images
from different sources. As SIDHCNNs can represent remote
sensing images by compact feature vectors (i.e., the dimension
of the feature vector is low and each element in the feature vec-
tor is binary), the SIDHCNN-based image retrieval approach
is qualified for the large-scale retrieval situation. Both of these
merits make our SIDHCNNs competent at the challenging
cross-source large-scale image retrieval task.

IV. EXPERIMENTAL RESULTS

Section IV-A introduces the experimental setting and eval-
uation criteria. Section IV-B verifies the effectiveness of the
advocated optimization constraints. Section IV-C analyzes the
effect of the critical parameters in the objective function.
Section IV-D gives the convergence analysis of the objective
function. In addition, Section IV-E presents the comparison
results with several competitive baselines.

A. Experimental Setting and Evaluation Criteria

1) Experimental Setting: D = {(Pi , Mi , Li )|i =
1, 2, . . . , N} which is specifically introduced in Section II is
adopted to evaluate the cross-source remote sensing image
retrieval task. In the following experiment, both of the training
and testing data sets contain eight land-cover types, the train-
ing data set has 75 000 samples, and the testing data set has
5000 samples.

In the training stage, DU
Tr = {(Pi , Mi , Li )|i = 1, 2, . . . , V }

is utilized to train the hyper parameters of SIDHCNNs.
In the testing stage, DU

Te = {(Pi , Mi , Li )|i = 1, 2, . . . , Q}
is taken as the inquiry image data set, and DU

Tr =
{(Pi , Mi , Li )|i = 1, 2, . . . , V } is taken as the searching image
data set.

All methods including our proposed method and other
baselines are implemented by MATLAB and conducted on a
Dell station with eight Intel Core i7-6700 processors, 32 GB
of RAM, and the NVIDIA GeForce GTX 745.

2) Evaluation Criteria: In this paper, the CS-LSRSIR per-
formance is quantitatively evaluated by two widely adopted
metrics [5], [32], including the mean average precision (MAP)
and the precision-recall curve. More specifically, the MAP
score can be computed by

MAP = 1

|Q|
|Q|∑
i=1

1

ni

ni∑
j=1

precision
(

R j
i

)
(10)

where qi ∈ Q is the inquiry image, |Q| denotes the volume
of the inquiry image data set, and ni is the number of images
relevant to qi in the searching image data set. Supposing that
the relevant images are ordered as {r1, r2, . . . , rni } across the
images in the searching image data set, R j

i is the set of ranked
results from the first result to the r j th result.

B. Validity Analysis of the Advocated Constraints

To demonstrate the validity of the advocated optimiza-
tion constraints in (5), this section quantitatively evaluates
the overall performance of our proposed SIDHCNNs under
various optimization configurations. As this section intends
to intuitively verify the effectiveness of the advocated con-
straints, we consider the following four major optimization
configurations: only the adoption of IRSC, which is abbre-
viated as “IRSC”; the combination of IRSC and IASC,
which is abbreviated as “IRSC + IASC”; the combina-
tion of IRSC, IASC, and BQC, which is abbreviated as
“IRSC + IASC + BQC”; the combination of IRSC, IASC,
BQC, and FDC, which is abbreviated as “IRSC + IASC +
BQC + FDC.” More specifically, “IRSC” means α = 0,
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Fig. 3. Precision-recall curves on the cross-source PAN->MUL retrieval task under different optimization configurations and hashing feature coding lengths.
(a) l = 8. (b) l = 16. (c) l = 24. (d) l = 32.

Fig. 4. Precision-recall curves on the cross-source MUL->PAN retrieval task under different optimization configurations and hashing feature coding lengths.
(a) l = 8. (b) l = 16. (c) l = 24. (d) l = 32.

TABLE IV

MAP VALUES OF OUR SIDHCNNS UNDER DIFFERENT OPTIMIZATION CONFIGURATIONS AND HASHING FEATURE CODING LENGTHS

β = 0, γ = 0 in (5), “IRSC + IASC” means α = 1, β = 0,
γ = 0, “IRSC + IASC + BQC” means α = 1, β = 1, γ = 0,
and “IRSC + IASC + BQC + FDC” means α = 1, β = 1,
γ = 1. In the following, Section IV-C will give a fine-grained
analysis of α, β, γ .

Fixing the network architectures as given in
Section III-A, we optimize the networks using the
mentioned four optimization configurations and further
evaluate the corresponding retrieval performance. Under
different optimization configurations and hashing feature
coding lengths, the precision-recall curves of our proposed
SIDHCNNs are reported in Figs. 3 and 4. More specifically,
Fig. 3 gives the evaluation results on the cross-source
PAN->MUL retrieval task, and Fig. 4 reports the evaluation
results on the cross-source MUL->PAN retrieval task.
As depicted in Figs. 3 and 4, two cross-source retrieval
tasks reflect the consistent fact that the more constraints
we adopt, the better performance we achieve. In addition,
the comprehensive constraints are more important for the
pursuit of a short hashing feature coding length.

We also report the MAP values of our proposed SIDHCNNs
under various optimization configurations and hashing feature

coding lengths in Table IV. As depicted in Table IV, for two
cross-source retrieval tasks, the full optimization configuration
could achieve the best performance under the same hashing
feature coding length. In addition, all advocated constraints
could make the performance of the proposed SIDHCNNs
stably grow along with the increase of the hashing feature
coding length.

C. Sensitivity Analysis of the Critical Parameters

With the hashing feature coding length set to 32, this
section mainly focuses on analyzing the effect of α, β, γ in
the objective function in (5). As training deep networks is
very time consuming, it is not possible to verify the whole
parameter space. Hence, this section analyzes the sensitivity
of each parameter with the other parameters fixed.

With both β and γ set to 1, Table V reports the MAP values
of our SIDHCNNs by optimizing the objective function in (5)
under different α. As shown in Table V, α = 0 obviously
hurts the performance of our SIDHCNNs. This is expected
as α = 0 means that the important constraint (i.e., IASC) is
not adopted in the objective function. In addition, α = 1.0
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TABLE V

MAP VALUES OF OUR SIDHCNNS UNDER DIFFERENT α

TABLE VI

MAP VALUES OF OUR SIDHCNNS UNDER DIFFERENT β

Fig. 5. Feature visualization of panchromatic and multispectral images using our SIDHCNNs after our SIDHCNNs are optimized with different iteration
numbers. T denotes the number of iterations. “PAN-1,” “PAN-2,” “PAN-3,”“PAN-4,” “PAN-5,” “PAN-6,” “PAN-7,” and “PAN-8” stand for panchromatic
images from aquafarm, cloud, forest, high building, low building, farm land, river, and water, respectively. “MUL-1,” “MUL-2,” “MUL-3,” “MUL-4,”
“MUL-5,” “MUL-6,” “MUL-7,” and “MUL-8” denote multispectral images from aquafarm, cloud, forest, high building, low building, farm land, river,
and water, respectively. (a) T = 0. (b) T = 10. (c) T = 20. (d) T = 30. (e) T = 40. (f) T = 50.

makes our SIDHCNNs achieve the best performance. With
both α and γ set to 1, Table VI gives the MAP values of our
SIDHCNNs by optimizing the objective function in (5) under
different β. As shown in Table VI, β = 0.1 and β = 1.0
make our SIDHCNNs achieve a very similar performance,
and β = 0.1 makes our SIDHCNNs achieve a slightly better
performance than β = 1.0. With α and β set to 1, and 0.1,
Table VII reports the MAP values of our SIDHCNNs by
optimizing the objective function under different γ . As shown
in Table VII, our SIDHCNNs can achieve the best performance
when γ = 1.0.

Based on the results in Tables V–VII, we can see that
the performance of our SIDHCNNs is more sensitive to α
compared with β and γ . Hence, researchers should pay more
attention on the setting of α when they train SIDHCNNs for

their tasks. To pursue the universality of our SIDHCNNs,
α, β, and γ in the objective function in (5) are set to 1, 0.1,
and 1 in the following experiments.

D. Convergence Analysis of the Objective Function

To show the convergence process of the objective function
in (5), we update our SIDHCNNs with different iteration
numbers and show the feature distributions of images using the
learned SIDHCNNs to visually reflect the state of the objective
function. In the visualization experiment, we consider all the
land-cover classes in the training data set, and randomly select
100 dual samples for each class from the training data set
where each dual sample is composed of one panchromatic
image and one multispectral image. We calculate the hashing
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TABLE VII

MAP VALUES OF OUR SIDHCNNS UNDER DIFFERENT γ

Fig. 6. Precision-recall curves on the cross-source PAN->MUL retrieval task under various methods and hashing feature coding lengths. (a) l = 8.
(b) l = 16. (c) l = 24. (d) l = 32.

Fig. 7. Precision-recall curves on the cross-source MUL->PAN retrieval task under various methods and hashing feature coding lengths. (a) l = 8.
(b) l = 16. (c) l = 24. (d) l = 32.

features of the panchromatic images using the PAN-DHCNNs
in our SIDHCNNs, and compute the hashing features of
the multispectral images using the MUL-DHCNNs in our
SIDHCNNs. Furthermore, the hashing features are projected
into the 2-D feature space by the t-distributed stochastic
neighbor embedding method [34]. Fig. 5 intuitively shows the
feature distributions in the 2-D feature space. In Fig. 5(a),
T = 0 means that our SIDHCNNS are randomly initialized
without any optimization, and the source shift problem is
very significant. In addition, Fig. 5(b)–(f) shows the feature
distributions of panchromatic and multispectral images using
our SIDHCNNs after our SIDHCNNs are optimized with dif-
ferent iteration numbers. Along with the increase of iteration
numbers, the source shift problem gradually minishes. After
our SIDHCNNs are optimized with 20 iterations or more,
the objective function converges to a stable state that the
features of panchromatic images are aligned with multispectral
images and the features of images are distributed on well-
separated clusters for each class. To achieve a balance between
the method performance and the training time, the number of
iterations T in Algorithm 1 is set to 30.

E. Comparison With Several Baselines

To demonstrate the superiority of our proposed SIDHCNNs,
we reimplement several baselines for comparison since there

does not exist any cross-source remote sensing image retrieval
work in the literature. The reimplemented baselines include
two cross-modal hashing retrieval methods [15], [16] based
on hand-crafted features and the most recent DCMH retrieval
method [17].

Here, we first give a brief introduction of the imple-
mented baselines. As a popular hand-crafted feature descriptor,
GIST [35] is adopted and taken as the input of CCA [15]
and SCM [16]. In addition, DCMH [17] does not depend on
any hand-crafted features. More specifically, DCMH adopts
the same network architectures as our method, but has its
own optimization model. In the optimization model, DCMH
ignores the IASC, but our method considers it and recom-
mends a series of low-cost constraints, which do not obviously
increase the training complexity. Under the same experimental
setting of the training and testing data sets, we report the cross-
source remote sensing image retrieval performance of various
methods.

The precision-recall curves of various methods have been
illustrated in Figs. 6 and 7. More specifically, Fig. 6 denotes
the comparison results on the cross-source PAN->MUL
retrieval task, and Fig. 7 stands for the comparison results on
the cross-source MUL->PAN retrieval task. As depicted in
Figs. 6 and 7, CCA achieves the worst performance because
it works in an unsupervised way. With benefits from supervi-
sion, SCM can outperform CCA, but its performance is still
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TABLE VIII

MAP VALUES UNDER DIFFERENT METHODS AND HASHING FEATURE CODING LENGTHS

Fig. 8. Visual retrieval results on the cross-source PAN->MUL retrieval task under various methods when the hashing feature coding length is set to 32.
(a) Inquiry panchromatic image from the high building category. (b) Similar multispectral images output by CCA [15]. (c) Similar multispectral images output
by SCM [16]. (d) Similar multispectral images output by DCMH [17]. (e) Similar multispectral images output by our SIDHCNNs. The red rectangles stand
for false retrieval results that are irrelevant to the inquiry image.

unsatisfactory due to the dependence of the hand-crafted
feature. With the benefits from the adoption of deep learning,
DCMH can achieve better performance than CCA and SCM.
As a whole, our proposed SIDHCNNs that are optimized
by the well-designed optimization constraints can achieve
a notable performance improvement compared with these
baselines.

We also summarize the MAP values of various methods
in Table VIII. As depicted in Table VIII, our SIDHCNNs could
achieve the best retrieval performance under various situations.
The superiority of our SIDHCNNs is more remarkable when
the hashing feature coding length is small.

To intuitively show the superiority of our SIDHCNNs,
we show the visual retrieval results of various methods.

With the hashing feature coding length set to 32, Fig. 8 visu-
ally shows the retrieval results of our SIDHCNNs and three
baselines on the cross-source PAN->MUL retrieval task, and
Fig. 9 intuitively reports the retrieval results of our SIDHCNNs
and three baselines on the cross-source MUL->PAN retrieval
task.

As depicted in Fig. 8, given one inquiry image, which
is captured by the panchromatic sensor and belongs to the
high building category, the most similar multispectral images
output by various methods including the three baselines and
our SIDHCNNs are visually shown. Benefiting from the usage
of deep networks, our SIDHCNNs and DCMH [17] obviously
perform better than CCA [15] and SCM [16]. In addition, our
SIDHCNNs outperform DCMH. As a whole, we can easily
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Fig. 9. Visual retrieval results on the cross-source MUL->PAN retrieval task under various methods when the hashing feature coding length is set to 32.
(a) Inquiry multispectral image from the river category. (b) Similar panchromatic images output by CCA [15]. (c) Similar panchromatic images output by
SCM [16]. (d) Similar panchromatic images output by DCMH [17]. (e) Similar panchromatic images output by our SIDHCNNs. The red rectangles stand for
false retrieval results that are irrelevant to the inquiry image.

TABLE IX

TRAINING AND TESTING TIME OF OUR SIDHCNNS

draw the conclusion that our SIDHCNNs can achieve better
performance than various potential techniques on the cross-
source PAN->MUL retrieval task.

In Fig. 9, given one inquiry image, which is captured by
the multispectral sensor and comes from the river category,
the most similar panchromatic images output by different
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methods are visually shown. As depicted in Fig. 9, our
SIDHCNNs and DCMH [17] can output more accurate
retrieval results compared with the hand-crafted feature-based
methods, including CCA [15] and SCM [16]. In the given
case, the river scene may contain certain farm land elements
and seems to be confused with the farm land category at first
glance. Actually, the river scene has been taken as an indepen-
dent category in the literature because of its special land-use
type [21]–[23]. DCMH [17] cannot perfectly distinguish the
difference between the river scenes and the farm land scenes,
and its retrieval results include some false farm land results as
depicted. Fortunately, our SIDHCNNs can robustly perceive
these slight differences and show excellent retrieval results on
the cross-source MUL->PAN retrieval task.

With the hashing feature coding length set to 32, we report
the training and testing time of our SIDHCNNs in Table IX.
Due to the usage of GPU, our SIDHCNNs can be trained
from scratch in 6.5 h. As depicted in Table IX, we report
the time of the testing stage in four substeps. Among the
four substeps, the time for calculating the hashing features
of the searching image data set is dramatically longer than
the other substeps as the volume of the searching image data
set is very large. As pointed out in [4], we can calculate the
hashing features of the searching image data set in advance
and store them in an auxiliary archive as the hashing features
needs a very small storage space compared with the real-value
features. Accordingly, the online testing stage will skip this
substep, and could be finished in real time. This merit makes
our SIDHCNNs qualified for the large-scale image retrieval
case.

V. CONCLUSION

In this section, we first conclude our work in
Section V-A; we briefly show some applications of our
SIDHCNNs in Section V-B. We depict the future prospects
of our work in Section V-C.

A. Conclusion

Driven by the demand of RSBD mining, this paper reveals
the urgency and possibility of CS-LSRSIR. To promote the
CS-LSRSIR technique, we propose a new DSRSID, which
can be utilized to more multisource remote sensing image
analysis techniques. To cope with CS-LSRSIR, this paper pro-
poses SIDHCNNs, which can be optimized in an end-to-end
manner under a series of well-designed constraints. It is noted
that our SIDHCNNs can learn the source-invariant feature
representation and reduction mapping from scratch without
the requirement of any pretrained models. As a consequence,
our proposed SIDHCNNs can be flexibly designed based on
the special remote sensing data characteristics, and can be
easily extended to more applications. To fairly demonstrate the
superiority of our proposed SIDHCNNs, we reimplement three
representative baselines including CCA [15] and SCM [16]
and DCMH [17]. Under the same experimental environment,
our SIDHCNNs can significantly outperform these baselines
in terms of the quantitative and qualitative performances.

B. Real-Life Applications

In the literature, multisource remote sensing image match-
ing [36]–[39] is a fundamental task for wide applications
such as information fusion and change detection. In addition,
source-invariant feature descriptors are the key module of this
task. Without much expertise or effort in designing descrip-
tors, our SIDHCNNs can automatically learn suitable source-
invariant feature descriptors from data, which can be used in
multisource remote sensing image matching.

Another application of SIDHCNNs would be visual navi-
gation [40]–[42], which aims at recovering the geographical
location of the imaging sensor based on scene matching
between the real-time image, and the reference images. Our
SIDHCNNs could extend visual navigation to a more general
case that the real-time image and reference images were
captured by different remote sensors.

C. Future Prospects

As a first attempt, the proposed DSRSID contains a limited
number of land-cover types, and its volume is relatively small.
To approach the real problem in remote sensing image big data
analysis, we may enrich the data set in terms of the sample
volume and the category number with the aid of crowdsourc-
ing [43]. In the future, we may work on more challenging
cases, such as cross-source retrieval between optical images
and synthetic aperture radar (SAR) images.

In our future work, we will try to extend our SIDHCNNs
to more cross-domain knowledge transfer problems such as
the cross-domain remote sensing image scene classification
task [14], and the zero-shot remote sensing image scene
classification task [44].
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