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Abstract In this study, Moderate Resolution Imaging Spectroradiometer land cover, land surface
temperature (LST), and enhanced vegetation index (EVI) data were used to investigate the trends of
surface urban heat island intensity (SUHII, urban LST minus rural LST) and their relations with vegetation
in 397 global big cities during 2001–2017. Major findings include the following: (1) Annual daytime and
nighttime SUHII increased significantly (p < 0.05, Mann‐Kendall trend test) in 42.1% and 30.5% cities,
respectively. (2) The daytime SUHII in the growing season was significantly and positively correlated with
rural EVI in 58.9% cities. This is because high rural EVI can increase the EVI difference between urban and
rural areas. (3) Rural greening contributed 22.5% of the increased daytime SUHII in the growing season at
the global scale. This study highlights that the effect of greening in rural areas was a significant and
widespread driver for the increased daytime SUHII.

Plain Language Summary Surface urban heat island (SUHI) refers to higher land surface
temperature (LST) in urban than in rural areas. The increased SUHI intensity (urban LST minus rural)
was mainly attributed to increased anthropogenic heat emission and built‐up areas and reductions in
vegetation in urban areas in the literature. However, this study showed that the increased vegetation (i.e.,
greening) in rural areas was a significant and widespread driver for the increased daytime SUHI intensity
around the world during 2001–2017. The implication of this study is that urban LST may increase much
faster than rural LST in future global warming.

1. Introduction

Urban heat island (UHI) effect refers to a higher land surface or air temperature in urban than in nearby
rural areas. It can bring many adverse effects to human and environment (e.g., increasing mortality and
energy consumption, and affecting water and air quality), thus receiving increasingly attention globally
(Cao et al., 2018; Grimm et al., 2008; Luo & Lau, 2018; McCarthy et al., 2010).

Satellite remote sensing is one of the most widely used methods to study UHI. Land surface temperatures
(LSTs) derived from satellite sensor can be used to estimate the surface UHI (SUHI) from the contrast
between urban pixels and surrounding rural ones (Zhou et al., 2019). The spatial and temporal variations
of SUHI have been documented, the SUHI intensity (SUHII, urban LST minus rural LST) differed greatly
by cities, monitoring times and seasons according to previous studies (Clinton & Gong, 2013; Imhoff
et al., 2010; Wang et al., 2015; Zhou et al., 2014). However, the long‐term trends of SUHI at the global scale
were only investigated by Chakraborty and Lee (2019), showing that the trends of annual daytime and night-
time SUHII during 2003–2017 were 0.03 °C per decade and 0.00 °C per decade, respectively. However,
Chakraborty and Lee (2019) only computed the trends of annual mean SUHII and did not provide any sea-
sonal differences. In addition, the data and methods in Chakraborty and Lee (2019) may lead to some uncer-
tainties (for further discussion, see section 3.1). A systematic evaluation of SUHII and related drivers at a
global scale is still needed.

One of the most important factors explaining observed SUHI is the reductions of vegetation in urban areas
and the presences of vegetation outside cities, because vegetation can decrease the LST through transpira-
tion during the daytime (Peng et al., 2012; Yao et al., 2017). Existing studies showed that the Earth is green-
ing (Los, 2013; Zhang et al., 2017; Zhu et al., 2016). For example, Zhang et al. (2017) showed that global

©2019. American Geophysical Union.
All Rights Reserved.

RESEARCH LETTER
10.1029/2018GL081816

Key Points:
• Annual daytime and nighttime

surface urban heat island intensity
increased significantly in 42.1% and
30.5% global cities, respectively

• Daytime surface urban heat island
intensity was significantly and
positively correlated with rural
enhanced vegetation index in 58.9%
cities

• At the global scale, the contribution
of rural greening to the increased
daytime surface urban heat island
intensity was 22.5%

Supporting Information:
• Supporting Information S1

Correspondence to:
L. Wang,
wang@cug.edu.cn

Citation:
Yao, R., Wang, L., Huang, X., Gong, W.,
& Xia, X. (2019). Greening in rural areas
increases the surface urban heat island
intensity. Geophysical Research Letters,
46, 2204–2212. https://doi.org/10.1029/
2018GL081816

Received 22 DEC 2018
Accepted 1 FEB 2019
Accepted article online 5 FEB 2019
Published online 15 FEB 2019

YAO ET AL. 2204

https://orcid.org/0000-0001-7783-5725
http://dx.doi.org/10.1029/2018GL081816
http://dx.doi.org/10.1029/2018GL081816
http://dx.doi.org/10.1029/2018GL081816
http://dx.doi.org/10.1029/2018GL081816
http://dx.doi.org/10.1029/2018GL081816
mailto:wang@cug.edu.cn
https://doi.org/10.1029/2018GL081816
https://doi.org/10.1029/2018GL081816
http://publications.agu.org/journals/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2018GL081816&domain=pdf&date_stamp=2019-02-15


vegetation (as reflected by enhanced vegetation index [EVI] and normalized difference vegetation index
[NDVI]) showed a significant increasing trend from 2001 to 2015. Zeng et al. (2017) showed that greening
of the Earth has slowed down the increase in global air temperature by 0.09 °C during 1982–2011. The
increased evapotranspiration can explain 70% of this change. Liu et al. (2015) found that the trends of urban
NDVI differed greatly by 50 global major cities, while the rural NDVI increased in most cities for the period
2001–2010. However, two questions still remain unclear: (1) What is the trend of SUHII change in major glo-
bal cities in recent years? (2) Does the greening in rural areas affect the changes in SUHII?

This study aims at answering above two questions. Moderate Resolution Imaging Spectroradiometer
(MODIS) LST and EVI data were utilized to analyze: (1) temporal trends of LST and SUHII in 397 global
big cities, (2) the temporal relationships between SUHII and EVI across 2001–2017 in each city, and (3)
the contribution of greening to the SUHII.

2. Materials and Methods
2.1. Extracting Urban and Rural Areas

In this study, land cover information was extracted from MODIS version 6 MCD12Q1 data (500‐m spatial
resolution, International Geosphere‐Biosphere Programme classification layer, yearly composite, available
from 2001 to 2016; Menashe & Friedl, 2018). Pixels classified as urban areas (digital number = 13) and
water bodies (digital number = 17) in land cover maps (raster files) were converted into polygon (vector
files) using the Environment for Visualizing Images 5.1 software (Menashe & Friedl, 2018). The land
cover data in 2016 was used to analyze the trends of EVI and SUHII and their relationships during
2001–2017. The urban areas in 2016 can include old and new urban areas due to urbanization. Using
urban areas in 2016 can reveal overall trends of EVI and SUHII and their relationships, including the
information from old (without urbanization) and new urban areas (with urbanization) (Peng et al.,
2018; Yao, Wang, Huang, Zhang, et al., 2018). Cities with urban area size larger than 200 km2 were ana-
lyzed; thus, a total of 397 cities were investigated (Table S1). In addition, rural areas were defined as 10‐
to 30‐km buffers around urban areas (removing water bodies, urban areas, and their 3‐km buffer areas).
The reasons for selecting 10‐ to 30‐km buffers are as follows: (1) The extents of SUHI and urbanization
are generally greater than urban area size (Zhang et al., 2004; Zhou et al., 2015); thus, the buffer zones
were not set near the urban areas; and (2) to reduce uncertainties caused by different climate conditions,
the buffer zones were not set farther (Luo & Lau, 2018; Yao, Wang, Huang, Niu, et al., 2018; Zhou et al.,
2015). Meanwhile, other buffer radii were also used. Finally, altitude effects were not excluded from rural
areas in this study since (1) it can influence the estimation of SUHII but it may not influence the estima-
tion of the trends of SUHII and (2) it can retain more pixels and natural forests (mainly in high altitude
areas) in rural areas and may reflect the changes in rural LST more accurately (Yao, Wang, Huang, Niu,
et al., 2018).

2.2. Analyzing the Temporal Trends of LST and SUHII

Vegetation greenness information was derived from version 6 MOD13A3 EVI data (1‐month composite,
1,000‐m spatial resolution, 2001–2017). LST information was extracted from version 6 MOD11A2 data (8‐
day composite, 1,000‐m spatial resolution, 2001–2017). These data have been widely validated and utilized
(Eleftheriou et al., 2018; Huete et al., 2002; Li et al., 2018; Wan, 2008; Wang et al., 2015; Yao, Wang,
Huang, Chen, et al., 2018). The LST was averaged into seasons and the growing season: in Northern
Hemisphere (latitude higher than 0), the spring, summer, autumn, winter, and the growing seasons were
defined as from March to May, June to August, September to November, December to February, and
April to October, respectively. In SouthernHemisphere (latitude lower than 0), the spring, summer, autumn,
winter, and the growing seasons were defined as from September to November, December to February,
March to May, June to August, and October to April, respectively. We only analyzed the EVI in the growing
season, since in late autumn, winter, and early spring, the vegetation activity is low and the EVI may be
affected by snow and ice in cold regions (Huete et al., 2002; Piao, 2003).

The SUHII was computed utilizing equation (1) (Peng et al., 2012; Zhou et al., 2014):
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ΔLST ¼ LSTurban−LSTrural; (1)

where the LSTurban, LSTrural, and ΔLST represent the urban LST, rural LST, and SUHII, respectively. ΔEVI
were computed using the samemethod as equation (1). The temporal trends of LST and SUHII for the period
2001–2017 were analyzed using the Mann‐Kendall test and Sen's slope (Kendall, 1975; Mann, 1945; Sen,
1968). Mann‐Kendall test is considered as a robust method for detecting trends and was highly recom-
mended by World Meteorological Organization (1988; Shadmani et al., 2012).

2.3. The Effects of the Change in Rural EVI on SUHII

Spearman's correlation analyses and Spearman's correlation analyses after detrending were employed to
investigate the temporal relationships between SUHII and EVI or ΔEVI in the growing season in each city
across 2001–2017. The effects of the change in rural EVI on rural LST in the growing season over the period
2001–2017 were calculated using equation (2):

EEVI ¼ Trend LSTrural−LSTrerð Þ (2)

where the LSTrural represents the LST in rural areas. LSTref is the reference LST. EEVI is the effects of the
change in rural EVI on rural LST. We calculated the LSTref using following steps. First, in each pixel of
the globe, the slope (Mann‐Kendall test and Sen's slope) of the growing season EVI during 2001–2017 was
calculated. Second, in the LST maps, pixels with absolute value of slope of the growing season EVI higher
than 10th percentile (other thresholds were also used) of the slopes in all global pixels (equal to 0.000114
in this study) were excluded. Finally, the LSTref of each city in each year was calculated as the average
LST of valid (not excluded in the second step) pixels in rural areas. After that, EEVI was computed as the
trend of difference between LSTrural and LSTref. This is based on the hypothesis that if rural EVI does not
change, the LSTrural will be the same as LSTref. This hypothesis is similar to the methods in which we calcu-
lated the trends of SUHII. In addition, the opposite number of EEVI can be regarded as the effects of the
change in rural EVI on SUHII.

3. Results and Discussion
3.1. Temporal Trends of SUHII

Annual average daytime and nighttime SUHII increased (slope > 0) significantly (p < 0.05) in 42.1% and
30.5% cities, respectively (Figure 1). Few cities showed significant decreasing trends of SUHII. Seasons with
maximum and minimum numbers of cities with significant increasing trends of daytime SUHII were sum-
mer (38.3% cities) and winter (17.1% cities), respectively. Comparatively, the trends of nighttime SUHII dif-
fered little by seasons.

On average, annual daytime and nighttime SUHII increased at the rate of 0.29 ± 0.41 °C per decade (mean
and standard deviation, hereafter) and 0.10 ± 0.23 °C per decade, respectively (Table 1). The trends of day-
time and nighttime SUHII in the growing season averaged for 397 cities were 0.41 ± 0.49 and 0.13 ± 0.24 °C
per decade, respectively. These trends were close to the trends in summer. This is understandable, since the
growing season defined in this study (from April to October) includes the whole summer (from June to
August). Furthermore, the standard deviations of the trends of daytime SUHII across cities were larger than
that of trends of nighttime SUHII. This indicated that the trends of nighttime SUHII were more consistent
across cities. The large difference in the trends of daytime SUHII across cities may be attributed to large dif-
ference in daytime SUHII across cities. The daytime SUHII differed greatly by cities, ranging from negative
SUHII in cities surrounded by deserts to over 7 °C in cities surrounded by forest. However, nighttime SUHII
differed slightly by cities (Imhoff et al., 2010; Peng et al., 2012). One of the major reasons is that vegetation
transpiration can decrease the LST during the daytime rather than nighttime (Imhoff et al., 2010; Peng et al.,
2012). Thus, the transformation of natural land surface to built‐up areas over time may lead to a higher
increasing rate of daytime SUHII in cities with higher daytime SUHII but a stable trend in cities with insig-
nificant daytime SUHII. In addition, the great difference in the trends of daytime SUHII across seasons men-
tioned above may be attributed to similar reasons.

Chakraborty and Lee (2019) found that the global average trends of annual daytime and nighttime SUHII
during 2003–2017 were 0.03 and 0.00 °C per decade, respectively. The rates were much lower than the
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present study (Table 1). Chakraborty and Lee (2019) used urban area map in 2001 and calculated the SUHII
as the difference in LST between urban and neighboring suburban areas. The trends of SUHII may be
underestimated by Chakraborty and Lee (2019) since (1) the SUHI's spatial extent is greater than the
actual urban area size (Yao, Wang, Huang, Niu, et al., 2018; Zhang et al., 2004; Zhou et al., 2015) and (2)
urbanization generally happened in suburban areas (Yao, Wang, Huang, Niu, et al., 2018; Yao et al., 2017;
Zhou et al., 2016).

Spatially, the temporal trends of SUHII differed by cities (Figure 1). First, the daytime SUHII increased sig-
nificantly in most Chinese cities except in winter. This is similar to previous studies and primarily due to the

Figure 1. Trends of surface urban heat island intensity in annual, each season and growing season.
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rapid urbanization in China (Luo & Lau, 2017; Yang et al., 2019; Yao et al., 2017). Second, cities with signif-
icant increasing trends of daytime SUHII in winter were generally located near the equatorial region
(Figure 1i), which can be explained by the different vegetation species between this region (mainly covered
by evergreen forest) and others (mainly covered by deciduous forest, seasonal crop, and grass; Yao et al.,
2017). Evergreen forest is green andwill be affected by driving factors (e.g., human activity and climate varia-
bility) in winter, while tree species in other regions are brown and may not be affected by driving forces in
winter. Thus, the interannual variations in evergreen forest rather than other vegetation types will drive the
SUHII in winter. This claim was demonstrated by Yao et al. (2017). Third, it seems that nighttime SUHII
increased in most cities in relatively arid regions (Western United States and Northern China), while it
was not true for cities in relatively humid regions (Eastern United States, Western Europe, and Southern
China). This is similar to Chakraborty and Lee (2019) and may be attributed to the soil moisture effect
(Peng et al., 2018; Yao et al., 2017; Zhou et al., 2014). The changes in soil moisture can affect thermal admit-
tance and the changing rate of LST (Oke et al., 1991). Relatively arid regions generally have higher nighttime
SUHII than relatively humid regions, since in relatively arid region the soil is dry and the rural LST decreases
rapidly at night. Drier soil (in relatively arid regions) transformed into built‐up areas with urbanization may
result in higher slopes of nighttime SUHII thanwetter soil (in relatively humid regions; Peng et al., 2018; Yao
et al., 2017; Zhou et al., 2014).

3.2. Relationships Between SUHII and EVI or ΔEVI

Spearman's correlation analyses (without detrending) revealed that the daytime SUHII was significantly
(p < 0.05) and positively (r > 0) linked to rural EVI in the growing season in 58.9% of the cities across
2001–2017 (Table 2). The results of Spearman's correlation analyses after detrending were similar to the
results of above Spearman's correlation analyses. This suggested that the years with higher rural EVI were
generally accompanied by higher daytime SUHII in the growing season in most cities. Meanwhile, increased
rural EVI was one of the reasons for the increased daytime SUHII in the growing season, because high rural
EVI can increase the EVI difference between urban and rural areas then increase the SUHII. The results
showed that (1) the rural EVI was significantly and negatively correlated (Spearman's correlation without
detrending) with the ΔEVI in 78.8% cities and (2) the ΔEVI was significantly and negatively related to
SUHII over 62.7% cities (Table 2). Then high EVI difference between urban and rural areas can increase
the SUHII (Peng et al., 2012; Yao et al., 2017). Comparatively, significant correlations between nighttime
SUHII and rural EVI were observed in the minority of the cities (Table 2). Thus, high rural EVI may not
increase the nighttime SUHII. This can be attributed to low transpiration of vegetation during the nighttime
(Peng et al., 2012).

Table 1
Temporal Trends (Mean and Standard Deviation) of EVI, ΔEVI, LST, and SUHII Averaged for 397 Cities

Growing season

EVI in urban (per decade) EVI in rural (per decade) ΔEVI (per decade)

−0.0045 ± 0.0167 0.0121 ± 0.0149 −0.0163 ± 0.0197

LST in urban (°C per decade) LST in rural (°C per decade) SUHII (°C per decade)

Annual daytime 0.46 ± 0.54 0.18 ± 0.48 0.29 ± 0.41
Annual nighttime 0.47 ± 0.31 0.37 ± 0.25 0.10 ± 0.23
Spring daytime 0.53 ± 0.74 0.19 ± 0.70 0.33 ± 0.53
Spring nighttime 0.46 ± 0.42 0.38 ± 0.36 0.10 ± 0.31
Summer daytime 0.60 ± 0.77 0.16 ± 0.64 0.45 ± 0.56
Summer nighttime 0.54 ± 0.50 0.40 ± 0.36 0.12 ± 0.29
Autumn daytime 0.41 ± 0.67 0.15 ± 0.59 0.28 ± 0.44
Autumn nighttime 0.49 ± 0.47 0.39 ± 0.38 0.10 ± 0.24
Winter daytime 0.35 ± 0.73 0.30 ± 0.79 0.08 ± 0.48
Winter nighttime 0.42 ± 0.56 0.35 ± 0.59 0.09 ± 0.34
Growing season daytime 0.61 ± 0.58 0.22 ± 0.49 0.41 ± 0.49
Growing season nighttime 0.59 ± 0.34 0.45 ± 0.25 0.13 ± 0.24

Note. EVI = enhanced vegetation index; LST = land surface temperature; SUHII = surface urban heat island intensity.
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Significant Spearman's correlations between urban EVI and daytime SUHII in the growing season were only
found in theminority of the cities (Table 2), indicating that urban EVImay have fewer influences on daytime
SUHII in the growing season (detailed explanation in next paragraph). Negative correlations between night-
time SUHII and urban EVI in the growing season were observed in 74.6% cities. With urbanization, vegeta-
tion is replaced by built‐up areas, which generally have higher nighttime LST than other land cover types.
The increased built‐up areas can increase the nighttime SUHII. Moreover, vegetation can pose a shading
effect. It can decrease the heat stored in urban roads during the daytime, thus reducing the SUHII during
the nighttime (Quan et al., 2016; Yao et al., 2017). Thesemay be the primary reasons for negative correlations
between nighttime SUHII and urban EVI.

It is worth noting that the number of cities with significant Spearman's correlations between daytime SUHII
and rural EVI was much higher than that between daytime SUHII and urban EVI in the growing season
across 2001–2017 (Table 2). The amount of vegetation in rural areas is generally higher than urban areas
due to urbanization (except for certain cities in arid region). Therefore, more vegetation will be influenced
by human activity and climate variability in rural than in urban areas. For example, the impact of drought
on vegetation in rural areas with dense vegetation coverage may be larger than in urban areas with sparse
vegetation coverage. Meanwhile, urbanization in developing cities (e.g., certain Asian and African cities)
generally decreases the EVI and can offset the greening trend in urban areas (primarily due to planting
and CO2 fertilization; Figure S1b in the supporting information). The variations in EVI across years may
be larger in rural than in urban areas (Yao, Wang, Huang, Chen, et al., 2018). We calculated the standard
deviations of EVI in each city across 2001–2017 and the difference in the EVI standard deviations between
urban and rural areas. The standard deviation of EVI was higher in rural than in urban areas in 82.9% cities.
This was similar to Yao, Wang, Huang, Chen, et al. (2018), who reported that theΔstandard deviation of EVI
(urban core minus rural) was negative in all of the 31 major Chinese cities in summer. The larger variations
in rural EVI than urban EVI across 2001–2017 led to the dominant control of rural EVI onΔEVI: (1) Asmen-
tioned above, the rural EVI was significantly and negatively related to ΔEVI in 78.8% cities. (2) The urban
EVI was significantly and positively linked to ΔEVI in only 25.2% cities. The dominant control of rural
EVI on ΔEVI was one of the reasons for the stronger correlation between SUHII and rural EVI than
urban EVI.

3.3. The Effects of the Change in Rural EVI on SUHII

For 397 cities combined, the EEVI were−0.09 and−0.03 °C per decade in the growing season during the day-
time and nighttime, respectively. Therefore, if the rural EVI is stable, the slope of rural LST will be 0.09 °C
per decade higher, and the slope of daytime SUHII will be 0.09 °C per decade lower in the growing season.
The slope of daytime SUHII averaged for 397 cities is 0.41 °C per decade in the growing season (Table 1).
Thus, the contribution of rural greening to the increased daytime SUHII in the growing season was 22.5%.
In addition, the sensitivities of the experimental results to different thresholds (when analyzing the effects
of the change in rural EVI on SUHII) and buffer radii (when selecting rural areas) were tested. For example,
the contributions were 19.3% and 30.0% when using 15th and 5th percentiles as thresholds, respectively
(using 10‐ to 30‐km buffer as rural areas). The differences in contribution caused by different selection of
rural areas were also relatively small (using 10th percentile as threshold, 10‐ to 40‐km buffer: The contribu-
tion was 23.7%; 20‐ to 40‐km buffer: The contribution was 24.1%). Furthermore, other factors (e.g., urbaniza-
tion, soil moisture, and climate) contributed to the remaining part, which should be examined in future

Table 2
Spearman's Correlations Analyses Without Detrending and After Detrending Between SUHII and EVI or ΔEVI

Without detrending SUHII & rural EVI SUHII & urban EVI SUHII & ΔEVI

Growing season daytime 361(234), 36(5) 234(82), 163(57) 30(2), 367(249)
Growing season nighttime 206(64), 191(25) 101(13), 296(88) 127(11), 270(97)
After detrending
Growing season daytime 331(155), 66(7) 263(94), 134(20) 48(2), 349(156)
Growing season nighttime 155(12), 242(35) 116(13), 281(51) 179(17), 218(25)

Note. The numbers of the cities with positive and negative Spearman's correlations are displayed at left and right, respectively. The numbers in brackets are the
numbers of the cities with significant (p < 0.05) Spearman's correlations. EVI = enhanced vegetation index; SUHII = surface urban heat island intensity.
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research. Additionally, 186 cities showed significant increasing trends of daytime SUHII in the growing sea-
son. Among them, 44.6% (83) cities exhibited significant decreasing trends of EEVI. This suggested that rural
greening was not only a significant reason but also a widespread one for the increased daytime SUHII in the
growing season. Spatially, most cities exhibited significant decreasing trends of EEVI in China (Figure S2).
This phenomenon may mostly be owing to the prominent greening trend in China (Figure S1).

The increased SUHII was mainly attributed to increased anthropogenic heat emission and built‐up areas
and reductions in vegetation in urban areas in the literature (Benas et al., 2016; Voogt & Oke, 2003;
Weng, 2009; Yao et al., 2017, Yao,Wang, Huang, Zhang, et al., 2018; Zhou et al., 2016). The effect of greening
in rural areas has not been documented in the literature but was an important and widespread driver for the
increase in daytime SUHII according to the present study. Thus, some previous studies need to reevaluate
the role of rural greening. Moreover, rural greening should arouse more attention in future SUHI's research.

3.4. Implications

The emission of greenhouse gas (e.g., CO2 and CH4) into the atmosphere by human activity leads to global
warming. Recent studies suggested that the increase of CO2 in the atmosphere may green the Earth and then
slow the global warming (Los, 2013; Zeng et al., 2017; Zhu et al., 2016). However, the slopes of urban and
rural EVI averaged for 397 cities were −0.0045 ± 0.0167 per decade and 0.0121 ± 0.0149 per decade, respec-
tively (Table 1). Thus, vegetation greening may cool the daytime LST in rural areas rather than in urban
areas and then increase the daytime SUHII. The implication was that urban LST increased much faster than
the rural LST (Table 1). Meanwhile, the season with the highest increasing rate of daytime SUHII was
summer (Table 1). This is probably because vegetation activity is the highest in summer. Therefore, if the
global warming trends continued, the daytime SUHI effect may become more serious, especially in summer.

4. Conclusions

In the present study, MODIS LST and EVI data were utilized to analyze the trends of EVI and SUHII and
their relationships at the global scale for the period 2001–2017. The results showed the following: (1)
Annual average daytime and nighttime SUHII increased significantly in 42.1% and 30.5% cities, respectively.
The trends of daytime SUHII differed greatly by cities and seasons, while it was not the case for the trends of
nighttime SUHII. The season with the highest increasing rate of daytime SUHII was summer. (2) The day-
time SUHII in the growing season was significantly and positively related to rural EVI in 58.9% cities. This is
because high rural EVI can increase the EVI difference between urban and rural areas. (3) At the global
scale, the contribution of rural greening to the increased daytime SUHII was 0.09 °C per decade (22.5%)
in the growing season.

The effect of greening in rural areas was an important and widespread driver for the increase in daytime
SUHII. Therefore, rural greening should arouse more attention in future. However, there are certain uncer-
tainties in the present study. First, the study period (17 years) is a little short since MODIS data are available
since 2000, which may be a major reason for the insignificant trends of SUHII and EVI in the majority of the
global cities. Second, other factors (e.g., increased anthropogenic heat emission and built‐up areas, reduc-
tions in vegetation in urban areas, and climate variability) contributing to most parts of the increase in
SUHII were not investigated in this study. Third, the 1‐km spatial resolution data are a little coarse for
city‐scale studies. Thus, future studies should (1) quantify the contributions of other factors (e.g., urbaniza-
tion, soil moisture, and climate) to the increased SUHII of the globe and (2) systematically analyze the effect
of rural greening on SUHII at regional and local scales using higher spatial resolution data for longer
time series.
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