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H I G H L I G H T S

• A novel local-adaptive method was proposed to model global EPC at 1 km resolution.

• Multiple options were adopted to adaptively correct the NSL data.

• Various regression models were used to reflect the relationship between EPC and NSL.

• Our product showed higher spatiotemporal precision compared to the current one.

• The spatiotemporal dynamics of global electric power consumption were investigated.
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A B S T R A C T

Timely and reliable estimation of electricity power consumption (EPC) is essential to the rational deployment of
electricity power resources. Nighttime stable light (NSL) data from the Defense Meteorological Satellite Program
Operational Linescan System (DMSP-OLS) have the potential to model global 1-km gridded EPC. A processing
chain to estimate EPC includes: (1) NSL data correction; and (2) regression model between EPC statistics and NSL
data. For the global gridded EPC estimation, the current approach is to correct the global NSL image in a uniform
manner and establish the linear relationships between NSL and EPC. However, the impacts of local socio-
economic inconsistencies on the NSL correction and model establishment are not fully considered. Therefore, in
this paper, we propose a novel locally adaptive method for global EPC estimation. Firstly, we set up two options
(with or without the correction) for each local area considering the global NSL image is not saturated every-
where. Secondly, three directions (forward, backward, or average) are alternatives for the inter-annual cor-
rection to remove the discontinuity effect of NSL data. Thirdly, four optional models (linear, logarithmic, ex-
ponential, or second-order polynomial) are adopted for the EPC estimation of each local area with different
socioeconomic dynamic. Finally, the options for each step constitute all candidate processing chains, from which
the optimal one is adaptively chosen for each local area based on the coefficient of determination. The results
demonstrate that our product outperforms the existing one, at global, continental, and national scales.
Particularly, the proportion of countries/districts with a high accuracy (MARE (mean of the absolute relative
error) ≤ 10%) increases from 17.8% to 57.8% and the percentage of countries/districts with inaccurate results
(MARE > 50%) decreases sharply from 23.0% to 3.7%. This product can enhance the detailed understanding of
the spatiotemporal dynamics of global EPC.

1. Introduction

Along with the tremendous development of the global economy,
energy demand has continuously increased over the last century [1,2].
As an indispensable component of energy, electric power plays a vital

role in numerous aspects of modern society, such as improving re-
sidential living standards [3], supporting industrial production [4], and
promoting commercial transactions [5]. According to the World Bank
[6], global electric power consumption (EPC) in 2014 was more than
four times higher than that in 1971. In addition to the convenience
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brought by the massive increase of EPC, the world has also been bur-
dened with accelerated global warming and air pollution due to the
accompanying emission of greenhouse gases and other pollutants [7,8].
Therefore, accurate delineation of the spatiotemporal dynamics of
global EPC is a critical prerequisite for investigating both the impacts of
EPC and its interaction with the economy and the environment [9,10].

A wealth of research has investigated the spatiotemporal dynamics
of EPC based on the EPC statistics published by related official orga-
nizations. For instance, AI-Garni et al. [11] adopted a regression model
to forecast EPC in Eastern Saudi Arabia using weather data, global solar
radiation, and population as variables. Egelioglu et al. [12] predicted
annual EPC by multiple regression analyses of the historical economic
databases and EPC statistics for Northern Cyprus. Shiu and Lam [13]
examined the causal relationship between EPC and GDP in China by the
error-correction model. Huang et al. [14] investigated the electric
power supply and demand in China using the Grey-Markov forecasting
model. Chujai et al. [15] forecasted the EPC at a household scale with
different autoregressive models based on time-series EPC statistics.
Cabral et al. [16] developed a spatiotemporal method that considers
spatial correlations to predict the EPC in Brazil. These previous studies
have been devoted to providing suggestions for governments or orga-
nizations. However, for the EPC statistics, the collection process is
labor-intensive and time-consuming. Moreover, the EPC statistics are
unable to reflect the internal spatial details within the administrative
unit, which limits our understanding of the spatiotemporal dynamics of
EPC at smaller scales [17,18]. Compared with the statistics for an entire
administrative unit, gridding is a more realistic representation for the
investigation of EPC at finer scales. Therefore, efficient methods to
produce a spatially gridded representation of worldwide EPC are ur-
gently needed, and it is worth attempting to adopt appropriate spatial
gridded data as a proxy for modeling global EPC.

Satellite remotely sensed imagery has been proved to be a reliable
way to support large-scale investigations in numerous fields, such as
global solar radiation [19], land surface temperature [20], land use and
land cover [21], and CO2 emission [22]. The nighttime light (NTL)
remote sensing imagery, such as that obtained by the Defense Me-
teorological Satellite Program’s Operational Linescan System (DMSP-
OLS) [23], has the potential for EPC estimation over large areas, be-
cause NTL can directly reflect the EPC caused by anthropogenic socio-
economic activities at night [24–27]. Elvidge et al. [28] verified the
high log-log relation between the lit areas in DMSP-OLS data and EPC
for 200 countries during 1994–1995. Similarly, Lo [29] modeled the
logarithmic relationship between DMSP-OLS NTL and EPC for 35 Chi-
nese cities for the year 1997. Amaral et al. [30] found that DMSP-OLS
NTL was linearly correlated with the statistical EPC for 1999 in Brazi-
lian Amazonia. Chand et al. [31] analyzed the linear relationship be-
tween the increase of EPC and the increase of NTL in the major cities
and states of India during 1993–2002. Townsend and Bruce [32] re-
ported a strong second-order polynomial relationship between DMSP-
OLS NTL and EPC at the state level in Australia for 1997–2002. Letu
et al. [33] estimated EPC in Japan and other Asian countries from sa-
turated-corrected DMSP-OLS data, and found a strong linear correlation
[34] between EPC and DMSP-OLS data in Japan. He et al. [35] re-
spectively modeled double-log relationships for different economic re-
gions of the Chinese Mainland from 1995 to 2008 at the county level.
Ma et al. [36] attempted three models (linear, power-law, and ex-
ponential function) to quantify the relationships between EPC statistics
and DMSP-OLS NTL for more than 200 cities in China during
1994–2009, and suggested that the best quantitative model type varies
with the different socioeconomic patterns. Xie and Weng [37] explored
the country-level relationship between EPC statistics and DMSP-OLS
NTL by the logarithmic function. Jing et al. [38] adopted the linear
model to correlate EPC with DMSP-OLS NTL data at the provincial level
in China. By summarizing the existing literature, it can be found that
different types of models have been utilized across different regions
when using NTL to estimate EPC, due to the disparity of the social,

economic, and urban development status among the different regions.
With respect to the estimation of spatially gridded EPC, Zhao et al.

[39] estimated the provincial-level EPC based on the DMSP-OLS and
population data in China, and generated pixel-level EPC through dis-
aggregation. Cao et al. [40] proposed a statistics-to-grid scaling down
method for mapping gridded EPC in China based on the integration of
DMSP-OLS data, population and gross domestic product (GDP). He
et al. [41] modeled annual pixel-based EPC in Chinese Mainland with
DMSP-OLS and normalized difference vegetation index (NDVI). Xie and
Weng [42] estimated gridded EPC of China using DMSP-OLS data,
population and enhanced vegetation index (EVI) considering the dif-
ference between urban cores and suburban areas. Pan and Li [43]
generated 1-km EPC map in China with different vegetation indices and
DMSP-OLS data. Most of the existing studies have focused on modeling
at the national, regional, or city level, however, research at the global
scale is scarce, due to its complexity. An exception and a notable ex-
ample is the study of Shi et al. [44], where the original NTL images
were first corrected worldwide using a uniform framework, and the
world was then partitioned into 48 regions according to the geographic
locations and socioeconomic levels. Finally, a linear model between the
EPC statistics and corrected NTL data for each region was individually
built to explore the gridded EPC. Nonetheless, this method does not
fully consider the influence of the uniqueness of local socioeconomic
development on the following three aspects in the EPC estimation.

(1) The saturation issue of NTL data: The relatively low radiometric
resolution (6 bits) of the OLS sensor results in saturation in the NTL
data [45], especially in the centers of large cities. All digital number
(DN) values of these saturated pixels are 63, and hence, the dis-
parity within the urban centers cannot be distinguished. In Shi et al.
[44], a modified invariant region (MIR) method was globally
adopted to reduce the saturated pixels. Nevertheless, saturated
pixels are not ubiquitous worldwide, especially in underdeveloped
areas. Saturation correction can result in distortion of these un-
saturated pixels in suburban and rural areas [46], and reduce the
contribution of saturated pixels to the EPC estimation [42].
Therefore, it is not appropriate to globally utilize a unified frame-
work for saturation correction.

(2) The incomparability and discontinuity effect of NTL data: The ori-
ginal NTL images cannot be directly compared with each other, due
to the lack of onboard calibration for the OLS sensor. Specifically,
the DN values in the images obtained from the same satellite fluc-
tuate abnormally in different years, and discrepancies occur in the
images collected by different satellites for the same year [47]. Shi
et al. [44] performed inter-annul correction in a forward direction
for the whole world to eliminate the abnormal fluctuation (i.e.,
discontinuity effect) [43,44,48]. However, in addition to the for-
ward direction, other approaches (e.g., backward, average) can also
be considered for the correction, resulting in different corrected
NTL data [49,50]. With inappropriately corrected NTL data, the
reliability and accuracy of EPC estimation can also be affected.
Therefore, it is not reasonable to apply the same approach (e.g.,
forward) for all the regions with diverse socioeconomic dynamics
throughout the world.

(3) The estimation model between the EPC statistics and the corrected
NTL data: Shi et al. [44] employed linear models for all the regions
in the world. However, as indicated by the previous studies
[35─38], the appropriate type of regression model can vary across
areas, owing to the local socioeconomic diversity. Therefore, it is
inappropriate to limit the model type to the linear one at the global
scale.

To address the aforementioned research questions, we propose a
novel locally adaptive method for modeling global EPC. Since the
available EPC statistics across the globe are at the national level, the
local scale in this study is set as the country/district level. Specifically,
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for each country/district, two options (with or without correction) are
first designed for saturation correction, and three optional directions
(forward, backward, or average) are secondly considered for the inter-
annual correction. Four alternative models (linear, logarithmic, ex-
ponential, or second-order polynomial functions) are then set up to
reflect the possible relationships between the EPC and NTL data.
Finally, the processing chain composed of the optimal options in the
three aspects is adaptively selected for each country/district, to ac-
commodate the local socioeconomic status.

The rest of this paper is organized as follows. Section 2 focuses on
the data sources used in this study. Section 3 introduces the proposed
locally adaptive selection method for global EPC mapping. The results
and discussion are respectively presented in Sections 4 and 5. Finally,
Section 6 sets out our main conclusions.

2. Data sources

The Version 4 global nighttime stable light (NSL) data of DMSP-OLS
for 1992–2013 were obtained from the National Oceanic and
Atmospheric Administration-National Geophysical Data Center
(NOAA/NGDC) website (http://www.ngdc.noaa.gov/eog/dmsp.html).
The NSL images were acquired by six satellites: F10 (1992–1994), F12
(1994–1999), F14 (1997–2003), F15 (2000–2007), F16 (2004–2009),
and F18 (2010–2013), covering an area from −180 to 180 degrees in
longitude and −65 to 75 degrees in latitude. The 34 annual NSL images
over the 22 years are all in the 30 arc-second grid, with DN values
ranging from 0 to 63. The global radiance-calibrated nighttime light
(RCNL) image for 2006 was also downloaded from the same website for
the intercalibration process of the NSL data.

In addition to the NSL data, we also downloaded the Version 4
Advanced Very High Resolution Radiometer (AVHRR) gridded daily
normalized difference vegetation index (NDVI) dataset (https://doi.
org/10.7289/V5PZ56R6) from the Google Earth Engine (GEE, http://
earthengine.google.com/) to generate the annual mean NDVI compo-
sites worldwide, with a resolution of 0.05 arc degrees, for 1992–2013.
The annual NSL, RCNL, and NDVI images were all resampled to the
pixel size of 1 km on Mollweide projection. The EPC statistics for the
countries/districts around the world were obtained from the World
Bank Open Database (https://data.worldbank.org/), and the global
continent and country boundary data were downloaded from the
Version 2.8 Database of Global Administrative Areas (GADM, http://
gadm.org/). Moreover, six scenes of Landsat 8 Operational Land Imager
(OLI) images from the United States Geological Survey (USGS, https://
earthexplorer.usgs.gov/) and the global Suomi National Polar-orbiting
Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS)
Day/Night Band (DNB) data in 2013 were utilized to evaluate the
performance of the NSL saturation correction. A brief description of the
datasets used in this study is provided in Table 1.

3. Methodology

The proposed locally adaptive method for modeling global EPC
consists of four main procedures: (1) decomposition of the global NSL
images into national NSL data based on the national boundaries; (2)

sequential connection of all possible options in the NSL data correction
(including the saturation correction and inter-annual correction) and
EPC estimation to form all the candidate processing chains; (3) locally
adaptive selection of the optimal processing chains to construct the
global EPC; (4) evaluation of the accuracy of the global EPC and
monitoring of the spatiotemporal dynamics of global EPC from 1992 to
2013 (Fig. 1).

3.1. NSL data correction (model steps 1–4)

Model step 1 (saturation correction): The fact that urban surfaces
and vegetation are inversely correlated makes vegetation widely used
for the saturation correction of NSL data. With the NSL data corrected
by vegetation, this can de-saturate the pixels in the core urban areas.
However, it may also result in distortion for those unsaturated pixels in
suburban and rural areas [46]. Therefore, the first step in correcting the
NSL data was to determine whether saturation correction should be
performed for each region. If saturation correction was needed, we
adopted the vegetation adjusted normalized urban index (VANUI) [51]
to alleviate the saturation effect of NSL by the association of the NDVI:

= − ×VANUI (1 NDVI) NSL (1)

where NDVI is the annual mean NDVI derived from daily AVHRR-NDVI.
Details can be found in Zhang et al. [51]. If saturation correction was
not necessary, the original NSL DN values were retained. Therefore,
there are two options in this step, i.e., whether to conduct the saturation
correction or not.

Model step 2 (intercalibration): Another issue of NSL data is the
inconsistency of different NSL images, whether they are from the same
year or the same satellite. The 34 global NSL images for 1992–2013
needed to be intercalibrated by the invariant region (IR) method, under
the assumption that the relationship built in the invariant region can be
extended to broader areas [43,52]. Following Shi et al. [44], Japan was
selected as the IR due to its relatively-stable socioeconomic status
during the study period and wide range of NSL DN values [44,53]. The
power regression model was then utilized to build the relationship
between the reference data and the NSL images to be calibrated. For the
original NSL images, the RCNL image from 2006 was chosen as the
reference, due to its wide range of DN values [54]. As for the saturation-
corrected images, the VANUI image derived from the F16 satellite in
2006 was selected as the reference. The relationship in Japan was then
established as:

⎟= × ⎞
⎠

DN DNa (Jap
Img

Jap
Ref

b

(2)

where DNJap
Img denotes the DN value of the image to be intercalibrated in

Japan; DNJap
Ref stands for the DN value of the reference image in Japan;

and a and b are the coefficients of the model, which were determined by
regression analysis. In this way, the global NSL and VANUI images
could be respectively intercalibrated using their corresponding coeffi-
cients.

Model step 3 (intra-annual composition): To take full advantage of
the two images from the same year [55], an intra-annual composition of
the NSL (or VANUI) images was conducted as follows:

Table 1
Description of the datasets.

Data Data description Source

NSL Annual nighttime stable light data for 1992–2013 NOAA/NGDC
RCNL Global radiance-calibrated nighttime light data for 2006 NOAA/NGDC
NDVI Annual mean NDVI composites from 1992 to 2013 AVHRR/GEE
Landsat 8 OLI Six images covering six cities from three countries of various economic levels USGS
VIIRS/DNB Visible Infrared Imaging Radiometer Suite Day/Night Band data in 2013 NOAA/NGDC
EPC Annual EPC statistics for 1992–2013 World Bank Open Database
Boundaries Shapefile of global continents and countries in 2013 Global Administrative Areas
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2 respectively denote the DN values
of pixel i from two intercalibrated NSL (or VANUI) images in the year k,
and k stands for the number of years in 1994 and 1997–2007.

Model step 4 (inter-annual correction): The discontinuity effect still
existed among the annual images after the correction using Eq. (3). To
erase the abnormal fluctuations, an inter-annual correction was further
performed using Eq. (4), according to [43,44,48], by assuming that the
DN value of each lit pixel would not decrease over time with the rapid
development of the global economy.
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where DN k i
inter
( , ) is the DN value of pixel i after inter-annual correction in

year k; −DN k i( 1, ), DN k i( , ), and +DN k i( 1, ) are the DN values of pixel i from
the intra-annual composited NSL (or VANUI) images in the years k-1, k,
and k+1; and k is the number of years from 1992 to 2013. However,
please note the base year is not explicitly mentioned in Eq. (4). Dif-
ferent options of base year would result in different inter-annual-cor-
rected NSL (or VANUI) data. When the base year was set to 1992, it
meant that the k in Eq. (4) started from 1992, and thus the inter-annual
correction was performed in a forward direction; likewise, when the
base year was set to 2013, it denoted that the k in Eq. (4) started from
2013 and, in this way, the inter-annual correction was conducted in a
backward direction. Another possible option was the average of the
forward and backward directions, which can smooth the bias of each

direction [50]. In total, there are three options in the step of inter-an-
nual correction in our model.

At this stage, the NSL data correction included six different com-
binations, related to the consideration of the vegetation index for mi-
tigating the NSL saturation (with or without NDVI) and the mode of
inter-annual correction (forward, backward or average).

3.2. EPC estimation (model step 5)

The process of global urbanization actually varies across regions,
and is a comprehensive reflection of the local social and economic
status. Various types of relationships between EPC (an endogenous
urbanization variable) and NSL likely indicate the diverse underlying
local socioeconomic patterns [36]. To portray the possible correlations
between EPC and NSL data in various countries with different socio-
economic patterns of spatiotemporal dynamics, in our method, four
different types of regression models, i.e., linear, logarithmic, ex-
ponential, and second-order polynomial functions, can be chosen.

(1) The linear model was used to represent the status where the EPC
response was proportional to the NSL.

(2) The logarithmic model with a convex shape assumed that the EPC
showed a gradually declining response rate to the increase of NSL,
implying that the EPC would reach saturation with the increase of
nighttime lights.

(3) The exponential model with a concave shape represented a gradu-
ally increasing response rate of EPC to the rise of NSL.

(4) The second-order polynomial model has the potential to represent
both the increasing and decreasing response rate of EPC to the rise
of NSL, which is associated with the coefficient of the quadratic
term. When the coefficient is positive, the model portrays an in-
creasing response rate of EPC to the increase of NSL, and the

Fig. 1. Flowchart of the proposed methodology.
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negative coefficient denotes a decreasing response rate to the rise of
NSL. This model has been used to estimate EPC in Australia [32],
and thus it was also selected as an option in this study.

As suggested in [40–44], the estimation of gridded EPC was based
on a hypothesis that, for each pixel within a country/district, the re-
lationship between the DN value of the corrected NSL and EPC value is
consistent. In this research, we represented this relationship as:

= FEPC (NSL )i j i j( , ) ( , ) (5)

where F is one of the four relationships defined in our method, NSL i j( , )
denotes the DN value of pixel i in country j in the corrected NSL data,
and EPC i j( , ) stands for the estimated EPC value of pixel i in country j.
The four candidate types of F functions are as follows:

= ×pLinear: EPC NSLi j i j( , ) 1 ( , ) (6)

= ∗ +pLogarithmic: EPC ln(NSL 1)i j i j( , ) 2 ( , ) (7)

= × −pExponential: EPC (e 1)i j( , ) 3
NSL i j( , ) (8)

− = ∗ + ∗p q2nd order polynomial: EPC NSL NSLi j i j i j( , ) 4 ( , )
2

4 ( , ) (9)

where =p i( 1, 2, 3, 4)i as well as q4 are coefficients of the models.
By summing up the DN values of all the pixels belonging to country

j, country-level EPC values can then be obtained as follows:
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where Nj is the number of pixels in country j, and EPC j
stat is the sta-

tistical EPC for country j. Using the least-squares method, the coeffi-
cients in Eqs. (10)–(13) for each country/district could be respectively
solved based on the EPC statistics and the NSL data from 1992 to 2013.

To summarize, the six options in NSL correction and four options in
regression model yielded 24 candidate processing chains for the EPC
estimation of each country/district.

3.3. Locally adaptive EPC estimation (model step 6)

This step involves adaptively selecting the most suitable strategy for
each country/district from the 24 candidate processing chains. The
coefficient of determination (R2), a measure of goodness-of-fit, is widely
used to assess the performance of a regression model [36,56]. There-
fore, the processing chain with the highest R2 was selected as the op-
timal one for the EPC estimation in each country/district. In particular,
please note that the EPC statistics from the World Bank Open Database
for 1992–2013 are incomplete. To obtain more reliable estimations, the
countries with less than 5 years’ observational data [36] were not in-
cluded in the modeling for the EPC estimation. The models of these
countries were substituted by those of countries/districts with sufficient
statistics in the same region, as suggested by Shi et al. [44]. In this way,
the global EPC maps at a 1-km resolution from 1992 to 2013 could be
constructed.

3.4. Spatiotemporal dynamics of EPC (model step 7)

The 1-km global EPC maps for 1992–2013 provide us with the po-
tential to portray the spatiotemporal dynamics of global EPC with fine
spatial details. The gridded EPC was aggregated to the Level-1 sub-
division unit in the Global Administrative Areas Dataset (GADM). For

example, the Level-1 subdivision units in China and the United States
are the provincial and state levels, and thus we hereafter refer to the
Level-1 unit in GADM as the provincial/state level. We adopted the
global and local Moran’s I indices to depict the spatial patterns of EPC
across the world. The global Moran’s I index [57] is an overall measure
of spatial autocorrelation, with the value ranging from −1 to 1. A
positive value indicates the level of similarity, while a negative values
denotes the degree of difference. The global Moran’s I index is for-
mulated as:

=
∑ ∑ − −

∑ ∑ ∑ −
I

N w x x x x

w x x

( ¯)( ¯)

( ¯)
i j ij i j

i j ij i i
2

(14)

where N is the number of provinces/states, wij is the matrix of spatial
weight of the ith and jth provinces/states based on the Queen’s con-
tiguity, xi and xj refer to the total EPC for the ith and jth provinces/
states, and x̄ denotes the average EPC of all the provinces/states.

The local Moran’s I index indicates the degree of spatial auto-
correlation between each sample and its neighbors. The index is cal-
culated as [58]:

∑= − −
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N
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1
2j j i j,

2

. It can be applied to describe four types of
local spatial autocorrelation: (1) a High-High cluster (a high value
surrounded by high values); (2) a Low-Low cluster (a low value sur-
rounded by low values); (3) a High-Low cluster (a high value sur-
rounded by low values); and (4) a Low-High cluster (a low value sur-
rounded by high values).

According to He et al. [35], the SLOPE index was used to examine
the variation trends of the provincial EPC from 1992 to 2013:
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where n is the number of years (i.e., 22), yk stands for the kth year from
1 to 22, and EPCi k_ is the total EPC in the ith province of the kth year. A
positive value indicates an increasing trend, whereas a negative one
indicates a decreasing tendency. The SLOPE index for each province/
state was then divided into five grades using the Natural Breaks (Jenks)
method, i.e., slow, relatively slow, moderate, relatively rapid, and rapid
growth.

4. Results

4.1. Evaluation of the NSL data correction

4.1.1. The saturation correction
To clearly show the effects of the saturation correction on the NSL

data for areas with different socioeconomic levels, we visually com-
pared the original NSL with saturation-corrected (VANUI) images for
six cities in 2013, using the 30-m resolution Landsat 8 OLI images and
the VIIRS/DNB data as the reference to show the urban regions (Fig. 2).
Afghanistan, China, and the United States were selected as re-
presentative countries, considering their different development levels.
Within each country, two cities were further chosen to represent the
different urbanization levels. The original NSL images are displayed in
Fig. 2(c), and the pixels with DN values of 63 (saturated pixels) are
shown in Fig. 2(e) for each city. It can be seen that the saturation effect
exists in Kabul (Afghanistan), Beijing (China), and Los Angeles (United
States). However, the less-developed cities (Gardze, Ya’an, and Moore)
have no saturated pixels.

For the cities where saturation can be observed (Kabul, Beijing, and
Los Angeles), each VANUI image (Fig. 2(d)) shows a more similar
pattern to the Landsat 8 images and the VIIRS data (Fig. 2(a)-(b)) than
the NSL images (Fig. 2(c)), due to the improved inter-urban variability
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and the clearer transition of urban-suburban areas. The different VANUI
values for saturated pixels were further displayed in Fig. 2(f), and it can
be seen that the difference in the urban centers are clearly improved
when compared with Fig. 2(e). In other words, the saturation issue in
the urban centers can be effectively corrected in these cities using the
vegetation index. Nevertheless, on the other hand, for the cities without
saturated pixels (e.g., Gardze, Ya’an, and Moore), the information of the
VANUI data (Fig. 2(d)) is not appropriate to represent the urban pat-
terns, since it can result in distortion to the true representation of
human nighttime lights, compared to the NSL data, especially in the
suburbs and rural areas. These observations further prove that nation-
wide saturation correction is not necessarily appropriate. Therefore, it
is reasonable to set up two options in the step of NSL saturation cor-
rection, and the optimal option should be chosen by locally adaptive
selection, according to the R2 of the regression model, for a more ac-
curate EPC estimation.

4.1.2. The inter-annual correction
Inter-annual correction is performed to remove the abnormal

fluctuations in the annual images after the intra-annual composition. As
previously mentioned, different directions of inter-annual correction
can lead to different corrected NSL data, as well as different EPC esti-
mations. Fig. 3 displays the sums of the corrected NSL data related to
different directions (original, forward, backward, and average) for four
countries (Bangladesh, Algeria, Brazil, and Australia) with distinct
geographical locations and development levels. Here, the original curve
denotes the sum of nighttime lights without inter-annual correction. It
can be clearly observed that strong random fluctuations in the inter-
annual variation exist in the original curves of each country, demon-
strating the need for inter-annual correction. It can also be seen that the
discontinuity effect can be effectively suppressed, no matter which di-
rection is used for the inter-annual correction. More consistent time-
series NSL data would assist with the reliability of the subsequent EPC
estimation [43,44,48].

To further explore the influence of the inter-annual correction di-
rection on the EPC estimation, we employed four candidate models to
establish the relationships between the EPC statistics and the four dif-
ferent corrected NSL results, respectively, for comparison. Please kindly

Fig. 2. Comparison between the original NSL data and the VANUI data for the selected cities in reference to: (a) Landsat 8 OLI images (R: 7, G: 6, B: 5) in 2013 and (b)
VIIRS data in Dec. 2013; (c) NSL data with all values; (d) VANUI data with all values; (e) NSL data with saturated pixels highlighted; and (f) VANUI data with
saturated pixels highlighted.
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note that for each regression model, the R2 of each country varies with
the correction direction (Table 2). For instance, when using the linear
model, the highest R2 value appears in the backward direction for
Bangladesh, but the optimal R2 value corresponds to the average di-
rection for Algeria. These results imply that it is rational to adopt dif-
ferent options in the correction direction of NSL data. In this way, the
optimal correction direction for EPC estimation can be locally de-
termined.

4.2. Evaluation of the EPC estimation

4.2.1. Different regression models
To explore the impact of different regression models on the EPC

estimation, 8 countries are selected as representatives due to their
different locations and socioeconomic levels, and Table 3 lists the R2

values of the four candidate regression models. For each country, four
models were established based on the same corrected NSL data and EPC

Fig. 3. Corrected NSL results with different directions of inter-annual correction for the four selected countries.

Table 2
The R2 values of models based on the corrected NSL data with different directions (the optimal direction for each country and each regression model has been
underlined).

Bangladesh Algeria

Original Forward Backward Average Original Forward Backward Average

Linear 0.2666* 0.4473* 0.7067* 0.5686* 0.7095* 0.9014* 0.8063* 0.9521*

Logarithmic 0.2219* 0.5760* 0.7243* 0.6310* 0.7185* 0.9356* 0.9651* 0.9607*

Exponential 0.0962 0.1735* 0.6779* 0.5259* 0.1451 0.5983* 0.2590* 0.8881*

2nd-order 0.2404* 0.3594* 0.5140* 0.4929* 0.6309* 0.6578* 0.7654* 0.7841*

Brazil Australia

Original Forward Backward Average Original Forward Backward Average

Linear 0.9014* 0.9340* 0.8784* 0.9282* 0.5355* 0.7885* 0.5444* 0.7524*

Logarithmic 0.9451* 0.9467* 0.9512* 0.9553* 0.5646* 0.7766* 0.4552* 0.7093*

Exponential 0.3950* 0.8812* 0.5198* 0.8223* 0.1093* 0.3945* 0.1439* 0.5173*

2nd-order 0.9437* 0.9561* 0.7830* 0.8974* 0.5871* 0.8145* 0.5111* 0.6882*

Note: * denotes P < 0.05.
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statistics. In this way, the difference of their R2 values only originates
from the regression models. It can be found that the linear models
outperform the others in terms of R2 values for Mexico and Pakistan,
yet, in Yemen and Portugal, the logarithmic models achieve the highest
R2 values. The models with the highest R2 values for the Dominican
Republic and the Congo are the exponential ones, and with regard to
Brazil and Australia, the highest R2 values appear in the second-order
polynomial models. In addition, significant differences in R2 values can
be observed among the four models of several countries, e.g., Portugal
and Pakistan, showing that improper choice of regression model can
substantially affect the accuracy and reliability of the EPC estimation.
Therefore, it is necessary to consider different regression models, and to
select the most suitable one to construct the estimation model, due to
the socioeconomic variations among countries.

4.2.2. The optimal processing chains
Different options, associated with saturation correction, inter-an-

nual correction, and the regression model, constitute a series of pro-
cessing chains for the EPC estimation. We numbered all 24 processing
chains, and show the optimal one for each country/district in the world
in Fig. 4. The specific meaning of each processing chain is listed in
Table 4, where, for instance, ‘Yes’+‘Forward’+‘Linear’ stands for a
processing chain consisting of three options: saturation correction using
NDVI, the forward inter-annual correction, and the linear regression
model. The global EPC maps from 1992 to 2013, generated by the
proposed locally adaptive method, are presented in Fig. 5. Four sites are
selected as representatives to display the details of our generated EPC
maps. It can be observed that Europe, Asia, and North America

consumed more electricity during this period, compared with the other
regions in the world.

5. Discussion

5.1. Comparison with existing global products

Shi et al. [44] modeled 1-km resolution global EPC maps from 1992
to 2013 by dividing the world into a series of regions, with a linear
regression model for each region (hereafter referred to as Shi’s pro-
duct). Here we compare our estimated global EPC maps with Shi’s
product at global, continental, and national levels, respectively, based
on the country-level statistics.

5.1.1. Comparison at the global level
For each year during 1992–2013, we calculated the sum of the

statistics for each country/district as the global total statistics, and
compared this with our results. In addition to the R2, we also adopted
the relative error (RE) to assess the accuracy:

̂= − ×y y
y

RE 100%
(17)

where y is the statistical EPC value, and ̂y stands for the estimated EPC.
From Table 5, we can observe that nearly all the R2 values of our
product are larger than those of Shi’s product, and the average R2 value
(0.998) is higher than that of Shi’s product (0.996), with a significant
difference captured by the ANOVA test [59] (p-value=0.006). In terms
of the mean of the absolute RE (hereafter referred to as MARE), our

Table 3
The R2 values of different regression models (the optimal model for each country has been underlined).

Mexico Pakistan Yemen Portugal Dominican Republic The Congo Brazil Australia

Linear 0.8773* 0.8996* 0.9101* 0.1767* 0.8137* 0.3657* 0.9531* 0.8258*

Logarithmic 0.8637* 0.8172* 0.9317* 0.8404* 0.7702* 0.1278* 0.8756* 0.6816*

Exponential 0.8201* 0.6579* 0.8572* 0.3413* 0.8415* 0.5454* 0.9456* 0.7952*

2nd-order polynomial 0.8046* 0.5897* 0.8954* 0.5191* 0.4754* 0.2814* 0.9634* 0.8372*

Note: * P < 0.05.

Fig. 4. The optimal processing chains for the EPC estimation of countries/districts in the world.
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product (3.011%) also outperforms Shi’s product (3.338%).

5.1.2. Comparison at the continental level
Fig. 6 displays the RE values per year in each continent, except for

Antarctica. It can be found that the curves of the two products are

similar to each other in all six continents. However, the RE values of our
results are closer to 0, in more cases. To compare the two products more
clearly, the MARE values were further generated for each continent
(Table 6). It can be seen that our product performs better than Shi’s
product for all the continents, by 0.5–2.5%. Significant differences can

Table 4
The specific meaning of each processing chain.

Combinations of options No. Combinations of options No. Combinations of options No.

‘No’+‘Forward’+‘Linear’ 1 ‘No’+‘Average’+‘Linear’ 9 ‘Yes’+‘Backward’+‘Linear’ 17
‘No’+‘Forward’+‘Logarithmic’ 2 ‘No’+‘Average’+‘Logarithmic’ 10 ‘Yes’+‘Backward’+‘Logarithmic’ 18
‘No’+‘Forward’+‘Exponential’ 3 ‘No’+‘Average’+‘Exponential’ 11 ‘Yes’+‘Backward’+‘Exponential’ 19
‘No’+‘Forward’+‘Polynomial’ 4 ‘No’+‘Average’+‘Polynomial’ 12 ‘Yes’+‘Backward’+‘Polynomial’ 20
‘No’+‘Backward’+‘Linear’ 5 ‘Yes’+‘Forward’+‘Linear’ 13 ‘Yes’+‘Average’+‘Linear’ 21
‘No’+‘Backward’+‘Logarithmic’ 6 ‘Yes’+‘Forward’+‘Logarithmic’ 14 ‘Yes’+‘Average’+‘Logarithmic’ 22
‘No’+‘Backward’+‘Exponential’ 7 ‘Yes’+‘Forward’+‘Exponential’ 15 ‘Yes’+‘Average’+‘Exponential’ 23
‘No’+‘Backward’+‘Polynomial’ 8 ‘Yes’+‘Forward’+‘Polynomial’ 16 ‘Yes’+‘Average’+‘Polynomial’ 24

Fig. 5. The estimated global EPC maps in Mollweide projection for (a) 1992, (b) 2001, and (c) 2013 by utilizing the proposed locally adaptive method. Four sites, i.e.,
(1) Europe, (2) India, (3) China, and (4) the United States, are selected as examples.
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be found in North America, South America, Oceania, and Asia when the
p-value was set to 0.1 in the ANOVA test, implying that our method
achieves a noticeable improvement.

5.1.3. Comparison at the national level
According to the MARE criteria for model evaluation (Table 7)

[56,60], we calculated the number of countries/districts in each accu-
racy level for the two products. Since the spatial resolution of both

products is 1 km, countries/districts with an area of less than 2 pixels
were excluded from the comparison. From Fig. 7, it can be clearly ob-
served that the estimation in most countries/districts (57.8%) achieved
by our method shows a high accuracy, which is much better than that of
Shi’s product (17.8%). The percentage of countries with a good accu-
racy in our product is 27.4%, which is also higher than that of Shi’s

Table 5
Accuracy assessment of the estimated global EPC from 1992 to 2013.

Year Ours Shi’s product

Statistical EPC (108 kWh) Estimated EPC (108 kWh) RE (%) R2 Estimated EPC (108 kWh) RE (%) R2

1992 109,092 92,590 −15.127 0.988 90,833 −16.738 0.993
1993 111,023 107,543 −3.134 0.995 109,445 −1.421 0.994
1994 113,893 111,966 −1.691 0.997 114,700 0.709 0.995
1995 117,828 117,868 0.034 0.998 121,860 3.422 0.996
1996 121,649 119,883 −1.452 0.998 125,179 2.902 0.996
1997 124,595 122,958 −1.314 0.998 128,045 2.769 0.996
1998 127,543 125,699 −1.446 0.998 130,974 2.690 0.996
1999 131,083 128,676 −1.836 0.998 134,446 2.566 0.996
2000 137,041 133,164 −2.829 0.998 138,337 0.945 0.997
2001 138,421 135,673 −1.985 0.998 140,471 1.481 0.997
2002 143,396 140,424 −2.073 0.997 144,914 1.059 0.997
2003 149,081 149,531 0.302 0.999 149,735 0.439 0.998
2004 155,690 155,179 −0.329 0.999 154,163 −0.981 0.998
2005 162,499 157,813 −2.882 1.000 156,291 −3.821 0.998
2006 169,363 162,549 −4.023 1.000 160,648 −5.146 0.998
2007 177,123 167,192 −5.607 0.999 164,001 −7.408 0.997
2008 180,772 173,013 −4.290 0.999 167,580 −7.298 0.997
2009 179,920 178,479 −0.807 0.998 174,017 −3.281 0.996
2010 192,862 192,585 −0.144 0.999 190,823 −1.057 0.996
2011 199,393 204,344 2.483 0.999 202,524 1.570 0.995
2012 203,815 213,278 4.643 0.999 210,287 3.176 0.995
2013 210,256 226,689 7.815 1.000 215,618 2.550 0.995
Average R2 – – – 0.998 – – 0.996
MARE – – 3.011 – – 3.338 –

Fig. 6. Comparison for each year in 1992–2013 between Shi’s product and ours at the continental level. The dashed line in each subfigure indicates the RE of zero.

Table 6
Comparison of the accuracy at the continental level.

MARE (%) South America Europe Oceania Africa Asia North America

Shi’s 5.939 11.417 7.220 5.394 5.872 5.125
Ours 3.450 10.927 5.005 4.638 3.658 2.711

Table 7
Criteria of the MARE values for model evaluation.

MARE Evaluation

MARE≤ 10% High-accuracy estimation
10%<MARE≤ 20% Good estimation
20%<MARE≤ 50% Reasonable estimation
MARE > 50% Inaccurate estimation
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product (25.9%). In addition, the countries with inaccurate estimation
account for only 3.7% in our product, which is significantly less than
the 23.0% in Shi’s product. Furthermore, the range of reasonable esti-
mation is further subdivided with the step of 10% (Fig. 7). In general, it
can be concluded that the proposed locally adaptive method achieves a
considerable improvement at the national-scale comparison.

The five countries with inaccurate estimation in our method are
Estonia, Finland, Iceland, Norway, and Mozambique. The first four
countries are all located in high-latitude zones, where the DMSP-OLS
NSL data quality can be largely degraded by heavier cloud coverage and
longer summer days (the acquisition time of DMSP-OLS is from 7p.m. to
9p.m. local time) [38,61]. This is a possible reason why the accuracies
of these countries are relatively poor. Fig. 8 displays the annual EPC
statistics for Mozambique during 1992–2013. All the candidate models
are not well suited to fit this S-like curve, leading to an unsatisfactory
MARE value for the EPC estimation. A piecewise function is a potential
way to tackle this problem, which will be investigated in the future
research.

5.2. Spatiotemporal analysis of EPC during 1992–2013

A positive value of global Moran’s I indicates positive spatial auto-
correlation. The higher the positive value, the more obvious the spatial
autocorrelation. As Fig. 9 shows, there were significant positive spatial
autocorrelations of provincial/state-level EPC in the world, as well as in
each continent, from 1992 to 2013. At the global scale, the value of
global Moran’s I showed a relatively stable status from 1992 to 2010,
and then increased from 0.5642 in 2010 to 0.6141 in 2013. In terms of
the continental scale, the degree of spatial autocorrelation in Oceania
and North America was higher than that in the other four continents.
The degree of spatial autocorrelation in Oceania generally decreased

from 1992 to 2013, while that in North America presented a relatively
steady tendency. With respect to the temporal change of global Moran’s
I, Asia witnessed more growth than the other continents, i.e., 0.4664 in
1992, increasing to 0.6189 in 2013. The global Moran’s I in South
America increased from 0.3882 to 0.4763, whereas the index in Africa
changed from 0.3115 to 0.4102 over these 22 years. The degree of
spatial autocorrelation in Europe first went up, and then declined
during the study period.

We further calculated the global Moran’s I in the United States,
China, and India (Fig. 10), based on the aggregated EPC of the Level 2
subdivision unit in GADM. For instance, the Level-2 subdivision unit of
GADM in China is the prefectural level. These three countries were
selected as representatives due to their different urbanization and in-
dustrialization levels. It can be seen that the global Moran’s I in China
increased sharply from 0.2909 in 1992 to 0.4349 in 2013, which is
probably related to the rapid urbanization during these 22 years. The
global Moran’s I of India also showed an upward trend from 1992 to
2013, whereas the change of global Moran’s I in the United States was
not as obvious as for the other two countries.

Subsequently, local Moran’s I indices of all the provinces/states in
1992 and 2013 were calculated to analyze the spatial clustering pat-
terns across the world (Fig. 11). The High-High cluster indicates spatial
clustering of high EPC values. In contrast, the Low-Low cluster type
reveals concentrations of low EPC values. During the study period,
provinces/states with the High-High cluster type can be found in North
America, Europe, and Asia, while the Low-Low spatial cluster mainly
appears in Africa, North Europe, and Southeast Asia. The most notable
change of EPC in the High-High cluster from 1992 to 2013 occurred in
China, Russia, and India, indicating the significant increase of EPC in
these three countries. The Low-High cluster means that a province/state
with low EPC is encompassed by ones with high EPC. The provinces/
states that were newly marked as this type mainly appeared in Mon-
golia, Kazakhstan, and Canada, which can possibly be ascribed to the
huge EPC levels in neighboring countries, i.e., China and the United
States.

Fig. 12 displays the temporal variation types of the provincial/state-
level EPC in the world, according to the SLOPE index. The provinces/
states belonging to the rapid growth type are located in the eastern
coastal regions of China. The regions that experienced relatively rapid
growth are mainly concentrated in China, the United States, and Russia.
The moderate growth type mainly occurs in some provinces/states in
China, India, Brazil, the United States, and Australia. Except for Brazil,
other countries in South America show a relatively slow to slow growth.
The major growth types in Europe are the relatively slow and slow
types. Most of the provinces/states in Africa witnessed slow growth
during the period.

Fig. 7. Comparison of the accuracy between Shi’s Product and ours.

Fig. 8. Statistical EPC values in Mozambique during 1992–2013.
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5.3. Correlations with other socio-economic variables

In order to investigate the correlations between EPC and other
socio-economic variables at the grid scale, three global gridded data-
sets, i.e., the Gridded Population of the World version 4 (GPWv4) [62],
and the Global Land Cover 2000 (GLC2000) [63], and the total Gross
Domestic Product (GDP) [64] in 2000 are adopted to represent different
perspectives of socioeconomic types. All the three products are about
1 km resolution at the equator. The GLC2000 dataset is utilized to in-
dicate the built-up area (BUA), and the pixels with the label of artificial
surfaces and associated areas are regarded as built-up. Specifically, the
world is partitioned into 6 EPC grades according to the division of
gridded map of 2000 in Fig. 5. In this way, different regions in the same
country may belong to different grades. Suppose Gi denotes the ith EPC
grade, and Ni countries/districts are involved in this grade. In each EPC
grade, Ni points are obtained using the sum of EPC and the sum of BUA
(or POP/GDP) of all the pixels within each country, and the correlation
coefficients (ρ) are then measured. From Fig. 13, it can be seen that the
correlation coefficients (ρ) for all the three socio-economic variables
generally increases as the EPC grades rise. In particular, in the grade of
high EPC (> 5000 MWh), the values of ρ are above 0.83 for all the
variables. In addition, compared to BUA and POP, GDP shows closer
relationship with EPC in various EPC levels in terms of their correlation
coefficients.

6. Conclusion

The DMSP-OLS nighttime stable light (NSL) images have the ability
to model gridded electricity power consumption (EPC) across the globe.
However, we need to properly deal with the saturation problem, as well
as the incomparability and discontinuity issues existing in the original
NSL data, to make the data a reasonable approximation of EPC. The
regression model can then be built to quantify the relationship between
the EPC statistics and the corrected NSL for the gridded EPC estimation.
However, the previous research on global EPC estimation did not suf-
ficiently consider the local socioeconomic differences among countries/
districts in the NSL data correction and model establishment. Therefore,
we have made improvements to the current product in the following
aspects:

(1) Saturation in the NSL data is not a universal phenomenon over the
world. Unnecessary saturation correction would cause distortion to
the unsaturated pixels, e.g., in undeveloped areas. Therefore, we set
up two options (i.e., with or without the saturation correction) and
adaptively determine the saturation correction approach.

(2) The inter-annual correction is utilized to remove the discontinuity
effect of time-series NSL data. Nevertheless, the different correction
directions are preferred for different local areas due to the differ-
ences in the socioeconomic dynamics. Therefore, we provide three
options (i.e., forward, backward, or average) in the correction di-
rection in the proposed model.

(3) The relationship between EPC and corrected NSL is largely affected
by the local socioeconomic status. Therefore, we set up four options
in the selection of the regression model (i.e., linear, logarithmic,
exponential, and second-order polynomial functions), to cope with
the issue of diverse socioeconomic patterns around the world.

The core idea of our method is to adaptively select the optimal
combinations from all the possible options for EPC modeling. The
proposed method represents a novel attempt to adopt locally adaptive
selection of the optimal processing chain for modeling global EPC.

The proposed method was utilized to construct 1-km global EPC
maps from 1992 to 2013. Compared with the existing global product
[44], the maps we generated are superior at global, continental, and
national levels. In particular, the percentage of countries/districts in the
high-accuracy level increases dramatically from 17.8% to 57.8%, while

Fig. 9. Annual change of global Moran’s I values for provincial/state-level EPC at global and continental scales.

Fig. 10. Annual change of global Moran’s I values for prefectural-level EPC in
China, India, and USA.
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the proportion of countries/districts in the inaccurate level drops from
23.0% to 3.7%. It can be concluded that the proposed locally adaptive
approach to modeling global EPC is both reasonable and effective. The
spatiotemporal dynamics of EPC were further analyzed based on the
aggregated provincial/state-level EPC. The degree of spatial auto-
correlation (i.e., global Moran’s I) showed an upward trend from 1992
to 2013 at the global scale, signifying that the patterns of provincial/
state-level EPC have become more clustered. At the continental scale,
the degree of spatial clustering in Asia, South America, and Africa ex-
perienced more growth than the other continents. With respect to the
cluster pattern of the local Moran’s I index, provinces/states with a high
EPC were mostly located in North America, Europe, and Asia. China
witnessed moderate to fast growth of EPC. In addition, the United
States, Russia, Brazil, and India also experienced moderate EPC growth
during the study period.

Our product can be further analyzed with other spatial data layers.

For instance, the correlations between EPC and other socio-economic
variables (i.e., population count (POP), built-up area (BUA), and gross
domestic product (GDP)) were explored. It was revealed that the cor-
relation between EPC and BUA/POP/GDP becomes closer as the EPC
grade rises. It was also found that GDP is more relevant to EPC, com-
pared to population and built-up area.

The proposed locally adaptive method could also be applied to other
global products related to nighttime light data, such as carbon dioxide
emission. In addition, the accuracy of our product could be further
improved when more regression models or more statistical data are
used to quantify the relationship between NSL and EPC, such as pie-
cewise function [65] and machine learning methods. Moreover, with
the release of the global Suomi National Polar-orbiting Partnership
(NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime
light data [66–68], it should be possible to produce global EPC maps at
a 500-m resolution. As a result, it should also be possible to monitor the

Fig. 11. Spatial clustering of neighborhood provinces/states in: (a) 1992 and (b) 2013 at the global scale.
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spatiotemporal dynamics at a finer resolution.
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