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Abstract

Information concerning land‐use change is imperative for improving conservation pol-

icies that promote sustainable land development. However, to date, most of the pre-

vious studies have largely focused on the use of coarse‐ or moderate‐resolution data,

with which it may not be possible to identify the land‐use classes in urban environ-

ments. Due to the improved spatial details, high‐resolution (HR) remote sensing

imagery provides us with an opportunity for the semantic interpretation of urban

landscapes. Therefore, in this study, we took the City of Shenzhen (1997 km2) in

China as an example to assess the detailed land‐use change and its effect on ecosys-

tem services (ESs), based on HR satellite data from 2005 to 2017. In particular, deep

learning was used to obtain accurate land‐use maps, because this technique is able to

model the hierarchical representations of features and can thus effectively character-

ize urban scenes. The results revealed the following findings: (a) The overall accuracy

of the proposed approach was 96.9% and 97.1% for 2005 and 2017, respectively,

outperforming state‐of‐the‐art semantic classification models; (b) residential and

commercial areas in Shenzhen increased dramatically over the study period by

10,416 and 9,168 ha, at the expense of ecological land; (c) supply capacity of the eco-

system decreased by 13.7%, but demand for ESs showed an increase of 23.5%. By

courtesy of HR images, detailed land‐use changes and the associated ESs can be

monitored, which facilitates the in‐depth understanding of urban environmental

systems.
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1 | INTRODUCTION

Rapid urban development is having an increasingly strong negative

impact on the Earth's environment, causing, for example, land

degradation, resource depletion, and other environmental problems

(Çakir et al., 2008; Chuai et al., 2018). Ecosystem services (ESs)

are a concept that can express the condition and quality of the

natural environment, for which the provision of services depends
wileyonlinelibrary
on the biophysical conditions and their changes over space and

time (Mamat, Halik, Keyimu, Keram, & Nurmamat, 2018). More

importantly, ESs have a direct effect on human health and security,

such as local climate regulation and flood protection (Zhang,

Fu, Zeng, Geng, & Hassani, 2013). Therefore, quantifying and

mapping ESs is important to support decision‐making on sustainabil-

ity issues, as well as ecological protection (Sietz, Fleskens, &

Stringer, 2017).
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To achieve the reliable monitoring of ESs, quick and low‐cost

approaches are required (Ayanu, Conrad, Nauss, Wegmann, &

Koellner, 2012). For this reason, remote sensing techniques have been

widely used, due to their broad scale applicability. There are two cat-

egories of approaches to map ESs based on remote sensing data. The

first approach directly links the radiative signal derived from the

remote sensing data to in situ observations, by the use of statistical

regression or a radiative transfer model. However, the validity and

applicability in other study areas are restricted by many factors, such

as the lack of a priori knowledge about phenology and land processes

(Krishnaswamy, Bawa, Ganeshaiah, & Kiran, 2009). The second type of

method is based on the fact that land‐use classes can be used as a

proxy for ESs, which has been widely acknowledged as a useful tool

for the quantification and mapping of ESs (Ayanu et al., 2012). Specif-

ically, information on ESs can be obtained through land‐use classifica-

tion, in which the derived classes represent or indicate at least one

ecosystem function.

Based on these mapping approaches, a large number of studies

have shown that undesirable and damaging land‐use changes can

result in widespread ecosystem degradation (Papanastasis et al.,

2015; Zhang, Yu, Li, Zhou, & Zhang, 2006). Ecosystems are often dis-

turbed by human activities and land‐use changes, and the capacity to

provide services can also be impacted (Foley et al., 2005; Peng, Liu, Li,

& Wu, 2017). To achieve balanced and sustainable development of an

ecosystem, the supply of ESs should satisfy the demands of human

society. Dynamic analysis focusing on ecosystem supply and demand

and their budgets is essential for natural resource management and

landscape sustainability assessments (Zhang, Peng, Liu, & Wu, 2017).

Furthermore, it should be mentioned that different land‐use catego-

ries have varying magnitudes of ES provision and demand (Burkhard,

Kroll, Nedkov, & Müller, 2012). By taking this into account, the

detailed distinction of land‐use categories might provide more precise

information about service provision and demand. However, to the

best of our knowledge, there have been few attempts to relate

detailed land‐use patterns to the quantification of ESs, especially

when simultaneously considering ES supply and demand.

Therefore, detailed land‐use information is of vital significance for

precisely monitoring ecosystems. With the rapid development of

space imaging techniques, remote satellite sensors can provide high‐

resolution (HR) data (Huang et al., 2016; Huang, Wen, Li, & Qin,

2017). For instance, the QuickBird and GaoFen‐2 satellites are able

to provide multispectral images with 2.4‐m and 4‐m spatial resolu-

tions. The abundant spatial and structural information of HR images

makes it possible to classify remote sensing scenes into detailed

land‐use classes (Huang, Zhao, & Song, 2018). Recent research in

scene classification, in which a scene refers to an image block that

belongs to a user‐defined semantic category, has shown its potential

for the semantic interpretation of remote sensing scenes (Wu, Zhang,

& Zhang, 2016). The scene‐based approach is able to describe the spa-

tial arrangement of the objects within the scenes as a whole, and is

therefore suitable for dealing with complex land‐use classes. Although

numerous scene‐based classification methods have been developed

(e.g., the bag‐of‐visual‐words [BOVW] model), they sometimes fail to
capture the fine features of complex urban scenes. On the other hand,

deep learning has received much attention recently, because it can

model the hierarchical representations of the features of pixel intensi-

ties, edges, object parts, objects, and land parcels (LeCun, Bengio, &

Hinton, 2015). However, the performance of deep learning has not

been evaluated for land‐use change analysis over a relatively large

geographical scale (e.g., the city level), in terms of the efficiency and

accuracy in practical applications.

Based on the above considerations, we took the City of Shenzhen

in China as an example of an urban area that has suffered from serious

conflicts between economic development and ecological protection,

and we explored the detailed land‐use changes and associated ecosys-

tem degradation in this city between 2005 and 2017. Specifically, in

order to obtain accurate land‐use maps, the deep learning technique

was used for the classification of multitemporal HR images. Subse-

quently, the ESs and their dynamics were quantified by linkage with

the land‐use categories. In summary, the objectives of this study were

to link detailed land‐use classes to ESs by the use of HR satellite

images and the deep learning technique, and to comprehensively ana-

lyze the long‐term land‐use changes and ecosystem degradation

characteristics in the City of Shenzhen.
2 | MATERIALS AND METHODS

2.1 | Study area

The City of Shenzhen (113°46′–114°37′E, 22°27′–22°52′N), located

in Guangdong Province, China, was chosen as the study area, because

this city has experienced rapid economic and urban development over

the past 40 years (Figure 1). Because Shenzhen became China's first

Special Economic Zone in 1979, it has been transformed from an

unknown fishing village into one of the largest cities in the Pearl River

Delta. During this period, Shenzhen's population has increased from

less than 100,000 in 1979 to over 12 million in 2017, accompanied

by huge migration from other domestic cities (Shenzhen Statistics

Bureau, 2017). Moreover, gross domestic product (GDP) had reached

$328.7 billion by 2017 (Shenzhen Statistics Bureau, 2017). With the

rapid development, Shenzhen has become a ‘window’ of China for

economic, scientific, and technological exchanges.

Along with the rapid land‐use/cover change caused by urbaniza-

tion, Shenzhen has experienced environmental problems and ecosys-

tem degradation. Unspoiled land, including water bodies, forest, and

grassland, has had higher probability of transition to construction land

during the urban development (Peng, Zhao, Guo, Pan, & Liu, 2017).

Moreover, a significant deterioration of urban ecosystem health dur-

ing 2000–2005 has been reported in Shenzhen, for which ESs have

been the most useful indicator (Peng, Liu, Wu, Lv, & Hu, 2015). In

response, the Shenzhen municipal government has begun to imple-

ment a series of measures for sustainable land‐use development. Thus,

research into detailed land‐use and ecosystem changes is urgently

required for a more complete understanding of the ecosystem degra-

dation characteristics in Shenzhen.



FIGURE 1 Study area and datasets: (a) overview of the study area, (b) samples of each land‐use class, and (c) land‐use maps for 2005 and 2017
[Colour figure can be viewed at wileyonlinelibrary.com]
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2.2 | Data

To assess the detailed land‐use patterns in Shenzhen, eight and nine

HR satellite images were, respectively, collected to cover the entire

city in 2005 and 2017 (referred to as the ‘Shenzhen 2005’ and

‘Shenzhen 2017’ images in the following text). In detail, the Shenzhen

2005 and Shenzhen 2017 images were acquired by the QuickBird

(2.4‐m resolution) and GaoFen‐2 (4‐m resolution) satellites, respec-

tively. In the image preprocessing step, the raw digital number values

of the remote sensing images were converted to surface reflectance

using the quick atmospheric correction algorithm (Module, 2009).

For the Shenzhen 2017 images, the HR 1‐m panchromatic and 4‐m

multispectral images were fused based on the NNDiffuse pan‐

sharpening technique (Sun, Chen, & Messinger, 2014), to produce

the 1‐m multispectral images. The images were stitched together to

cover the whole study area, with reflectance correction achieved using

histogram matching and edge feathering. Finally, the Shenzhen 2017

and Shenzhen 2005 images were resampled to 2 m for the conve-

nience of analysis and comparison at the same spatial resolution, with

the size of 22,950 × 43,769 pixels (i.e., 4,018.0 km2).
2.3 | Methods

Based on the technical specifications for land‐use investigation (China,

2007) and the presence of the prominent land‐use types in Shenzhen,

10 classes were defined (Table 1 and Figure 1b). First, multitemporal

scene‐based classification was conducted, by the use of a transferred

deep convolutional neural network (CNN). Subsequently, the land‐use

change could be identified based on image differencing, and the asso-

ciated ES information, including both ES supply and demand, could
also be derived by its linkage with the land‐use classes. The framework

of this study is shown in Figure 2.

2.3.1 | Multitemporal land‐use mapping by deep
learning

To classify the HR images into different land‐use classes, a scene clas-

sification method was adopted, that is, a large image was decomposed

into a series of nonoverlapped patches or grids as the basic processing

units (i.e., scenes), and a class label was assigned to each patch (Huang

et al., 2018; Wu et al., 2016). In detail, this method directly character-

izes each scene by developing a holistic feature representation, for

which the assumption is that the same type of land‐use class should

share certain characteristics. Therefore, considering the complexity

of HR remote sensing images, extracting effective feature descriptors

for each scene is the core of the classification task, in order to obtain a

satisfactory outcome. The deep learning technique, that is, a CNN,

was used in our study, which can effectively model the hierarchical

features of urban land‐use categories.

In general, the typical architecture of a CNN model includes input,

output, and multiple hidden layers, as demonstrated in Figure 3. The

hidden layers are typically composed of a number of convolutional,

pooling, and fully connected (FC) layers (Zhu et al., 2017). The feature

maps of the convolutional layers are extracted by applying a convolu-

tion operation to the input image. Each convolutional neuron pro-

cesses data only for its receptive field. Commonly, an elementwise

nonlinear activation function is then applied to these feature maps

for a nonlinear transform (e.g., a Rectified Linear Unit). Another impor-

tant concept of CNNs is pooling, which performs a nonlinear down‐

sampling of the feature maps via average or max pooling. Finally, after

several convolutional and pooling layers, FC layers follow as the high‐

http://wileyonlinelibrary.com


FIGURE 2 Methodology framework

TABLE 1 Land‐use categories and their description in this study

Land‐use category Description

Number of samples

(2005)

Number of samples

(2017)

Residential Land use for residential purposes, including urban

villages, residential districts, and apartments

340 441

Commercial Areas, districts, and neighborhoods primarily

composed of commercial buildings, such as a

central business district and commercial strip

245 428

Industrial Areas planned for the purpose of industrial

development

156 218

Infrastructure Infrastructure refers to the fundamental facilities

and systems, including roads, airports, and

container terminals

140 175

Grassland Grassland in urban parks and golf courses 101 135

Farmland Irrigated land for cropping 217 111

Water Rivers, lakes, reservoirs, and so forth 254 298

Breeding The rearing of aquatic animals or the cultivation of

aquatic plants for food

135 49

Woodland Tree‐covered areas 464 687

Unused land Mainly bare land for construction 170 147
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level reasoning parts in the network, where the neurons in an FC layer

are connected to all the activations in the previous layer. The last FC

layer of the network is a Softmax layer that derives the probability

for each land‐use class. We refer the interested reader to Goodfellow,

Bengio, Courville, and Bengio (2016) for more details about the intro-

duction of CNNs.

However, the number of parameters of the deep CNNs increases

significantly with the increase of the number of layers of the network.

To reduce the required number of training samples, transferring pre‐

trained deep CNNs is an alternative approach, which was used in

our study. To be specific, a deep CNN was pre‐trained with a well‐

annotated land‐use dataset. VGG‐VD16 (16 layers; Simonyan &

Zisserman, 2014), which is a successful modern CNN architecture,

was chosen as the pre‐trained model. This model consists of 13

convolutional layers and three FC layers, and it can effectively learn

discriminative and powerful image representations and hence improve
the classification performance. The labeled scenes, as the target

dataset, were then exploited as supervised information for fine‐tuning

the pre‐trained CNN model. Finally, the fine‐tuned model was used to

classify the HR remote sensing images over the entire city of

Shenzhen into land‐use maps for the subsequent analysis.

Taking into account both the image resolution and the presence of

the dominant land‐use classes, which exhibit a variety of scales, we

chose 200 m × 200 m as the scene size to characterize the neighbor-

hood extent (i.e., the spatial arrangement and pattern of the land‐

cover objects; Wu et al., 2016; Xia et al., 2017). It should also be noted

that, courtesy of the scene units, that is, grid‐cells, with a similar size,

the spatial heterogeneity of the ESs can be easily identified (Li, Chen,

Wang, & Wang, 2018). The reference samples for each year were

independently created by visual inspection and field survey, with the

aid of auxiliary data (including point of interest data and Google Earth

HR images; Table 1). A random stratification procedure (Schindler,



FIGURE 3 Illustration of a typical
convolutional neural network architecture
[Colour figure can be viewed at
wileyonlinelibrary.com]
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2012) was then applied to the reference samples to produce disjoint

datasets for training (70%) and testing (30%). Finally, the accuracy

assessment was performed based on the test dataset.

2.3.2 | ES supply, demand, and budget mapping

Different land‐use classes have different ecosystem functions based

on their structures and processes. The general assessment approach

is based on a matrix that links the different land‐use types to ES sup-

ply and demand. The values in the matrix are derived by the use of

expert evaluation and data from monitoring, measurements, statistics,

or interviews (Vihervaara, Kumpula, Tanskanen, & Burkhard, 2010).

This method presents a framework to map ES supply, demand, and

their budgets, which is both relative and dimensionless (Burkhard

et al., 2012).

The supply matrix linking the 10 land‐use classes (on the y‐axis)

and the 22 ESs (on the x‐axis) is defined in Table S1. These ESs can

represent the main components of the ecosystem functionality

(Müller, 2005). The ability of the different land‐use classes in unit area

(ha) to provide ESs is assessed on a scale of 0 = no capacity to provide

the corresponding ES; 1 = low relevant capacity; 2 = relevant capacity;

3 = medium relevant capacity; 4 = high relevant capacity; and 5 = very

high relevant capacity.

On the other hand, there must be a certain demand by human soci-

ety to benefit from a particular ES. The demand matrix illustrating the

demand level of the different land‐use classes in unit area (ha) for the

ESs is given in Table S2 (0 = no relevant demand; 1 = low relevant
TABLE 2 Land‐use change from 2005 to 2017

Land use

2005 2017

Area (ha) Percentage (%) Area (h

Residential 18,084 9.6 28,50

Commercial 22,828 12.1 31,99

Industrial 16,748 8.9 14,28

Infrastructure 11,928 6.3 16,70

Grassland 1,644 0.9 2,86

Farmland 8,384 4.4 6,03

Water 9,180 4.9 8,78

Breeding surface 3,504 1.8 75

Woodland 85,760 45.5 74,13

Unused land 10,552 5.6 4,56

Total 188,612 100 188,61

Note. Change rate ¼ Area 2017ð Þ − Area 2005ð Þ
Area 2005ð Þ × 100%:
demand; 2 = relevant demand; 3 = medium relevant demand; 4 = high

relevant demand; and 5 = very high relevant demand).

We computed the budgets by subtracting the demand values from

the supply values of each land‐use class, to assess the dynamics and

flow of goods and services. This information can facilitate the identifi-

cation of supply–demand mismatches across the area. The budget

matrix is defined in Table S3, where the scale ranges from −5 = strong

undersupply, via 0 = neutral balance, to 5 = strong oversupply.

It can be seen that many natural or near‐natural land‐use classes

(e.g., woodland, farmland, and water) are characterized by higher sup-

ply capability (Table S1), whereas human‐dominated urban areas

such as residential and commercial areas have higher demand values

(Table S2). Furthermore, the pattern in Table S3 indicates that there

is an obvious undersupply in the urban area, but an oversupply in

the natural and near‐natural land‐use types. Finally, the spatially

explicit information of ES supply, demand, and budget can be derived

quantitatively by linking the respective matrix with the land‐use maps.
3 | RESULTS

3.1 | Changes of land‐use classes

The statistics of the land‐use changes are listed in Table 2. It can be

clearly seen that the areas (in quantity) of residential, commercial,

and infrastructure land have increased significantly. On the one hand,

rapid economic development and population growth are the main
Change

a) Percentage (%) Area (ha) Change rate (%)

0 15.1 10,416 57.6

6 16.9 9,168 40.2

0 7.6 −2,468 −14.7

8 8.9 4,780 40.1

0 1.5 1,216 74.0

2 3.2 −2,352 −28.1

0 4.7 −4,00 −4.4

2 0.4 −2,752 −78.6

6 39.3 −11,624 −13.6

8 2.4 −5,984 −56.7

2 100 — —

http://wileyonlinelibrary.com
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driving forces behind the increase in residential and commercial areas

(Bai, 2000; Deng, Fu, & Sun, 2018). For example, from 2005 to 2017,

urban per capita disposable income increased from 21,494 Yuan to

52,938 Yuan in Shenzhen. Meanwhile, during this period, Shenzhen's

population increased from less than 8.3 million in 2005 to over 12.5

million in 2017 (Shenzhen Statistics Bureau, 2017). On the other hand,

according to the “Land Use Planning of Shenzhen City (2006–2020)”

document, to accommodate the increasing population with good living

conditions, the Urban Planning Land and Resources Commission of

Shenzhen Municipality has planned more land and space for housing

in the city. The area of residential land increased from 18,084 ha

in 2005 to 28,500 ha in 2017 (Table 2). Among the built‐up areas

(including residential, commercial, industrial, and infrastructure land),

residential areas make up 31.2%, which is consistent with the result

of Bai (2000). Moreover, the land‐use transition is further investigated

inTable S4, where it can be seen that most of the residential areas are

transformed from commercial, industrial, and woodland.

Relying on the superiority of the geographic location of Shenzhen,

that is, the fact that it is adjacent to Hong Kong, and the supporting

policy of the special economic zone, Shenzhen's economy has trans-

formed from agriculture to secondary (i.e., heavy industry and con-

struction) and tertiary industries (i.e., services), which has ensured

the rapid economic development. It should be noted that the tertiary

industries have developed faster in Shenzhen than in other regions,

and foreign investment accounts for a large proportion. Under this

background, there has been a significant increase in commercial land,

with a total area of 9,168 ha (i.e., 40.2% in proportion; Table 2). It

can be observed that commercial land accounted for 35.0% of the

built‐up area in 2017. Again, it has been predicted by Bai (2000) that

the proportion of commercial land in the built‐up area of Shenzhen

will reach 57.0% by 2050, demonstrating the continuing development

of commercial land. In this situation, some commercial land has con-

verted from residential land (2,816 ha; Table S4). A typical example

of this urban renewal is the redevelopment of urban villages, which

are a special informal settlement with substandard living conditions

found in cities in China. In addition, based on the “Shenzhen Compre-

hensive Plan (1996–2010)”, the Urban Planning Land and Resources

Commission of Shenzhen Municipality has taken active measures to

improve the public transport facilities, airports, and parking lots.

Between 2005 and 2017, the urban infrastructure of Shenzhen

has undergone continuous improvement, with an increase in area of

40.1% (Table 2).

At the same time, it can be observed that secondary industries,

that is, industrial land, decreased by 14.7% between 2005 and 2017

(Table 2). In the initial stages of Shenzhen's reform and opening up

(1986–1990s), that is, the restructuring phase, secondary industries

grew dramatically, contributing to a large proportion of GDP. This pro-

cess created a large number of employment opportunities. Subse-

quently, urbanization, referring to the transfer of population to urban

areas, continued to accelerate. After long‐term development, the

industrial structure needs to be adjusted to meet the needs of eco-

nomic growth. However, with the increase of the urban population

and the expansion of the city, land for urban construction has become
quite scarce in Shenzhen. In this way, reform and adjustment of the

traditional industrial areas has been a priority for the urban develop-

ment in Shenzhen. The government has paid a lot of attention to

optimizing and improving the industrial structure, aiming to develop

Shenzhen into an international city with high‐efficiency land use

(Wang, Lin, & Li, 2010). For example, some buildings in the Dalang

industrial area have been transformed into commercial centres since

2008 (Qiu, 2017).

Areas of farmland and breeding surface (areas used for raising

aquatic plants and animals) have undergone declines of 28.1% and

78.6%, respectively (Table 2). Accompanying the decrease of these

two land‐use classes, farmers and rural areas are gradually

disappearing in Shenzhen, which demonstrates the transformation

process from agricultural village to metropolis. However, the area of

breeding surface has declined faster than that of farmland. This is

because the Shenzhen municipal government has put farmland protec-

tion in a position of high importance, emphasizing its eco‐benefits

under the background of rapid urbanization. For example, the

Shenzhen municipal government has initiated the reclamation of ara-

ble land and the establishment of farmland protection areas (Qian,

Peng, Luo, Wu, & Du, 2016).

Woodland occupied over 47.0% of the Shenzhen area in 2003

(Mao, Zhigang, Yan, & Zhou, 2008). It has remained the dominant type

among all the land‐use classes, accounting for 45.5% and 39.3% of the

total area in 2005 and 2017, respectively (Table 2). The changes with

respect to woodland can be found inTable S4, including its conversion

into residential (1,120 ha), commercial (3,648 ha), and industrial areas

(2,032 ha). Notably, it can be observed that a large proportion of

woodland (4,312 ha) has been converted into infrastructure (e.g., over-

passes, airports, and roads). Actually, the shorter the distance to the

city center, the higher the transition probability of woodland to public

infrastructure tends to become (Peng, Zhao, et al., 2017).

Lastly, unused land, which is mainly an interim form of land use,

experienced a sharp decrease of 56.7% from 2005 to 2017. Based

on the present situation of land use in the “11th Five‐Year Plan for

Land Resources Utilization and Protection in Shenzhen,” the areas of

unused land were 121.9, 118.7, 116.3, 114.5, and 113.5 km2 in

2000 to 2004, respectively. Based on these results, our study further

confirmed that the area of unused land in 2005 was 105.5 km2, with

a decrease of approximately 8.0 km2 from 2004 to 2005. However,

there was only 45.7 km2 of unused land remaining in 2017, and most

of the unused land has been put into reasonable use (e.g., building

construction). As noted in the “Land Use Planning of Shenzhen City

(2006–2020)” document, the fraction of unused land in Shenzhen is

now about 2.2%. This was confirmed in our experimental results, with

2.4% in 2017, highlighting the shortage of land resources for urban

development. From 2005 to 2017, most of the unused land has been

transformed into commercial (3,636 ha), infrastructure (1,964 ha), and

residential areas (908 ha; Table S4). Simultaneously, it should be

noted that the transition from unused land to woodland also occupies

a large area (1,168 ha). This phenomenon is supported by the land‐use

policy issued in the “Management Stipulation of the Basic Ecological

Line in Shenzhen City,” which strictly controls the land‐use



1496 HUANG ET AL.
development within the basic ecological line. Moreover, it is planned

that construction land within the ecological line, which can be consid-

ered as environmentally unfriendly, be returned to ecological land,

such as grassland, forest, and water bodies, to address the sustainabil-

ity issues (Bai et al., 2018).

3.2 | Changes of ESs

By linking the land‐use maps to the value coefficients of the supply

matrix (Table S1), the ES supply and its dynamics can be quantified

(Tables 3 and 4(a)). From 2005 to 2017, the total supply values

decreased by 13.7%. Due to the larger areas and value coefficients

in the supply matrix, the supply capacity of woodland is the highest

among all the land‐use classes, accounting for 88.5% and 88.4% of

the total values in 2005 and 2017, respectively, which is followed by

the supply capacity of water bodies, occupying 4.3% and 4.4% in

2005 and 2017, respectively. It can be observed that there have been

significant decreases in most of the ESs. Among the ESs in descending

order by the supply loss (in proportion), the first three are ‘aquacul-

ture,’ ‘freshwater,’ and ‘commercial fisheries,’ with decreases of

43.0%, 28.8%, and 28.8%, respectively. This phenomenon has mainly

been caused by the reduction of farmland and breeding surface, under

the process of rapid urbanization in Shenzhen.

ES demands and their dynamics are demonstrated in Tables 3 and

4(b). In general, the total demand values have increased by 23.5%, cor-

responding to the rapid expansion of human‐dominated land‐use

types (residential, commercial, and infrastructure). Each ES has shown

a rising trend in demand because there must be necessary ES demands

by human well‐being for consuming. Residential, commercial, indus-

trial, and infrastructure areas have relatively high ES demands, occupy-

ing 23.0%, 32.7%, 24.0%, and 9.3% of the total demand values in

2005, and 29.4%, 37.1%, 16.6%, and 10.6% in 2017, respectively.

Among the ESs in descending order by the demand increase (in pro-

portion), the first five are aquaculture, ‘recreation and aesthetic

values,’ ‘livestock,’ ‘local climate regulation,’ and commercial fisheries,
TABLE 3 Ecosystem service supply, demand, and budget dynamics of ea

Land use

Supply (%) Dema

2005 2017 2005

Residential 18,096 (0.3) 28,520 (0.5) 1,447

Commercial 22,848 (0.3) 32,020 (0.6) 2,056

Industrial 16,828 (0.2) 14,312 (0.2) 1,514

Infrastructure 59,780 (0.9) 84,360 (1.4) 585

Grassland 54,516 (0.8) 94,644 (1.6) 26

Farmland 210,300 (3.0) 150,900 (2.5) 168

Water 295,318 (4.3) 263,520 (4.4) 9

Breeding surface 118,001 (1.7) 25,344 (0.4) 3

Woodland 6,111,396 (88.5) 5,267,064 (88.4) 258

Unused land 0 (0) 0 (0) 221

Total 6,907,083 (100) 5,960,684 (100) 6,292
with increases of 32.4%, 31.7%, 30.7%, 30.3%, and 29.6%, respec-

tively. It can be inferred that, along with the urban development, there

is a higher requirement for the improvement of the living environment

and the availability of ecosystem goods and services.

The information concerning the budgets and their dynamics of

matching ES supply and demand is derived from Tables 3 and 4c. In

2005, the total budget value was estimated to be 614,564, which

indicates that the ecosystem has enough supply ability to meet the

demands of human well‐being. However, this value dropped to

−1,812,238 in 2017, which shows that demand clearly exceeded

supply. There are seven services with supply exceeding demand in

both years: ‘local climate regulation’ ‘erosion regulation,’ ‘nutrient reg-

ulation,’ ‘water purification,’ ‘pollination,’ recreation and aesthetic

values, and ‘intrinsic value of biodiversity.’ Taking this into consider-

ation, we further investigated the temporal dynamics of these seven

services (Figure 4). It can be seen that the difference between supply

and demand is becoming smaller from 2005 to 2017, indicating degra-

dation of the ecosystem.
4 | DISCUSSION

4.1 | Evaluation of the deep learning technique for
land‐use mapping

In order to evaluate the effectiveness of the deep learning technique,

its performance was compared with the state‐of‐the‐art classification

model, that is, BOVW (Yang & Newsam, 2010). In our tests, three

commonly used local descriptors, that is, the color histogram (Swain

& Ballard, 1991), local binary patterns (Ojala, Pietikainen, & Maenpaa,

2002), and scale‐invariant feature transform (Lowe, 2004), were con-

sidered as the input features of the standard BOVW model. The

experimental results show that deep learning achieves a much better

performance than the other methods (Figure 5), which can be attrib-

uted to the fact that it has great potential to learn highly discriminative
ch land‐use class

nd (%) Budgets (supply–demand)

2017 2005 2017

,680 (23.0) 2,281,600 (29.4) −1,429,584 −2,253,080

,320 (32.7) 2,881,796 (37.1) −2,033,472 −2,849,776

,513 (24.0) 1,288,076 (16.6) −1,497,685 −1,273,764

,842 (9.3) 826,726 (10.6) −526,062 −742,366

,432 (0.4) 45,888 (0.6) 28,084 48,756

,240 (2.7) 120,720 (1.6) 42,060 30,180

,844 (0.2) 8,784 (0.1) 285,474 254,736

,576 (0.1) 768 (0.0) 114,426 24,576

,228 (4.1) 222,552 (2.8) 5,853,168 5,044,512

,844 (3.5) 96,011 (1.2) −221,844 −96,011

,519 (100) 7,772,922 (100) 614,564 −1,812,238
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FIGURE 4 Spider chart illustrating the temporal dynamics of the
seven ecosystem services with supply exceeding demand [Colour
figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Comparison between the different scene classification
methods
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features with the deep architecture. To be specific, due to the large

variations in the spatial arrangements of land‐use classes, it is difficult

for the BOVW model to effectively capture the fine features of com-

plex image scenes. However, because deep learning adopts a multi-

stage global feature learning architecture to adaptively learn image

features, and casts the scene classification as an end‐to‐end problem

(Xia et al., 2017; Zhu et al., 2017), it can exploit the intrinsic character-

istic of satellite images and achieve a far better classification perfor-

mance. The overall accuracies are 96.9% and 97.1% for 2005 and

2017, respectively, indicating that the deep learning technique can

produce reliable land‐use maps for monitoring urban ESs.
4.2 | Ecological and environmental problems caused
by rapid land‐use change

Over the past 40 years, Shenzhen has transformed from a small village

into one of the largest cities in China. It should be mentioned that,

despite the rapid economic development, the fragile ecosystem in

Shenzhen experienced degradation along with the process of intensive

land‐use changes (Peng et al., 2015; Su, Xiao, Jiang, & Zhang, 2012).

From 2005 to 2017, residential and commercial areas increased by

57.6% and 40.2%, respectively (Table 2). This raises the question of
how to dispose of domestic garbage and sewage (Chen, Jiao, Huang,

& Huang, 2007). For instance, domestic garbage increased from 4.57

to 6.03 million tons, and domestic sewage increased dramatically from

640 to 1392 million tons from 2005 to 2017 (Human Settlements and

Environment Commission of Shenzhen Municipality, 2017). Improper

disposal of these wastes results in deterioration of the ecological envi-

ronment and its services, and this trend is being intensified (Abulizi

et al., 2016; Wang et al., 2017). According to the “China Sustainable

Cities Report” (2016), the City of Shenzhen ranks 19 out of the 35

large‐ and medium‐sized cities in China in terms of the water pollutant

discharge indicator and is 30th for the solid water discharge indicator.

Moreover, in response to land‐use changes, ES demand from

human well‐being has obviously exceeded the supply capacity of the

ecosystem from 2005 to 2017 in Shenzhen, which indicates ecosys-

tem degradation (Table 4 and Figure 4). This phenomenon is also

supported by the findings of a study, which focused on ecosystem

health and its economic value in Shenzhen (Li, Li, & Qian, 2010). To

be specific, with the increase of residential, commercial, and infra-

structure land, there is a higher demand for ESs, in terms of provision-

ing services of material or energy, cultural services comprising

recreation and aesthetic values, and regulating services that control

the quality of the living environment (with an increase of 23.5%).

However, due to the decline of ecological land, the ES supply capacity

of the ecosystem decreased by 13.7% from 2005 to 2017. For exam-

ple, air quality during 2017 was worse than that during 2016 in

Shenzhen. Inhalable particle and fine particle concentrations have

increased by 3 and 1 μg m−3, respectively (Human Settlements and

Environment Commission of Shenzhen Municipality, 2017). Several

natural or near‐natural land‐use classes (e.g., woodland) that are char-

acterized by a higher supply capacity of air quality regulation have also

declined significantly. These findings should raise concern for the pro-

tection of the ecological environment.

As mentioned above, rapid urbanization has created a high demand

for land resources, and the municipal government is now faced with a

land crisis (Grimm et al., 2008; Peng et al., 2017). After a period of

overexploitation of land, there has been extensive land reclamation

from the sea in Shenzhen over the past few decades. Furthermore,

90% of the coastal zone is also impacted by human activities, which

has resulted in severe wetland degradation. The “Land Use Planning

of Shenzhen City (2006–2020)” document reports that the mangrove

forest and coastal shoals have experienced a sharp shrinkage of about

70% and 72%, respectively, due to the excessive pursuit of more land

resources. There is no doubt that these changes have had a negative

effect on the ecosystem (Wolters, Gillis, Bouma, Katwijk, & Ziegler,

2015).
4.3 | Land policies to promote sustainable urban
development

As previously mentioned, the scarcity of land resources for urban

development in Shenzhen is a serious challenge, because a large

volume of land resources has been consumed after the long period

http://wileyonlinelibrary.com
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of land development in this city (Qian et al., 2016). As indicated in our

study, even unused land, however, experienced a sharp decrease of

56.7% from 2005 to 2017 (Table 2). Therefore, the government issued

the “Management Stipulation of the Basic Ecological Line in Shenzhen

City” in 2005, aiming to strictly control land‐use development within

the basic ecological line. However, land sources outside the ecological

line are gradually declining with the continuous expansion of built‐up

areas. Moreover, there is still room for improving the land‐use effi-

ciency in Shenzhen. For instance, the average GDP per area of

Shenzhen was 400 million Yuan per km2 in 2008, which was only

28% of that in Singapore. At the same time, it has been reported that

the ES values of Shenzhen only made up about 2.9% of GDP in 1996,

0.9% in 2000, and 0.7% in 2004, showing a decreasing trend (Li et al.,

2010). For efficient utilization of land resources, rational land‐use

planning and policies should play an important role in Shenzhen's sus-

tainable urban development.

On the one hand, in order to reduce the conversion from ecological

land to urban land, the Shenzhen municipal government has mitigated

the dependence on land finances (Tian, 2015). As mentioned above,

after the establishment of the basic ecological line, the urban growth

boundary has also been delineated, within which land‐use development

is strictly controlled for ecological protection. Furthermore, arable land

reclamation and farmland protection have been conducted in Shenzhen

since 2012, aiming to address the loss of farmland and improve the eco-

logical quality of the local environment. The ecological benefits of arable

land are far more valuable than its food supply function and, therefore,

the Shenzhen municipal government has put farmland protection in the

position of high importance. Actually, both breeding surface and farm-

land are agriculture‐related land‐use classes for Shenzhen, but the eco-

logical benefits of breeding surface need further study when

incorporating environmental issues into development decisions.

To balance urban development and ecological conservation, more

effective actions are required. In this regard, the Human Settlements

and Environment Commission of Shenzhen Municipality, an official

environmental management department of China, has begun to deter-

mine ecological redline areas (ERAs) since 2018. China's ecological

redline policy (ERP) is one of the first national policies incorporating

multiple ESs into development decisions, which prescribes a stricter

control of land‐use development within the ERAs for the protection

of key ecological function zones (Bai et al., 2018). However, there

is no standardized method for determining ERAs to promote effective

decision‐making. Our study presents a framework integrating land‐use

classification and ES assessment, which could provide policymakers

with the essential information for urban planning.
4.4 | Limitations and future work

The basic idea of this study was that different land‐use types are linked

to different capacities to provide or consume various ESs (Maes et al.,

2012). The assignments in the matrices were first based on expert eval-

uation from different case‐studies and could be further adjusted when

additional data measurements, modeling, or expert assessments are
available (Burkhard et al., 2012). However, ES supply and demand matri-

ces have not been localized for Shenzhen. Therefore, research into the

localization of the ES supply and demand matrices for Chinese cities is

suggested to obtain more accurate assessment and mapping of ESs. In

addition, with the aid of HR satellite data, the ES supply and demand

for other cities in China could be quantified, which would facilitate more

general and in‐depth analysis. Finally, with the development of remote

sensing imaging techniques, we will be able to monitor ES dynamics

with dense time series (or a high temporal resolution), achieving a better

understanding of the changing process.
5 | CONCLUSIONS

The availability of HR remote sensing imagery, which contains detailed

ground information, has opened new avenues for remote sensing appli-

cations. In this study, inspired by this fact, we investigated the potential

of HR images for land‐use mapping and ES monitoring. However, there

is a huge semantic gap between remote sensing data and land‐use cat-

egories. Deep learning can effectively bridge this gap, courtesy of its

ability to extract discriminative features from the original pixel values

of satellite images. In this way, the detailed land‐use changes and eco-

system degradation could be explored for Shenzhen for the period of

2005 to 2017. The conclusions of this study are summarized as follows.

1. Compared with the state‐of‐the‐art semantic classification models

(e.g., BOVW), the deep learning technique is more appropriate for

classifying remote sensing scenes into land‐use classes, with the

overall accuracy being 96.9% and 97.1% for 2005 and 2017,

respectively. The combined use of HR images and the deep learn-

ing technique can facilitate the accurate monitoring of land‐use

and ecosystem dynamics.

2. Supply capacity of the ecosystem has decreased by 13.7%, due to

the area reductions of woodland, water, farmland, and so forth. On

the other hand, ES demand from human well‐being has shown a

significant increase of 23.5%, which can be attributed to the urban

development and the expansion of residential, commercial, and

infrastructure land. This phenomenon of ES demand clearly

exceeding supply implies overexploitation, and thus degradation,

of the ecosystem in Shenzhen.

3. In response to the ecosystem degradation, more effective mea-

sures, such as ERP, should be taken. This study could help to pres-

ent a framework for developing Shenzhen's ERP using ES

assessments. It should be noted that Shenzhen, and even the

whole of China, has promoted the coordinated development of

the ecology, the economy, and society in order to relieve the pres-

sures on ESs, and thus achieve sustainable goals.
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