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The objective of this research is to select the most sensitive wavelengths for the discrimination of the
imperceptible spectral variations of paddy rice under different cultivation conditions. The paddy rice
was cultivated under four different nitrogen cultivation levels and three water irrigation levels. There
are 2151 hyperspectral wavelengths available, both in hyperspectral reflectance and energy space
transformed spectral data. Based on these two data sets, the principal component analysis (PCA) and
band-band correlation methods were used to select significant wavelengths with no reference to leaf bio-
chemical properties, while the partial least squares (PLS) method assessed the contribution of each nar-
Wavelength selection row band to leaf biochemical content associated with each loading weight across the nitrogen and water
Spectral discrimination stresses. Moreover, several significant narrow bands and other broad bands were selected to establish
Rice eight kinds of wavelength (broad-band) combinations, focusing on comparing the performance of the
narrow-band combinations instead of broad-band combinations for rice supervising applications. Finally,
to investigate the capability of the selected wavelengths to diagnose the stress conditions across the dif-
ferent cultivation levels, four selected narrow bands (552, 675, 705 and 776 nm) were calculated and
compared between nitrogen-stressed and non-stressed rice leaves using linear discriminant analysis
(LDA). Also, wavelengths of 1158, 1378 and 1965 nm were identified as the most useful bands to diag-
nose the stress condition across three irrigation levels. Results indicated that good discrimination was
achieved. Overall, the narrow bands based on hyperspectral reflectance data appear to have great poten-
tial for discriminating rice of differing cultivation conditions and for detecting stress in rice vegetation;
these selected wavelengths also have great potential use for the designing of future sensors.
© 2011 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.
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1. Introduction (Carter, 1994; Carter and Knapp, 2001; Hansen and Schjoerring,

2003). However, few such studies have been conducted on the

Given the present and increasing requests to devise high-yield-
ing cultivation techniques for good-quality super hybrid rice, there
is an urgent need to develop rigorous plans and procedures for its
growing environment impact inspection and assessment. This has
motivated the widespread use of remote sensing technologies for
monitoring the status of rice growth. The almost imperceptible
variations in rice under different cultivation conditions will have
varying effects on the hyperspectral reflectance; thus it is essential
to develop techniques for remotely quantifying the structure, dis-
tribution and health of the rice crop. Previous studies over the past
decades have successfully used hyperspectral data to quantify the
canopy characteristics of crops; some researchers found that leaf
spectral reflectance increases in portions of the visible and very-
near infrared range as a plant experiences physiological stress
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monitoring of rice leaf growing with environmental stress, espe-
cially nitrogen deficiency, which leads to reduced canopy density
(vigour) and premature yellowing of the foliage (chlorosis) in au-
tumn; as does poor irrigation, which would lead to leaf metabolic
insufficiency. The work presented in this paper aims to understand
how the symptoms of environmental stress are manifested in the
hyperspectral reflectance of each wavelength at the leaf level
and, moreover, how to extract the wavelengths that can recognize
and discriminate the growth status of paddy rice.

Hyperspectral remote sensing technologies have allowed the
development of an increasing number of spectral bands and,
consequently, an improved capability for gaining a greater under-
standing of the fundamental processes that govern changes in the
biophysical/biochemical properties of vegetation (Renzullo et al.,
2006). Researchers have often attempted to establish a causal link
between measured spectral reflectance and the foliar biochemical
composition and/or plant physiology (Shibayama and Akiyama,
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1989; Yoder and Pettigrew-Crosby, 1995; Curran et al., 1997, 2001;
Blackburn, 1999; Sims and Gamon, 2002; Coops et al., 2003), and
their ability to discriminate different species (Kleynen et al.,
2003; Huang and Zhang, 2009). How to identify the key spectral re-
gions of interest, which could explain the variations observed in
the biochemical difference, as represented in the spectral reflec-
tance, is the fundamental research objective.

Because of the high correlation inherent in adjacent wave-
lengths, a number of band selection methods have been developed
and documented in remote sensing literature. However, no single
best approach is yet available to determine the optimal number of
wavelengths for the best estimate of rice characteristics. Most
wavelength selection methods can be classified into two catego-
ries. The first is usually conducted using material chemistry with
multiple linear regressions (e.g. stepwise regression) on object
spectra. This approach provides the best linear spectral combina-
tions to assess chemical concentration (Gastellu-Etchegorry and
Bruniquel-Pinel, 2001); past research has dictated the use of vari-
ous ratio indices (Aoki et al., 1981; Carter, 1994; Lyon et al., 1998),
derivatives of reflectance spectra (Elvidge and Chen, 1995; Then-
kabail et al., 2000, 2002), and a linear mixture modelling approach
(Maas, 2000; Huang and Zhang, 2008). The other kinds of approach
usually reduce the number of wavelengths by recursively applying
a feature transformation such as principal component analysis
(PCA) in a stepwise fashion and removing identified ‘noisy’ bands
(Csillag et al., 1993). Such approaches exploit the interdependence
of bands to form groups from neighbouring bands, or define com-
plex decision boundaries for the classification of high-dimensional
data, such as neural networks (Thenkabail et al., 2004).

The spectral wavelength selection strategies all have benefits
and drawbacks. Their success depends on the training sample size,
the number of desirable components/regions and the type of spec-
tral data to which they are applied. In order to have a comprehen-
sive comparison of the band performance of rice hyperspectral
data, we adapted representative waveband selection methods,
both in parametric and nonparametric ways, and with different
numbers of extracted components. As the magnitude of change
in spectral reflectance in response to stress will vary at different
wavelengths, it is still a question of whether and how hyperspec-
tral data can be used to unambiguously detect physiological stress
in rice. The selected narrow bands provide useful information in
the interpretation, by remote sensing monitoring, of rice growing
with environmental stresses. In addition, the technique can be a
considered as a valuable tool for the selection of a sensor suitable
for a particular problem, or even for the design of a new sensor.

Our aim was to evaluate whether physiological stress in rice
produces a distinct spectral signature in the leaves. The objectives
of our study were: (i) to investigate the capability of hyperspectral
data to distinguish the leaves of healthy (appropriately cultivated
and irrigated) versus physiologically stressed rice; (ii) to develop
an optimal narrow-band selection method and compare the per-
formances of representative band selection methods for establish-
ing different waveband combinations (including broad-band and
narrow-band) to achieve the first objective; and (iii) to investigate

the capability of the selected significant narrow bands to distin-
guish the leaves under different cultivation conditions.

2. Data description
2.1. Study areas and site description

The study areas were located at an experimental paddy field at
Junchuan town, Suizhou city, Hubei province, China. The area is
known as the Jianghan plain, and is in the middle reaches of the
Yangze River; it is known as ‘the hometown of fish and rice’ in
China, providing food security and acting as the most important
agricultural production base in China. At the present time, a great
change from high-yielding to super-quality and high-yielding is
appearing in the rice varieties being cultivated in Hubei province.
Obviously, the trend of rice production in China is that of develop-
ing super-quality rice industrialization.

The paddy variety being studied is Luoyou 8, which is one of the
three most advanced rice varieties in China (Fig. 1), and has been
successfully promoted in some other important rice production
countries such as Vietnam and Brazil.

The rice was seeded on 15 May, and seedlings were trans-
planted on 15 June. It was cultivated in 4 x 3 cases of different fer-
tilized conditions, which means a total of 12 treatments during the
whole growing period: four nitrogen fertilization levels combined
with three water irrigation levels. The four nitrogen fertilization
levels were: appropriate (180 kg/ha); insufficient (135 kg/ha);
excessive (225 kg/ha) and no nitrogen. All of the four levels were
fertilized in four stages: 50% of the total fertilizer as base fertiliza-
tion, 20% at booting stage, 20% fertilized at tillering stage, and 10%
at heading stage. Besides the fertilization controls, ridges of the
paddy field were enclosed in plastic films to avoid water leakage,
and the three treatments of water irrigation were: insufficient,
appropriate and excessive. The details of the three irrigation levels
are listed in Table 1.

The plot size was 6 m x 20 m and each plot type was replicated
three times with the same cultivation conditions. The same man-
agement practices were implemented for all rice plots (i.e. timing,
pest and disease control, etc.).

2.2. Leaf collection and spectral measurements

The typical rice plant has a main stem of about 1-1.8 m tall, the
leaves growing reversely and alternatively at the two sides of the
stem. Leaves at different positions in the stem may exhibit distinc-
tive spectral characteristics. In order to minimize the confounding
influence of location on spectral measurements, we stratified the
leaf samples collected from each plant by height and then ran-
domly selected 10 plants of each of the 12 treatments for sampling.
For each plant, we chose three samples of leaf, comprising one
sample of leaf from the upper part of the stem and two samples
of leaf from the lower part of the stem, and sampled in three cor-
responding sub-samples. Subsequent spectral measurements

Fig. 1. The location of the experimental paddy field in China and the paddy variety Luoyou 8 under different cultivation conditions.
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Table 1

Water irrigation levels of paddy rice in different growing stages. The values in the unit of mm were the depth of water on the soil; the % indicates the percentage of water content

in soil when the soil was not covered by water.

Growing stage Period of seedling

establishment (mm)

Booting stage

Tillering stage

At the end of
tillering stage

Heading stage Maturity stage

Insufficient 30 <50% <50% Sunbaked <50% <50%
Appropriate 30 30 mm 30 mm Sunbaked 30 mm 30 mm
Excess 30 60 mm 60 mm Sunbaked 60 mm 60 mm

found that the reflectance patterns of leaves collected from upper
versus lower heights on the stem did not differ significantly for
any of the 12 treatments. Therefore, we used one sub-sample for
spectral measurement, and another two sub-samples for biochem-
ical (nitrogen and water) measurements. Mean reflectance of the
paddy field under four nitrogen cultivation levels and three irriga-
tion levels were plotted in Fig. 2.

All leaves were collected in June and August 2008. They were
immediately sealed in plastic bags, kept in an ice chest, and then
transported to the laboratory for spectral measurements. Leaf
reflectance was measured with a Field Spec Pro FR (Analytical
Spectral Devices Inc., Boulder, USA). The measurement procedure
followed that employed by Pu et al. (2003). The light source was
a 100 W halogen reflectorized lamp. All spectra were measured
at the nadir direction of the radiometer with a 25" F OV. A standard
whiteboard was employed as the white reference and measured
every five minutes to convert leaf radiance to spectral reflectance.
Reflectance spectra of leaves, picked randomly from the upper
hemisphere of the leaf, were collected by measuring spots of
10 mm diameter using a plant probe. Spectral measurement was
not easy as the rice leaves were long and narrow; we cut each leaf
into several pieces, then the leaves were covered on top of a
calibrated black board, and care was taken to make sure the field
of view was fully occupied. The adaxial surfaces of a sample were
measured three times, from which an average spectral reflectance
curve was generated. Spectral reflectance was originally measured
over the ranges of 350-1000 nm at 1.4 nm intervals and 1000-
2500 nm at 2.2 nm intervals. The entire spectral range (350-
2500 nm) was automatically resampled to 1 nm resolution.

2.3. Biochemical and physiological data

To determine whether the reflectance patterns of leaves from
the rice under nitrogen- and water-stressed conditions could be
successfully discriminated, the nitrogen content, chlorophyll-a
content and water content were measured for each selected leaf
of the two sub-samples. The separate biochemical measurements
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were derived from destructive chemical analysis in the biochemi-
cal laboratory. One sub-sample was used for chlorophyll concen-
tration measurements with an acetone (80%) extraction method
(Hernandez et al., 1995), and then the micro-Kjeldahl technique
with salicylate was used for nitrogen concentration determination.
Water content was measured by weighing the selected fresh and
dried paddy leaves of the third sub-sample.

3. Methods
3.1. Data preprocessing

There were two cases of controlled cultivation, and we mea-
sured 10 spectra for each of the 12 treatments. For wavelength
selection and classification of rice leaves under these treatments,
the measured samples were randomly split into two parts, one of
the 4 x 3 x 5 samples were used to analyse and establish the inver-
sion model, and the last 4 x 3 x 5 samples were used for model
precision evaluation and discrimination analysis.

The hyperspectral curve accurately relates to physical aspects of
absorption and reflectance behaviour (Piech and Piech, 1987).
However, the measured hyperspectral curve of leaves brings in
instrument noise and causes the curve to have structural feature
variations; we needed to do some curve transformation before
the spectral analysis, in order to describe the spectral curve with
more precision and by its most important structural features.
Hyperspectral analysts usually display spectra in units of ‘wm’ or
‘nm’ in wavelength; however, plotting the wavenumber in cm™!
equals the number of waves per unit length (most often expressed
in units of cm~!) and eliminates asymmetry due to the display
being on a constant interval wavelength abscissa (Rossman,
1988). We can convert reflectance to ‘energy space’, which displays
apparent absorbance by taking the following transformation in the
physics community.

1000

fl‘equency (Cl‘l‘lfl) = Wth(pm)
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Fig. 2. (a) The mean reflectance under four different nitrogen levels (N) at the same level of irrigation. (b) The rice spectra under three different irrigation levels (W) at the

same level of nitrogen fertilizer.
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According to Brown’s method (Brown, 2006), the base 10 loga-
rithm is the standard in the chemistry and planetary sciences com-
munities, so we converted to apparent absorbance by taking the
base 10 logarithm, and multiplied the spectrum by —1 in order
to make the absorption features ‘positive’.

A(4) = —1g(R(4)) (2)

where R(4) is the reflectance of each wavelength (). Then we con-
verted the spectrum to energy space, where A(v) is frequency; the
transformed spectra is shown in Fig. 3.

)= a0 3)

3.2. Wavelength selection

The hyperspectral data also cause the high correlation between
adjacent wavelengths; it was not necessary to include all measured
2151 wavebands in the application at one time. In this paper, in or-
der to make a comprehensive comparison for all possible wave-
length selections and, hence, to select the optimal wavelengths
that best describe rice characteristics under controlled growing
conditions, we used representative methods, including spatial in-
ter-band correlation analysis, principal component analysis (PCA)
and partial least squares (PLS) analysis. The most efficient wave-
lengths were selected by these methods separately, and then all
the possible narrow bands were combined in several special ways
for regression analysis and later for linear discrimination analysis
(LDA).

Firstly, inter-band correlation analysis was applied to highlight
wavelengths with rich information content from redundant wave-
lengths. The coefficient of determination (R?) between all the
hyperspectral wavelengths were computed in matrix form. The
matrices were plotted against wavelengths. The R*> models of
wavelength (7;) against wavelength (Z;) were performed to provide
a rigorous search criterion that every single wavelength (4;) was
correlated with every other wavelength (/;), leading to 4; — 4; plots
(where i, j = 2151 wavelengths). In our hyperspectral data set, we
provided a total of 2,311,250 coefficient of determination (R*)
involving all possible wavelength combinations. The criterion of
band selection is that the lower the R? value, the less the redun-
dancy between two wavebands. According to the criterion, the
wavebands corresponding to the first 100 minimum R? values were
selected from all rice leaf spectra collected from the different cases,
and then these bands were analysed.

The inter-band correlation analysis would select a rough spec-
tral region with little redundancy, and then the PCA algorithm
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was performed to compute the contribution to principal
components by each wavelength as an indicator of wavelength
selection. In the PCA algorithm, the raw spectral reflectance data
X = (X1,X2,---Xxp) that has a dimension p and the sample number
m could be subject to:

mep = mekkap + Ek (4)

where T is a vector of scores, P is the spectral loadings and E; is the
residual of the kth principal components. The algorithm extracts
one component at a time. Each component is obtained iteratively,
by repeated regression of X on T to obtain an improved P; and of
X on P to obtain an improve T. The spectra loadings for each princi-
pal component can be viewed separately, or, alternatively, it reflects
the correlation between the principal component Y; and the ith
wavelength X;. According to this correlation, we can calculate the
total contribution of the ith wavelength v; to the kth principal com-
ponents separately. Therefore, v; is the evidence of wavelength
selection by PCA.

k
vi=> PY;,X) )
j=1

The two methods (inter-band correlation and PCA) were inte-
grated in order to determine the wavelength with the highest fre-
quency of occurrence in the full spectral range. However, the
selected wavelengths with these methods cannot be confirmed
with direct measurements of leaf physiological status. We adopted
a PLS regression method for narrow-band selection and further for
regression assessment. PLS regression is a recently developed gen-
eralization of multiple linear regression (MLR) (Ho6skuldsson,
1988). PLS regression is of particular interest because, unlike
MLR, it can analyse data with strongly collinear (correlated), noisy,
and numerous X-variables, and also simultaneously model several
response variables. PLS regression aims to link the response vari-
able Y (in this paper referring to biochemical content), to the ma-
trix of predictors X (spectral reflectance data) through latent
variables (or factors) (Hansen and Schjoerring, 2003). In addition,
PLS regression models both the ‘structure’ of X and Y, which gives
richer results than the traditional multiple regression approach.

PLS regression has the desirable property that the precision of
the model parameters improves with the increasing number of
relevant variables and observations. It reduces full-spectrum data
to a smaller set of independent latent variables or principal
components (PCs). As a result, full-spectrum wavelength loadings
for significant PLS regression factors, from which regression coeffi-
cients for each wavelength are derived, describe the spectral vari-
ation most relevant to the modelling of variation in the data

b 1.8+

1.6 -

——appropriate
— insufficient|
excessive

A®y)

0.8

0.6+

0.4

0.2 T

0.0+

T T T T
10000 15000 20000 25000

Wave number (cm )

T
5000

Fig. 3. (a) The rice raw spectra transformed to energy space under four different nitrogen levels at the same appropriate level of irrigation, and (b) under three different

irrigation levels at the same appropriate level of nitrogen fertilizer.
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(Nelson et al., 1996). The subjection of predicators X and the final
model predicting y has the following form:

X=tp) +- 4 tap, + Eq (6)
y=tqy+-- +td, +fa (7)

The equations are similar to the PCA algorithm; t is a vector of
scores calculated by t, = X, 1w, with scaled weights w, = cX,_1,
Ya_1, € is the scaling factor, p are the spectral loadings, q the bio-
chemical loadings, and E and f are the predictor and response
variable residuals, respectively, of the estimated effect of the ath
factor. Thus, the algorithm may be defined successively using the
above equations and by incrementing a = 1,2,---,A. The number
of factors to use in the PLS regression model may be determined
through leave-one-out cross-validation (Rao and Wu, 2005).

The first weight eigenvector w; is the first eigenvector of the
combined variance-covariance matrix X'YY'X; similarly, the first
score vector t; is an eigenvector to XX'YY'. The weights give infor-
mation about how the variables combine to form the quantitative
relation between X and Y, thus providing an interpretation of the
scores t,. Hence, these weights are essential for the selection of
the important X-variables that have large w, values. So the PLS
regression weights w, express both the ‘positive’ correlations be-
tween X and Y. That is to say, everything varying in X is primarily
related to Y, and w, is informative as its interpretation supplies evi-
dence directly in the PLS regression wavelength selection.

3.3. Band combination and regression assessment

Together with the principle component analysis (PCA), band-
band correlation analysis and the partial least squares (PLS) regres-
sion analysis, we could select the wavelengths which have the least
spectral redundancy and are highly correlated with rice growing
status. However, the effect may not be significant when we
combine all the selected wavelengths for the rice remote sensing
monitor. That is because some wavelengths might have a similar
contribution to rice characteristics when combined together, for
example, the wavelengths sensitive to nitrogen content and
chlorophyll content, respectively, would have a similar regression
effect. In comparison to the performances of these selected wave-
lengths, we established several wavelength combinations to make
a regression analysis and to test its discriminative capability. The
regression analysis was based on PLS regression and PCA. The
PLS regression algorithm was mentioned above, while for PCA
regression analysis we have:

k
C=Ao+ Y AW, = (1,Wi,- W)(Ao,Ar, - A" = XA (8)

i=1

where Wi; is the ith component, C is a measured variable of leaf bio-
chemical content, the coefficient matrix A is calculated by least
squares.

For PLS regression and PCA models, the validation was per-
formed on two data sets (raw data and energy space transformed
data) by comparing differences in R?, root mean square error
(RMSE) and relative percentage deviation (RPD) (Williams and
Norris, 2004). RMSE values were calculated according to Eq. (9).
The RPD is the ratio of the standard deviation of the y data to the
RMSE of cross-validation predictions.

n 5

RMSE = i=1 (J;; yx) (9)

RPD:EEH:

n i=1

Where y; is the predicted value and y; is the measured variables
of rice, and n is the sample size. The goodness of fit is given by R?

and Q? (the cross-validation of R?) statistics, which give the restrict
bounds, determine how well the model explains the data, and pre-
dicts new observations.

3.4. Discrimination between paddy leaves from different cultivation
conditions

In the wavelength selection processing, we selected the narrow
bands that are particularly sensitive indicators of stresses that are
caused by nitrogen content and water content. The final aim of this
paper is to demonstrate the feasibility of narrow-band combina-
tions as an exploratory measure for the remote sensing supervision
of high-yielding cultivation techniques for super hybrid rice. The
classifications of two cases were adapted, based on a LDA proce-
dure, for which several other researchers had achieved good dis-
crimination results (Gong et al, 1997; Van Aardt and Wynne,
2001; Clark et al., 2005). The data used in the demonstration are
both leaf-level reflectance spectra and energy space transformed
spectra of rice leaves. The emphasis is on the ability of methods
to separate the groups of rice growing cases with narrow-band
combinations under different nitrogen cultivation levels and water
irrigation levels.

4. Results and discussions

2i—/; plots show the very high correlation (r?) between any two
wavebands, indicating rich or redundant information under two
cultivation cases (Fig. 4a and b). For the nitrogen-controlled culti-
vation case, the most frequently occurring wavebands included the
green, red and NIR from 500 to 850 nm; while for the water-
controlled irrigation case, the least redundant spectral region was
concentrated in the short-wavelength infrared, which were from
1100 to 2100 nm.

The waveband widths and central wavelengths were optimized
to provide maximum information and are determined from the
Zi—7; plots. The shade of grey indicates the redundancy between
wavelengths. Based on Fig. 4a, it can be concluded that the visible
and ‘red edge’ of the spectrum contained the most information
during leaf nitrogen absorption, due to the development of leaf
pigments. More pigments imply a larger absorption of the electro-
magnetic energy in the visible part of the spectrum for photosyn-
thetic use (Horler et al., 1983; Filella and Penuelas, 1994; Kumar
et al,, 2001), resulting in a decrease in reflectance. On the contrary,
wavelengths positioned in the long region of the near-infrared
spectrum apparently have most impact for leaf water absorption.
The leaf optical properties in this region are driven by the meso-
phyll structure, dry matter and water content of the leaves
(Jacquemoud et al., 1996). Therefore, it is believed that spectral
changes due to different water irrigation levels are partially com-
pensated by spectral changes due to structural alterations.

Based on the inter-band correlation analysis, a rough spectral
region was selected, but we still do not have the exact contribution
of each wavelength to the spectral characteristic. We carried out
the PCA analysis to compute the principal components by using
factor loadings (or eigenvectors) of each wavelength and multi-
plied the factor loadings by their respective wavelength reflectiv-
ity. This showed wavelengths with the highest factor loadings
(eigenvectors) and the percentage of variability explained by each
principal component. Therefore, the whole range of wavelengths
can be reduced to the first few PCs (e.g. PC1-PC5). Two of the most
frequently occurring wavelengths in each PC were presented under
nitrogen stress and water stress separately (Table 2). The first five
PCs, which explained nearly 95% of the variability of the rice full-
range spectral energy space, provided the highest factor loadings
and were listed from PC1 to PC5. The listed wavelengths indicate
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nitrogen fertilizer. A total of 301,950 (a) and 2,311,250 (b) combinations were investigated.

Table 2
PCA to select the optimal hyperspectral bands under nitrogen and water stresses.

Band centres (nm) with first 10highest factor loadings

Percentage variability explained

PCA components PCA1 PCA2 PCA3 PCA4 PCA5 PCA1 PCA2 PCA3 PCA4 PCA5 First five PCAs
Nitrogen cultivation 585; 605 675; 685 655; 675 605; 585 655; 675 71 14 6 3 1 94
Water irrigation 1175; 1315 1295; 1315 1305; 1195 1305; 1175 1305; 1175 53 25 8 3 2 96

the magnitude or ranking for that wavelength based on its factor
loadings.

The results of PCA analysis of rice spectra under nitrogen stress
showed that some wavelengths, such as 585 and 675 nm, were
heavily involved in the first two principal components, and had
the highest factor loadings in the entire spectral range; that means
the low red dominated the PC1 with a 71% frequency of occurrence,
and the bands close to the ‘red edge’ in PC2 explained 14% of the
variability. Also, the wavelengths at 1175 and 1315 nm provided
the best results in the PCA analysis of rice samples with three
water irrigations, while the far short-wavelength infrared (FSWIR)
bands dominated PC1-PC2, explaining 78% of the variability. These
results indicate the importance of low red and NIR wavelengths for
nitrogen cultivation, and the FSWIR wavelengths for water irriga-
tion of rice.
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With the inter-band correlation analysis and PCA analysis, we
selected the significant wavelengths and waveband regions that
contain rich information on the rice leaf spectra. However, we
are still not sure about the direct relation between spectral wave-
length and leaf chemical content (such as nitrogen content, chloro-
phyll content and water content). The results of the PLS weight
analysis for each wavelength showed the contribution of each
wavelength to the leaf chemical content. We used both the raw full
spectra data and the spectra energy space data to establish this
relationship.

The different components can be defined by their respective
scores and loadings. The scores are related to the single samples,
while the loadings quantify the contribution of each wavelength
to the model. The PLS loading weights (LWs) are loadings-
orientated, allowing the optimal fit for the specific rice variable
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Table 3
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The sensitive wavelengths selected by PLS weight analysis of leaf chemical composition with foliar spectral reflectance and spectral energy space.

Variable/ WavebandCentres Waveband range corresponded to the weights The weights of raw spectra ~ The weights of energy space
Chemicalcontent (nm) (nm) WR Wa())
Nitrogen content 552 540-553 0.407 to 0.359 0.4522 to 0.466
675 672-683 —0.359 to —0.394 —0.452 to —0.491
775 755-780 0.415 to 0.477 0.509 to 0.523
Chlorophyll content 556 545-563 0.295 to 0.312 —0.304 to —0.332
660 654-663 —0.348 to —0.371 —0.304 to —0.332
776 771-783 0.387 to 0.411 0.502 to 0.523
Water content 1158 1149-1170 —0.366 to —0.385 —0.429 to —0.491
1378 1372-1386 —0.485 to —0.502 —0.520 to —0.566
1965 1950-1974 0.285 to 0.322 0.362 to 0.466

of interest. The LWs related to the three investigated variables
(nitrogen content, chlorophyll content and water content) are
shown in Fig. 5a, reflecting the relationship between the perfor-
mance of spectral wavelengths and the key canopy biochemical
content. Based on this figure, it can be concluded that the biochem-
ical contents (which in this paper are nitrogen, water and
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pigments. The exact results are listed in Table 3, which shows that
the central wavelengths of 552, 675 and 775 nm have the greatest
PLS loading weights of nitrogen content; the central wavelengths
of 556, 660 and 776 nm have the greatest PLS loading weights of
chlorophyll-a content; and the wavelengths of 1158, 1378 and
1965 nm have the greatest PLS loading weights of water content.
The selected significant wavelengths confirmed our impressions
from an initial visual inspection of the spectral curves. From
Fig. 5b we can see that nearly all these selected central
wavelengths are close to the significant absorption valleys and
reflectance peaks.

According to the raw spectral curve of healthy rice leaves, we
find that the wavelengths close to 550 and 750 nm correspond
to the leaf reflectance characteristics, and wavelengths in the
red region, close to 670 nm, correspond to the leaf spectral radi-
ation absorption characteristics. These characteristics coincide
quite well with our results from the PLS weight analysis of nitro-
gen and chlorophyll content. In the same way, the absorption
valleys of the raw spectral curve located in the vicinity of
1200, 1400 and 1950 nm are also close to our selected wave-
lengths at 1158, 1378 and 1965 nm (Fig. 5b). The PLS regression
method, by selecting wavelengths with the largest loading
weight, has great capability to reflect the characteristics of leaf
biochemical content.

4.1. Wavelength combinations

Considering the redundancy of hyperspectral data and the rep-
resented spectrum range selected by the wavelengths or bands, we
set a series of wavelength (band) combinations, in order to deter-
mine the nitrogen inversion effects of the selected wavelengths.
Since the leaf water content affects mainly the long band of the
NIR region, expressed as spectral absorption characteristics, we
just selected a 3-wavelength combination, according to the result
of the PLS loading weight analysis.

The eight wavelength combinations are separated into two
groups. The first three are broad-band combinations based on the
results of PCA analysis and band-band correlation analysis, and
the last five combinations are narrow-band combinations based
on the results of PLS loading weight analysis. The combination de-
tails are as follows:

(1) A 215-band combination, dividing the spectrum from 350 to
2500 nm into 215 bands by calculating each 10 nm wave-
length average, and thus is similar to the band set of the first
space-borne hyperspectral sensor, Hyperion (Pearlman et al.,
2003).

(2) A 46-band combination, dividing the spectrum from 400 to
850 nm into 46 bands by calculating each 10 nm wavelength
average. These bands are mainly in the visible and near-
infrared regions, which contain abundant information on
vegetation.

(3) A 17-band combination. These bands are selected by the
inter-band correlation analysis. The central wavelengths
are 405, 565, 585, 605, 620, 640, 660, 680, 695, 705, 740,
780, 865, 910, 1085, 1530 and 1960 nm.

(4) A 10-wavelength combination: 410, 422, 556, 660, 675, 694,
705, 755, 758 and 776 nm. These wavelengths are chosen
according to the PLS loading weight analysis against leaf
nitrogen content regression.

(5) A 4-wavelength combination: 552, 675, 705 and 776 nm.
This combination is chosen from the 10-wavelength combi-
nation but is more effective and representative.

(6) A 3-wavelength combination: 552, 675 and 776 nm. These
three wavelengths have the largest PLS loading weights in
the green, red and near-infrared regions, respectively.

(7) A 2-wavelength combination: 675 and 776 nm. These two
wavelengths adjacent to the ‘red edge’ contain important
growing information on vegetation, and it is also quite useful
for constituting a narrow-band normalized difference vege-
tation index (NDVI).

(8) A 3-wavelength combination for leaf water content regres-
sion: 1158, 1378 and 1965 nm.

The eight waveband or wavelength combinations listed have a
high level of relevance in providing various vegetation or crop
characteristics, as determined through findings from literature, as
discussed below. According to existing research, the selected 4-
wavelength combination (552, 675, 705 and 776 nm) is of particu-
lar relevance.

Shibayama and Munakata (1986) established a vegetation index
(VI), respectively employing the wavebands at 950/650 and 1100/
1200 nm to associate with the dry biomass of the paddy rice can-
opies. Elvidge and Chen (1995) detected plant stress at red-
edge bands centred at 705 and 735 nm. Blackburn (1999) and
Thenkabail et al. (2000) found the wavelength around 675 and
680 nm was most strongly correlated with the chlorophyll content
of crops or vegetation. Schepers et al. (1996) indicated the strong
relationships with total chlorophyll and nitrogen content at
555 nm. A further study by Thenkabail et al. (2004) recommended
22 best narrow bands (10 nm width) in the 350-2500 nm range, to
discriminate natural vegetation and crop species. Some researches
(Curran et al., 2001) also showed that the four wavebands centred
at 1182, 1216, 1936, and 1920 nm were of particular importance
for the plant water absorption.

The results of each study (wavelength selection) had unique
purposes and significance, while our study aimed to select the
wavelengths that could recognize and discriminate the paddy rice
under different growing stresses. It is necessary to evaluate the per-
formance of the selected waveband (wavelength) combinations.

4.2. Waveband combination regression

Each wavelength (band) combination used 120 (3 x 4 x 10)
training samples to establish an inversion model, and the last 60
(3 x 4 x 5) samples were used for observed data. The correlations
between observed values and predicted values of each combina-
tion are shown in Fig. 6. The performance of each combination
was compared to that observed in a multivariate calibration based
on PLS regression. We took the PCA as a comparison method with
the PLS; obviously, PLS has much better regression results. With
the energy space transformation of spectral (A(1)), PLS regression
increased all R? values by around 0.02-0.16, compared to raw
spectral data (C). This spectral transformation model has the most
significant improvement when the number of variables is very
small, such as the 3-wavelength combination regression of water,
where wa increased to 0.715. Evaluated on the basis of the RMSE,
which represents the average error, the A(Z) PLS model improved
the models compared with the raw spectral data (Table 4). The
validation was performed on two data sets by comparing
differences in R?, RMSE and RPD, to estimate the predictive ability
of the models.

It is shown that the correlation coefficient between the pre-
dicted and measured values for the validated samples of rice leaf
is high with these eight band (wavelength) combinations. The
215-band combination has the largest coefficient of determination
(0.89), and the 2-wavelength combination has the smallest value at
0.68. The narrow-band combinations, which combined 2-10 wave-
lengths, have regression values from 0.68 to 0.83, indicating good
prediction accuracy of the regression models. The 4-wavelength
combination with 552, 675, 705 and 776 nm wavelengths just
added a 705 nm to the 3-wavelength combination, but obviously
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Table 4

Results of the partial least squares regression (PLS) modelling using both spectral energy space transform data (A(4)) and raw spectral data (C) to investigated rice biophysical

variables of nitrogen and water.

Wavelengthcombinations Y Components number RMSE Coefficient of determination RPD
PLS PCA PLS PCA PLS PCA PLS PCA
215 wavelength (N) C 12 10 0.23 0.35 0.89 0.88 2.03 3.96
A(v) 11 10 0.19 0.33 0.91 0.89 2.28 4.28
46 wavelength (N) C 10 10 0.25 0.51 0.86 0.81 2.51 4.47
A(v) 10 10 0.19 0.42 0.88 0.83 3.06 4.89
17 wavelength (N) C 10 10 0.31 0.72 0.83 0.80 3.14 5.28
A(v) 10 10 0.27 0.67 0.85 0.83 3.59 5.71
10 wavelength (N) C 7 8 0.32 0.82 0.83 0.77 4.03 5.96
A(v) 7 8 0.28 0.68 0.86 0.84 4.81 6.33
4 wavelength (N) C 5 6 0.42 0.97 0.82 0.65 5.11 6.24
A(v) 5 6 0.35 0.83 0.83 0.76 4.89 6.81
3 wavelength (N) C 3 4 0.51 1.03 0.75 0.63 523 6.71
A(v) 3 4 0.46 0.9 0.81 0.71 4.92 7.15
2 wavelength (N) C 3 4 0.82 1.2 0.68 0.59 6.03 7.31
A(v) 3 4 0.66 1.15 0.77 0.71 5.54 7.12
3 wavelength (W) c 3 4 0.50 0.62 0.53 0.44 523 8.01
A(v) 3 4 0.28 0.36 0.72 0.58 2.4 6.69

increased the coefficient of determination from 0.75 to 0.82, while
the 10 narrow-band combination and the 17 broad-band combina-
tion provide little improvement to the regression result, with an
increase of just 0.01 to around 0.83. However, because of the water
loss of leaf samples during our measurement experiment, the 3-
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Fig. 7. (a) Discriminant plots show a good distribution among rice leaf samples of
two cases in discriminant space with the selected narrow-band combination: (a) a
4-wavelength combination (552, 675, 705 and 776 nm) to discriminate samples
under nitrogen (N1-N4) stress; (b) a 3-wavelength combination (1158, 1378 and
1965 nm) to discriminate samples under water (W1-W3) stress.

wavelength (1158, 1378 and 1965 nm) regression for water
content of rice leaves has poor accuracy compared with the nar-
row-band combinations for leaf nitrogen content regression. These
results indicate that the limited narrow-band (wavelength) combi-
nation is capable of overcoming the redundancy drawback of
hyperspectral data and providing sufficient information on rice,
and has great potential for remote sensing applications.

4.3. Discrimination analysis

In order to test the classification ability of the narrow-band
combinations, without a priori knowledge of the rice growing
state, we used the 4-wavelength combination (552, 675, 705 and
776 nm) and the 3-wavelength combination (1158, 1378 and
1965 nm) for the final classification of rice samples of two cases,
with four nitrogen cultivation levels and three water irrigation lev-
els generated by LDA. Fig. 7 presents the distribution result of test
samples in the discriminant space. The two discriminant functions
of LDA are effective in distinguishing paddy leaves in the two cul-
tivation cases. In combination with the LDA classification, the re-
sults indicate that our methods for extracting influential narrow
bands from the hyperspectral data succeeded in discriminating rice
leaves with different growing status. Focusing on the narrow-band
combinations, LDA proved an effective procedure for building the
best discriminative function.

5. Conclusions

Based on these investigations, it was revealed that the narrow-
band combinations had a great ability to characterize the rice
status, and also had great potential for rice growing environment
impact inspection and assessment. By using several parametric
and nonparametric methods, a comprehensive comparison was
made to select the most influential narrow-band combination
(552, 675, 705 and 776 nm) to discriminate rice leaves from four
kinds of nitrogen cultivation conditions; also a 3-wavelength com-
bination (1158, 1378 and 1965 nm) was established to enhance
spectral discrimination of rice leaves grown in three kinds of irriga-
tion conditions. These selected narrow bands contained the major-
ity of the rice information, in comparison to the performances of
other representative band combinations. A further experiment



S. Song et al./ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) 672-682 681

with the narrow-band combinations was applied to the LDA-based
classification.

The well-discriminated spaces directly testified to the feasibil-
ity of these selected narrow bands instead of employing the full
range of wavelengths. A reduction in the number of bands, without
significant information loss, is important because it makes it possi-
ble to achieve fine spatial resolution without sacrificing the ability
to characterize the rice status. Most of the hyperspectral studies
(Thenkabail et al., 2000, 2002, 2004; Okin et al., 2001; Hansen
and Schjoerring, 2003) concluded that less than 30 wavebands
are needed to obtain the best crop and vegetation information.
The results, when compared with these studies, indicated that
the four narrow-bands combination we selected has prominent
significance for explaining the characteristics of data. We believe
that a small number of narrow bands, which gives access to the
influences of environmental and cultivation conditions, is most
effective for monitoring and detecting the rice growing status.

Although the narrow-band combination for the discrimination
of rice in different cultivation conditions was successfully achieved
in this study, we need to increase the strength of the linkage be-
tween leaf-level and the canopy-level spectral features according
to Carter and Estep (2002) and Muttiah (2002); more observations
have to be investigated for detecting other stresses and more
appropriate wavelength selection methods need to be adopted or
developed. Finally, the method needs to be applied to more rice
varieties, under a range of different stresses.

Acknowledgements

This work was supported by the Major State Basic Research
Development Program 973 Project (2009CB723905), 863 Project
(2009AA127107), 973 Project (2006CB403701), NSFC (10978003),
NSFC (40871171), and the Program for New Century Excellent
Talents in University (NCET-07-0629).

References

Aoki, M., Yabuki, K., Totsuka, T., 1981. An evaluation of chlorophyll content of leaves
based on the spectral reflectivity in several plants. Research Report of the
National Institute of Environmental Studies of Japan 66, 125-130.

Blackburn, G.A., 1999. Relationships between spectral reflectance and pigment
concentrations in stacks of deciduous broadleaves. Remote Sensing of
Environment 70 (2), 224-237.

Brown, A.J., 2006. Spectral curve fitting for automatic hyperspectral data analysis.
IEEE Transactions on Geoscience and Remote Sensing 44 (6), 1601-1608.

Carter, G.A., 1994. Ratios of leaf reflectances in narrow wavebands as indicators of
plant stress. International Journal of Remote Sensing 15 (3), 697-703.

Carter, G.A., Knapp, AK., 2001. Leaf optical properties in higher plants: linking
spectral characteristics to stress and chlorophyll concentration. American
Journal of Botany 88 (4), 677.

Carter, G.A., Estep, L., 2002. General spectral characteristics of leaf reflectance
responses to plant stress and their manifestation at the landscape scale. In:
From Laboratory Spectroscopy to Remotely Sensed Spectra of Terrestrial
Ecosystems. Kluwer Academic Publishers, pp. 271-293.

Clark, M.L., Roberts, D.A., Clark, D.B., 2005. Hyperspectral discrimination of tropical
rain forest tree species at leaf to crown scales. Remote Sensing of Environment
96 (3-4), 375-398.

Coops, N.C,, Smith, M.L,, Martin, M.E., Ollinger, S.V., 2003. Prediction of eucalypt
foliage nitrogen content from satellite-derived hyperspectral data. IEEE
Transactions on Geoscience and Remote Sensing 41 (6), 1338-1346.

Csillag, F., Pasztor, L., Biehl, L.L., 1993. Spectral band selection for the
characterization of salinity status of soils. Remote Sensing of Environment 43
(3), 231-242.

Curran, PJ., Kupiec, J.A.,, Smith, G.M., 1997. Remote sensing the biochemical
composition of a slash pine canopy. IEEE Transactions on Geoscience and
Remote Sensing 35 (2), 415-420.

Curran, P.J., Dungan, ].L., Peterson, D.L., 2001. Estimating the foliar biochemical
concentration of leaves with reflectance spectrometry: testing the Kokaly and
Clark methodologies. Remote Sensing of Environment 76 (3), 349-359.

Elvidge, C.D., Chen, Z., 1995. Comparison of broad-band and narrow-band red and
near-infrared vegetation indices. Remote Sensing of Environment 54 (1), 38-48.

Filella, I, Penuelas, J., 1994. The red edge position and shape as indicators of plant
chlorophyll content, biomass and hydric status. International Journal of Remote
Sensing 15 (7), 1459-1470.

Gastellu-Etchegorry, J.P., Bruniquel-Pinel, V., 2001. A modeling approach to assess
the robustness of spectrometric predictive equations for canopy chemistry.
Remote Sensing of Environment 76 (1), 1-15.

Gong, P, Pu, R, Yu, B, 1997. Conifer species recognition: an exploratory
analysis of in situ hyperspectral data. Remote Sensing of Environment 62
(2), 189-200.

Hansen, P.M., Schjoerring, J.K., 2003. Reflectance measurement of canopy biomass
and nitrogen status in wheat crops using normalized difference vegetation
indices and partial least squares regression. Remote Sensing of Environment 86
(4), 542-553.

Hernandez, J.A., Olmos, E., Corpas, FJ., Sevilla, F., Del Rio, L.A., 1995. Salt-induced
oxidative stress in chloroplasts of pea plants. Plant Science 105 (2), 151-167.

Horler, D.N.H., Dockray, M., Barber, J., 1983. The red edge of plant leaf reflectance.
International Journal of Remote Sensing 4 (2), 273-288.

Hoskuldsson, A., 1988. PLS regression methods. Journal of Chemometrics 2 (3), 211-
228.

Huang, X., Zhang, L., 2008. An adaptive mean-shift analysis approach for object
extraction and classification from wurban hyperspectral imagery. IEEE
Transactions on Geoscience and Remote Sensing 46 (12), 4173-4185.

Huang, X., Zhang, L., 2009. Evaluation of morphological texture features for
mangrove forest mapping and species discrimination using multispectral
IKONOS imagery. IEEE Transactions on Geoscience and Remote Sensing 6 (3),
393-397.

Jacquemoud, S., Ustin, S.L., Verdebout, J., Schmuck, G., Andreoli, G., Hosgood, B.,
1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties
model. Remote Sensing of Environment 56 (3), 194-202.

Kleynen, O., Leemans, V., Destain, M.F.,, 2003. Selection of the most efficient
wavelength bands for ‘Jonagold’ apple sorting. Postharvest Biology and
Technology 30 (3), 221-232.

Kumar, L., Schmidt, K.S., Dury, S., Skidmore, A.K., 2001. Imaging spectrometry and
vegetation science. In: Meer, F.D. van der, Jong, S.M. de (Eds.), Imaging
Spectrometry: Basic Principles and Prospective Applications. Remote Sensing
and Digital Image Processing, vol. 4. Kluwer Academic Press, Dordrecht,
Netherlands, pp. 111-155.

Lyon, ].G., Yuan, D., Lunetta, R.S., Elvidge, C.D., 1998. A change detection experiment
using vegetation indices. Photogrammetric Engineering & Remote Sensing 64
(2), 143-150.

Maas, S.J., 2000. Linear mixture modeling approach for estimating cotton canopy
ground cover using satellite multispectral imagery. Remote Sensing of
Environment 72 (3), 304-308.

Muttiah, R.S., 2002. From Laboratory Spectroscopy to Remotely Sensed Spectra of
Terrestrial Ecosystems. Kluwer Academic Publishers, Dordrecht, Netherlands.

Nelson, P.R.C,, Taylor, P.A., MacGregor, J.F., 1996. Missing data methods in PCA and
PLS: score calculations with incomplete observations. Chemometrics and
Intelligent Laboratory Systems 35 (1), 45-65.

Okin, G.S., Roberts, D.A., Murray, B., Okin, W.J., 2001. Practical limits on
hyperspectral vegetation discrimination in arid and semiarid environments.
Remote Sensing of Environment 77 (2), 212-225.

Pearlman, J.S., Barry, P.S., Segal, C.C., Shepanski, J., Beiso, D., Carman, S.L., 2003.
Hyperion, a space-based imaging spectrometer. IEEE Transactions on
Geoscience and Remote Sensing 41 (6), 1160-1173.

Piech, M., Piech, K.R., 1987. Symbolic representation of hyperspectral data. Applied
Optics 26 (18), 4018-4026.

Pu, R, Ge, S., Kelly, N.M., Gong, P., 2003. Spectral absorption features as indicators of
water status in coast live oak (Quercus agrifolia) leaves. International Journal of
Remote Sensing 24 (9), 1799-1810.

Rao, C.R,, Wu, Y., 2005. Linear model selection by cross-validation. Journal of
Statistical Planning and Inference 128 (1), 231-240.

Renzullo, L., Blanchfield, A.L., Powell, K.S., 2006. A method of wavelength selection
and spectral discrimination of hyperspectral reflectance spectrometry. IEEE
Transactions on Geoscience and Remote Sensing 44 (7), 1986-1994.

Rossman, G.R., 1988. Vibrational spectroscopy of hydrous components. In:
Hawthorne, F.C. (Ed.), Mineralogy. Spectroscopic Methods in Mineralogy and
Geology. Mineralogical Society of America Reviews, pp. 193-206.

Sims, D.A., Gamon, J.A., 2002. Relationships between leaf pigment content and
spectral reflectance across a wide range of species, leaf structures and
developmental stages. Remote Sensing of Environment 81 (2-3), 337-354.

Schepers, ].S., Blackmer, T.M., Wilhelm, W.W., Resende, M., 1996. Transmittance and
reflectance measurements of corn leaves from plants with different nitrogen
and water supply. Journal of Plant Physiology 148 (5), 523-529.

Shibayama, M., Akiyama, T., 1989. Seasonal visible, near-infrared and mid-infrared
spectra of rice canopies in relation to LAI and above-ground dry phytomass.
Remote Sensing of Environment 27 (2), 119-127.

Shibayama, M., Munakata, K., 1986. A spectroradiometer for field use III: a
comparison of some vegetation indices for predicting luxuriant paddy rice
biomass. Japanese Journal of Crop Science 55, 47-52.

Thenkabail, P.S., Smith, R.B., De Pauw, E., 2000. Hyperspectral vegetation indices
and their relationships with agricultural crop characteristics. Remote Sensing of
Environment 71 (2), 158-182.

Thenkabail, P.S., Smith, R.B., De Pauw, E., 2002. Evaluation of narrowband and
broadband vegetation indices for determining optimal hyperspectral
wavebands for agricultural crop characterization. Photogrammetric
Engineering & Remote Sensing 68 (6), 607-622.

Thenkabail, P.S., Enclona, E.A.,, Ashton, M.S., Van Der Meer, B., 2004. Accuracy
assessments of hyperspectral waveband performance for vegetation analysis
applications. Remote Sensing of Environment 91 (3-4), 354-376.



682 S. Song et al./ISPRS Journal of Photogrammetry and Remote Sensing 66 (2011) 672-682

Van Aardt, J.A.N., Wynne, R.H., 2001. Spectral separability among six southern tree Yoder, B.J., Pettigrew-Crosby, R.E., 1995. Predicting nitrogen and chlorophyll
species. Photogrammetric Engineering & Remote Sensing 67 (12), 1367-1376. content and concentrations from reflectance spectra (400-2500 nm) at

Williams, P., Norris, K., 2004. Near-Infrared Technology in the Agricultural and Food leaf and canopy scales. Remote Sensing of Environment 53 (3), 199-
Industries. American Association of Cereal Chemists, St. Paul, MN. 211.



	Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance
	1 Introduction
	2 Data description
	2.1 Study areas and site description
	2.2 Leaf collection and spectral measurements
	2.3 Biochemical and physiological data

	3 Methods
	3.1 Data preprocessing
	3.2 Wavelength selection
	3.3 Band combination and regression assessment
	3.4 Discrimination between paddy leaves from different cultivation conditions

	4 Results and discussions
	4.1 Wavelength combinations
	4.2 Waveband combination regression
	4.3 Discrimination analysis

	5 Conclusions
	Acknowledgements
	References


