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A Multifeature Tensor for Remote-Sensing
Target Recognition

Lefei Zhang, Liangpei Zhang, Dacheng Tao, and Xin Huang

Abstract—In remote-sensing image target recognition, the tar-
get or background object is usually transformed to a feature vec-
tor, such as a spectral feature vector. However, this kind of vector
represents only one pixel of a remote-sensing image that considers
the spectral information but ignores the spatial relationship of
neighboring pixels (i.e., the local texture and structure). In this
letter, we propose a new way to represent an image object as a
multifeature tensor that encodes both the spectral and textural
information (Gabor function) and then apply the support tensor
machine for target recognition. A range of experiments demon-
strates that the effectiveness of the proposed method can deliver a
high and correct recognition rate with a small number of training
samples.

Index Terms—Gabor function, multifeature tensor, support ten-
sor machine (STM), target recognition.

I. INTRODUCTION

R ECENTLY, with the development of remote-sensing tech-
nology, remote-sensing images with very high resolution

and hyperspectral channels have been able to provide a large
amount of information [1]. We have much more multispectral,
high-spatial-resolution, and temporal resolution remote-sensing
data than before. Extracting information and knowledge from
these images is the main purpose of remote sensing, and identi-
fying or recognizing a given target, particularly artificial targets,
is a key aspect in remote-sensing image information processing
[2]. For a supervised learning system, we use training samples
to construct a classification model with some specific criteria,
such as the support vector machine (SVM) [3]–[5], minimax
probability machine [6], or Fisher discriminant analysis [7],
then distinguish the target and background object from the
image.

The traditional training sample is a spectral feature vector;
obviously, this vector just denotes one pixel, and it does not
consider the structural and textural information from the neigh-
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bors. To overcome this, some reports have suggested using
spectral as well as spatial information to enhance classification.
Puissant et al. [8] proposed to apply a Haralick’s second-
order statistics to the cooccurrence matrix for textural analysis;
Clausi [9] studied the effect of gray quantization on the ability
of cooccurrence probability statistics; Kiema [10] examined
the gray-level cooccurrence-based texture image fused to TM
imagery to expand the object feature base to include both
spectral and spatial features; Bau and Healey [11] used a bank
of rotation/scale invariant Gabor feature vectors to represent the
spectral/spatial properties of a region. These studies verified
the enhanced performance of spatial features, but the main
shortcoming of these methods is that they only represent the
multifeature as a feature vector and neglect spatial and spectral
rearrangement of features. Image objects are intrinsically in
the form of second-order or higher order tensors, and several
different groups have reported experimental results indicat-
ing that tensor representation can lead to good classification
performance [12]–[14]. However, they only discuss the second-
order tensor or matrix, and only few report representing ob-
jects using high-order tensors with multifeatures. Therefore,
this letter proposes to represent the image object as a multi-
feature tensor that encodes spectral–textural information and
generalizes the vector-based learning machine to a tensor-based
learning machine for remote-sensing image target recognition.
The experiments are conducted on two data sets: One is a real-
world hyperspectral image acquired by a Cambridge Research
and Instrumentation (CRI) sensor, and the other is a true-color
aerial image in an urban area. The novel contributions of this
letter are as follows:

1) representing the object in a multifeature tensor;
2) Proposing a support tensor machine (STM) for binary

classification;
3) using the multifeature tensor for remote-sensing image

target recognition.

The remainder of this letter is organized as follows. In
Section II, the proposed method for multifeature-tensor repre-
sentation is introduced. Section III discusses the STM in detail.
Then, the method of multifeature-tensor target recognition is
illustrated in Section IV. Finally, experiments are reported in
Section V, followed by the conclusion.

II. MULTIFEATURE-TENSOR REPRESENTATION

A key issue in remote-sensing target recognition is finding
an effective representation for target and background objects.
In this letter, the multifeature-tensor representation is based on
tensor and tensor algebra. A tensor, which can be represented
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as X ∈ RL1×L2×···×LM , is a multidimensional array with
multilinear algebra defined on it. M is the order of the tensor,
and the ith dimension of the tensor is of size Li. An element
of X is denoted by Xl1,l2,...,lM , where 1 � li � Li and 1 �
i � M are real numbers. li denotes the location of this element
in the dimension or mode i. For example, a zero-order tensor
X ∈ R is a scalar, a one-order tensor X ∈ RL1 is a vector, and
a two-order tensor X ∈ RL1×L2 is a matrix. In [15]–[17], some
studies have been performed to use tensors for remote-sensing
image multiway filtering and dimensionality reduction.

We have the following definitions of basic tensor
algebra [18].

Definition 1: Tensor outer product: The outer product of
tensor X ∈ RL1×L2×···×LM and tensor Y ∈ RL′

1×L′
2×···×L′

M is
defined as

(X ◦ Y )l1,l2,...,lM ,l′1,l
′
2,...,l

′
M′

= Xl1,l2,...,lMYl′1,l
′
2,...,l

′
M′

. (1)

Definition 2: Tensor contraction: The contraction
of tensor X ∈ RL1×L2×···×LM×L′

1×L′
2×···×L′

M′ and
Y ∈ RL1×L2×···×LM×L′′

1 ×L′′
2 ×···×L′′

M′′ is defined as

[X × Y ; (1 : M)(1 : M)]l1,l2,...,lM

=

L1∑
l1=1

· · ·
LM∑

lM=1

(X)l1,l2,...,lM ,l′1,l
′
2,...,l

′
M′

× (Y )l1,l2,...,lM ,l′′1 ,l
′′
2 ,...,l

′′
M′′

. (2)

The condition for the contraction is that tensors X and Y are
of the same size at the specific mode. Contraction reduces the
tensor order by 2M .

Definition 3: Mode-d product (dU): the mode-d product
X × dU of a tensor X ∈ RL1×L2×···×Ld×···×LM and a matrix
U ∈ RL′

d
×Ld is a tensor of size L1 × L2 × · · · × Ld−1 × L′

d ×
Ld+1 × · · · × LM defined by

(X × dU)l1,l2,...,ld−1,l′d,ld+1,...,lM

=
∑
ld

(
Xl1,l2,...,ld−1,ld,ld+1,...,lMUl′

d
,ld

)
. (3)

The mode-d product also occurs on tensor X ∈
RL1×L2×···×LM and vector ω ∈ RLd .

Definition 4: Frobenius norm: The Frobenius norm of a
tensor X ∈ RL1×L2×···×LM is given by

‖X‖Fro =
√

[X ×X; (1 : M)(1 : M)]

=

√√√√ L1∑
l1=1

· · ·
LM∑

lM=1

X2
l1,···,lM . (4)

Then, we introduce a Gabor function for multifeature-tensor
representation. There are two main reasons for introducing
the Gabor-based representation for target recognition: It is
supposed that simple cells in the visual cortex can be modeled
by the Gabor functions, which have good spatial localization,
orientation selectivity, and frequency selectivity [13]; second,
the features obtained by a Gabor transformation have been
found to be effective for texture representation and discrimina-
tion and have been successfully applied to object identification,
gait recognition, and face recognition [19], [20].

Fig. 1. Representation of a remote-sensing image object as a five-order feature
tensor.

The generalized 2-D Gabor function can be defined as

Gs,d(x, y) =G�κ(x)

=
‖�κ‖
δ2

· e−
‖�κ‖2·‖x‖2

2δ2 ·
[
ei·�κ·x − e−

δ2

2

]
(5)

where x = (x, y) is the spatial-domain variable; �κ = (π/2fs) ·
ei·(πd/8) is the frequency vector in which f = 2 and s and
d are scale and direction parameters of the Gabor function.
s = 0, 1, 2, 3, 4 and d = 0, 1, 2, 3, 4, 5, 6, 7 determine 40 differ-
ent Gabor functions in five scales and eight directions. The
number of oscillations under the Gaussian envelope is deter-
mined by δ = 2π. The Gabor feature image in a specific scale
and direction is the magnitude part of convolving the image
with the Gabor function of corresponding parameters s and d.

Remote-sensing images usually have multibands, and each
band is a gray image. For the target (or other object in the
background) in the image, the object image is defined by the
subimage of size width × height that contains that object. In
addition, the multifeature-tensor representation of the object is
composed by the Gabor feature images in all bands, scales, and
directions. These series of Gabor feature images construct a
five-order feature tensor X ∈ Rn×5×8×w×h, where n gives the
spectral band, integers 5 and 8 represent the scale and direction,
respectively, and the last two indexes w and h are the spatial
location of a pixel in the Gabor feature image. The element of
Xl1,l2,l3,l4,l5 denotes the pixel at row l4, line l5 of the Gabor
feature image, which is the magnitude part of convolving the
object image in band l1 with a Gabor function of scale l2 and
direction l3. Fig. 1 shows the construction of the five-order
feature tensor.

III. STM

As we have discussed in Section II, an object is represented
as a multifeature tensor but not a conventional feature vector.
Considering that a tensor is the generalized version of a vector,
we have to generalize the conventional classifiers to the tensor
version, which accepts a tensor as a training sample. The STM
is generalized from the SVM, which is a classical and effective
supervised learning machine. STM aims to find the optimal
tensor hyperplane y(X) = X

∏M
k=1 ×k�ωk + b, which maxi-

mizes the margin between the positive samples and the negative
samples. The N training samples with corresponding labels
yi ∈ {+1,−1} are M -order tensors Xi ∈ RL1×L2×···×LM .



376 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 8, NO. 2, MARCH 2011

To determine the projection vectors �ωk(k = 1, 2, . . . ,M)
and bias b of the tensor hyperplane, we can use this optimiza-
tion [12]⎡
⎢⎢⎢⎢⎢⎣

min
�ωk |Mk=1,b,

�ξ

1
2

∥∥∥∥ M
⊗
k=1

�ωk

∥∥∥∥
2

+ c
N∑
i=1

ξi

s.t. yi

[
Xi

M∏
k=1

×k�ωk + b

]
≥ 1− ξi, 1 ≤ i ≤ N

�ξ ≥ 0

⎤
⎥⎥⎥⎥⎥⎦ .

(6)

�ξ ∈ RN is a slack variable to deal with the linearly nonsepara-
ble problem.

The Lagrangian function for this optimization is

L
(
�ωk|Mk=1, b,

�ξ, �α, �β
)

=
1

2

∥∥∥∥ M
⊗
k=1

�ωk

∥∥∥∥
2

+ c

N∑
i=1

ξi −
N∑
i=1

βiξi

−
N∑
i=1

αi

[
yi

(
Xi

M∏
k=1

×k�ωk + b

)
− 1 + ξi

]
(7)

with multipliers αi and βi, (i = 1, 2, . . . , N). Then, we obtain
the partial derivative of L

∂L/∂�ωk =0 → �ωj =
1

k 
=j∏
k=1

�ωT
k �ωk

·
N∑
i=1

αiyi

(
Xi

M∏
k=1

×j�ωj

)

∂L/∂b =0 → �αT�y = 0

∂L/∂�ξ =0 → c− �α− �κ = 0. (8)

The dual problem of (7) is

max
�α,�β

min
�ωk |Mk=1

,b,�ξ
L
(
�ωk|Mk=1, b,

�ξ, �α, �β
)

= min
�α

1

2

N∑
i=1

αiyi

(
Xi

M∏
k=1

×k�ωk

)
−

N∑
i=1

αi (9)

with the constraint function �αT�y = 0. Then, the optimization
(9) is a linear program (LP) [21] with the optimization variable
�α = [α1, α2, · · · , αN ]T.

Finally, alternating projections are used to find �ωk(k =
1, 2, . . . ,M). The details of alternating projection are given in
Procedure 1.

Procedure 1: Alternating projection for STM
1) Initialize �α and �ωk (k = 1, 2, . . . ,M) randomly;
2) Calculate �α by LP and substitute �α from the former to the
latter;
3) Set h from 1 to k;
4) Using the first equation of (8), calculate �ωh through αi and
�ωk(k 
= h), and substitute �ωh from the former to the latter;
5) End of step 3);
6) Carry on with steps 2) to 5) until convergence is reached.

Fig. 2. CRI image of data set 1 with ten targets.

IV. MULTIFEATURE-TENSOR METHOD

FOR TARGET RECOGNITION

Target recognition in remotely sensed images could also
be considered as a binary classification: to classify the image
objects into targets and other objects in the background. The
procedure of the multifeature-tensor method for remote-sensing
target recognition is as follows:

1) represent training samples as five-order multifeature
tensors;

2) obtain the optimal hyperplane by STM;
3) use STM to classify all image objects by shifting the

window.
By comparing the feature vector representation and tradi-

tional supervised learning methods, there are two advantages
for introducing the multifeature-tensor representation and STM
into target recognition: The first is that the multifeature of the
image object is naturally represented by a multidimensional
array, i.e., tensor, so converting this multifeature tensor into
a vector discards a great deal of structural information, and
the second is that, in STM, the total number of independent
parameters of all projection vectors is N1 =

∑M
k=1 Lk because

�ωk ∈ RLk , while in SVM, since the size of the feature vector is
Xi ∈ R(L1L2···LM ), the number of independent parameters in �ω
is N2 =

∏M
k=1 Lk. We can see that N1 � N2; therefore, the

tensor representation helps reduce the number of parameters
needed to model the data and could reach good classification
accuracy using only a small number of training samples.

V. EXPERIMENTS

A. Data Set 1

In this experiment, we used the real-world hyperspectral
data acquired by the Nuance CRI hyperspectral sensor. This
sensor can acquire imagery with a spectral resolution of 10 nm,
covering 650 to 1100 nm in which 16 bands of images with
low redundancy were chosen for our experiment. Due to the
limitation of the imaging spatial range of the sensor, a small-
scale scene (600 × 400 pixels) with comparatively smaller
targets in the acquisition of CRI data is used in this experiment.
The imagery of the data set is shown in Fig. 2. There are ten
stones in a background of bare soil, grass, and dry grass. As
shown in Fig. 2, the size of the image object is 10 × 10 pixels,
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TABLE I
QUANTITATIVE RESULT OF DATA SET 1

so the size of the extracted five-order multifeature tensor is
as large as 16× 5× 8× 10× 10; since the feature vector is
represented by vectorizing this tensor, the dimensionality of
the vector will be 12 000. We carried out the STM and SVM
for target recognition upon the training sets with samples from
5 to 30, and the experimental results are shown in Table I. The
results are described using the following two measures.

1) Recognition rate: the number of targets that were rec-
ognized correctly divided by the total number of targets
existing in image.

2) Correct rate: the number of targets that were recognized
correctly divided by the total number of targets that were
recognized. A high value of both recognition rate and cor-
rect rate means a good target-recognition performance.

From the correct rates in Table I, it can be seen that both
the tensor-based and vector-based method achieved a 100%
identification rate in all groups of training sets from 5 to 30;
however, the correct rates of SVM are lower than that of STM
in all groups of training sets, which indicates that vector repre-
sentation (SVM) cannot learn a satisfactory model compared
with tensor representation (STM) when the size of training
samples (STS) is limited. Based on the recognition rates and
correct rates of the comparative experiments, the proposed
multifeature-tensor representation is demonstrated to be more
effective to represent the intrinsic discriminative information
of an image object. In addition, it is observed that the STM
correct rate is an increasing function of the size of the training
set; when STS is more than 30, both the identification rate and
correct rate would be steady at 100% since both classifiers are
modeled adequately under this circumstance.

B. Data Set 2

In this experiment, the data set is an airborne image of
an urban area at Changi airport with background objects of
bare soil, lake, grass, roads, and a large number of buildings.
The size of the image is 1000 × 1400 pixels, and the targets
to be detected are ten aircrafts, as shown in Fig. 3. Consid-
ering the size of the aircraft, we set the size of the object
image to 36 × 36 in this multifeature-tensor-based target-
recognition experiment; therefore, the training measurements
are Xi ∈ R3×5×8×36×36. Twenty-five measurements are chosen
for training samples. The proposed method is compared with
two vector-based classification methods: 1) spectral feature
vector representation, which only considers spectral features
and 20 multifeature vector representation, which reshapes the
Gabor-function-based multifeature to a vector; then, the SVM

Fig. 3. (a) Original image with targets to be detected. (b) Spectral feature
representation. (c) Multifeature vector representation. (d) Multifeature-tensor
representation.

TABLE II
QUANTITATIVE RESULTS OF DATA SET 2

is conducted for classification. The experimental results are
shown in Fig. 3 and Table II.

From Fig. 3(a) and (b), it can be seen that both the aircraft
and buildings have high digital number (DN) values in RGB,
while the traditional spectral feature vector method cannot
discriminate those pixels from the aircraft and background
since they have similar DN values. The high intraclass and
low interclass variances of high-resolution images lead to a
reduction in the statistical separability of the different classes
in the spectral domain, which causes a high level of wrongly
detected pixels in spectral feature space. Therefore, they might
be distinguished better through the multifeature rather than
only the spectral properties. The proposed multifeature-tensor
representation considers the target with multifeature as a high-
order tensor and detects all ten aircrafts correctly, with only
three locations misclassified as targets. We can also see from
Fig. 3(d) that other objects in the background, particularly man-
made objects including buildings and roads, are all classified
correctly. However, in the multifeature vector-representation
method, several places at building corners are misclassified as
targets, and the correct rate is only 50%, which demonstrates
that the multifeature-tensor representation is a more effective
method for target recognition with small training samples.
Table II shows the quantitative results with the true condition
that we can see in the image. From the table, it is obvious
that we have successfully detected all of the targets from the
complex background objects with an identification rate of 100%
and a correct rate of 76.9% due to the powerful multifeature-
tensor representation compared with the vector representation.
However, there are still a few false alarms. These are partly
because the high DN and similar line features increased the
misclassifications of the supervised learning method.
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VI. CONCLUSION

In this letter, a new method for representing a remote-
sensing image target as a multifeature tensor has been pro-
posed, and the STM is generalized from the SVM for target
recognition using the proposed multifeature tensor as train-
ing samples. The experiments demonstrate that, for complex
backgrounds with similar spectral information, compared with
conventional vector-based feature-representation method, the
proposed multifeature-tensor representation and STM can
achieve a high success rate and correct rate using very few
training samples in remote-sensing image target recognition.
However, this method could only be used for an invariant
scale of target recognition, and a further work will study the
multiscale tensor representation.
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