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Abstract
The artificial impervious surface (AIS) counts among the most important components of the
urban surface, and understanding how temperature changes with the AIS fraction (AISF) is crucial
for urban ecology and sustainability. Considering the high heterogeneity among existing local
studies, this study systematically analyzed the relationship between land surface temperature (LST)
and AISF in 682 global cities. The LST–AISF relation was quantified by the coefficient (δLST,
∆LST/∆AISF) of a linear regression model, which measures the LST change by 1 unit (1%)
increase in AISF. The LST was acquired from the Moderate Resolution Imaging Spectroradiometer
(MODIS) daily products during 2014–2016, while the AISF was calculated as the proportion of AIS
in each MODIS pixel according to the high-resolution Global Artificial Imperious Area (GAIA)
product in 2015. Major results can be summarized as follows: (a) LST shows an increasing trend
along AISF gradients (positive δLST) in most cities, with annually average daytime and nighttime
δLST of 0.0219 (0.0205, 0.0232) ◦C/% (values in parenthesis define the 95% confidence interval,
hereinafter) and 0.0168 (0.0166, 0.0169) ◦C/%, respectively, for global cities. (b) Daytime δLST
varies substantially among cities, with generally stronger values in tropical and temperate cities,
but weaker or even negative values in arid cities; while at night, cities located in the cold climate
zone tend to have larger δLST. (c) The LST–AISF relation is also season-dependent, characterized
by a greater δLST in warm months, especially for cities located in temperate and cold climate
zones. (d) Driver analyses indicate that changes in surface biophysical properties, including
vegetation conditions and albedo, are main contributors to the spatiotemporal variation of
daytime and nighttime δLST, respectively. These results help us to get a quantitative and systematic
understanding of the climatic impacts of urbanization.

1. Introduction

Urbanization counts among the most remarkable
anthropogenic forces on Earth in the last several dec-
ades (Liu et al 2020, Xu et al 2020). The rapid urb-
anization has brought great convenience to urban
dwellers, it has also largely altered the climate of cit-
ies, causing critical environmental problems such as
the urban heat island effect (Kalnay and Cai 2003,
Grimm et al 2008, Yang et al 2019b, Trinder and Liu
2020). In the process of urbanization, natural surfaces

would be gradually replaced by man-made struc-
tures such as roofs, roads, and hardened grounds,
resulting in the increase of artificial impervious sur-
face fraction (AISF) in cities (Gong et al 2020). This
will affect the biophysical properties of the ground
surface, and pose a direct impact on the surface
energy balance (Fitria et al 2019, Manoli et al 2019).
Meanwhile, AISF is closely related to population dis-
tributions and human activities, and further influ-
ence anthropogenic heat emissions in cities (Yang
et al 2019a). Therefore, the change of AISF can be
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considered as an important cause of urban thermal
variations, and an in-depth understanding of the rela-
tionship between temperature and AISF is of great
importance for themitigation of the urban heat island
effect and the sustainable development of future
cities.

Temperature observations are the prerequisite
for urban thermal studies. Hitherto, air temperat-
ure from in-situmeasurements (e.g. weather stations
and field experiments) has been the main source of
data when investigating the effects of urbanization on
local climate. However, air temperature observed by
weather stations are mostly geographically restricted
and sparsely distributed, which limits its applications
in exploring fine-scale spatial variations of temperat-
ure within urban regions (Voogt andOke 2003).With
sufficient sensors, field experiments can obtain the
high-resolution temperature observations (He et al
2020a, 2020b, 2020c), but the high costs make it diffi-
cult to apply this field data over a large scale. Thanks
to the development of remote sensing technique,
high-quality land surface temperature (LST) can been
freely obtained from satellites. Compared to air tem-
perature, spatially continuous LST is more closely
related to the biophysical changes on the surface, and
can better capture the temperature variations caused
by land cover change (Tomlinson et al 2011, Winck-
ler et al 2019). Therefore, remotely sensed LST has
become one of the main data sources for investigat-
ing the thermal variations caused by AISF change in
cities.

Using remote sensed LST data, previous studies
have explored the effects of urbanization on climate
by using the well-known classical indicator, surface
urban heat island intensity (SUHII, i.e. LST differ-
ence between urban and rural areas) (Peng et al 2012,
Zhao et al 2014, Zhou et al 2014, Cao et al 2016,
Yang et al 2017b, Manoli et al 2019, Yao et al 2019).
However, the relationship between LST and AISF has
still not been sufficiently revealed by current SUHII
studies. Firstly, though the SUHII may partly con-
tain information about the LST–AISF relation (e.g.
average LST difference between regions with high and
low AISF), it lacks a more detailed and quantitat-
ive description of the LST–AISF relation (e.g. how
much LST change is caused by every percent change
in AISF). Secondly, the SUHII is largely dependent
on the selection of urban and corresponding rural
areas. Schwarz et al (2011) compared 11 indicat-
ors for quantifying SUHII in European cities, and
suggested a weak correlation between the calculated
SUHIIs based on different definitions of urban and/or
rural areas. Yao et al (2018) calculated SUHIIs in
31 Chinese cities, and found that the distance of
rural area from its corresponding urban area could
largely influence SUHII. These uncertainties further
hinder us from getting a quantitative understand-
ing the LST–AISF relation through current SUHII
studies.

In view of the inadequacy of SUHII in quantifying
the LST–AISF relation, an increasing number of stud-
ies have begun to directly analyze the trend of LST
along AISF gradients through developing regression
models between AISF and LST (table 1). In contrast
to SUHII, thismethod escapes the definition of urban
and rural areas, and can quantify how LST changes
with AISF throughout a whole city. We noted that the
LST showed an increasing trend along AISF gradi-
ents in most existing studies, while the change rate
of LST with AISF (i.e. the magnitude of LST change
by 1 unit (1%) increase in AISF) varied greatly by
different studies (table 1). Such variations were not
just found in different cities, but also observed in
different studies conducted in the same city. Taking
Wuhan as an example, the change rate of LST with
AISF obtained from two independent studies differed
by >4 times (Shen et al 2016, Wang et al 2016). A
similar situation also occurred in Shanghai, where the
change rate of LST with AISF obtained by Wang et al
(2017) is more than twice as large as that calculated
by Li et al (2011). Such discrepancy can be attrib-
uted to the heterogeneities among existing studies in
terms of data source (e.g. Landsat or MODIS), ana-
lysis unit (from meters to kilometers) and research
period (e.g. day or night, summer or winter) (table 1).
These heterogeneities make it a challenge to obtain
a quantitative understanding of the LST–AISF rela-
tion by directly synthesizing the existing results. Addi-
tionally, the LST–AISF relation can be related to the
local conditions of the city, including the properties
of the impervious area, the geometry of the urban
surface, and the ecological characteristics of the sur-
rounding region. For instance, a regional study in
the continental USA showed the change rate of LST
along AISF gradients tended to be higher in cities
with temperate forests than that in cities with tropical
grassland (Imhoff et al 2010). However, most exist-
ing studies are localized analyses based on the data
in one or a few cities (table 1). Such localized ana-
lyses may be instructive for local urban development,
but are not sufficient to reflect the overall spatiotem-
poral patterns of the LST–AISF relation. Besides, cur-
rent studies preferred temperate or tropical cities in
regions such as China, the United States, and India
(table 1), while many arid cities located in Africa and
theMiddle East were ignored. For all of above reasons,
there is a strong need for a quantitative and compre-
hensive assessment of the LST–AISF relation in global
cities with different climatic conditions, using con-
sistent data and methods.

In this research, using the MODIS daily LST
products and the Global Artificial Impervious Area
(GAIA) datasets (Gong et al 2020), we systematically
analyzed the LST–AISF relation and its spatiotem-
poral variations in 682 global cities (figure 1). Similar
to previous studies (table 1), the LST–AISF relation
was quantified by the trend of LST along AISF gradi-
ents, which was fitted by a linear regression model.
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Besides, to explore the possible drivers underlying
the LST–AISF relation, the trends of vegetation con-
ditions, surface albedo, and human activities along
AISF gradients were also calculated, due to their close
relationswith urbanization and local climate changes.

2. Methods

2.1. Study area
In this study, we extracted urban regions with area
larger than 100 km2 (the year of 2015) from the
Global Urban Boundaries (GUB) dataset (Li et al
2020). This dataset can well delineate the physical
boundary of urban area, and can be freely accessed
from http://data.ess.tsinghua.edu.cn/gub.html. The
urban region extracted from theGUB can be regarded
as the core region of each city, which includes areas
with relatively high AISF, but lacks the surrounding
suburban/exurban areas with low AISF. Thus, a buf-
fer zone was made around each urban region, with
the same size as the central urban region. Then, we
merged each buffer zone with its central urban region
to generate the study area of each city. In addition,
neighboring cities with study areas connected were
all aggregated into a single large city. After the above
processes, 713 cities were obtained, and these cities
were further classified into four climate zones (trop-
ical, temperate, cold and arid) according to the world
map of Köppen–Geiger climate classification (Kottek
et al 2006).

2.2. Data
The global LST data were derived from the MODIS
version-6 product with a spatial resolution of 1 km.
This product provides both daytime and nighttime
LSTobservationsmonitored byTerra (local solar time
~10:30 and~22:30) andAqua (local solar time~13:30
and ~1:30) satellites. The quality of the MODIS LST
data has been extensively evaluated by in-situ obser-
vations across globe, with a bias generally less than 1K
(Wan 2014). Our study contains all the MODIS daily
LST data (MOD11A1 and MYD11A1) from 2014 to
2016, with 4366 images, (half for day and night) for
each city.

The global AIS (2015) was obtained from the
annual product (GAIA) developed by Gong et al
(2020). The spatial resolution of this product is
30 m, with an overall accuracy of better than
90%. The data are freely available from a public
website (http://data.ess.tsinghua.edu.cn/gaia.html).
This product was used to generate the AISF map
(1× 1 km) by calculating the percentage of AISwithin
each MODIS LST pixel.

Drivers underlying the spatiotemporal variation
of the LST–AISF relation were explored by using
following global products: the MODIS Enhanced
Vegetation Index (EVI) product (MOD13A2
and MYD13A2), the MODIS albedo product
(MCD43A3), and the Visible Infrared Imaging

Radiometer Suite (VIIRS) nighttime light (NL)
product. BothMOD13A2 andMYD13A2 are version-
6 MODIS EVI products, with a spatial resolution
of 1 km and a temporal resolution of 16 d. The
MCD43A3 is the daily MODIS vertion-6 albedo
product with a spatial resolution of 500 m. This
product includes the shortwave black sky albedo
and the white sky albedo, and only the white sky
albedo was utilized because of the strong linear cor-
relation between them (Peng et al 2012). The VIIRS
NL product provides monthly average NL observa-
tions with a spatial resolution of 500 m. Remotely
sensed NL has been proved to be a good indicator for
anthropogenic heat release in cities (Yang et al 2017c).
The MODIS albedo data and the VIIRS NL data have
been aggregated and resampled to 1 km.

The global surface water (GSW) product pro-
duced by Pekel et al (2016) was applied to remove the
influence of surface water areas on LST. This product
can provide the annually maximumwater extent map
with a spatial resolution of 30m, and themap of 2015
was used in this study. In addition, the GTOPO30, a
global digital elevation model with a spatial resolu-
tion of 30 arc seconds (~1 km), was used to reduce the
bias caused by topographic relief. All the data (except
the GAIA) were processed and downloaded from the
Google Earth Engine platform (Gorelick et al 2017).

2.3. Analysis
The flowchart of our analysis is shown in figure 2.
Similar to previous studies (table 1), the LST–AISF
relation was quantified by a linear regression model,
in which LST and AISF were dependent and inde-
pendent variables, respectively. The coefficient of this
regression model measures the change of LST to per
AISF increases, which can be expressed by the follow-
ing formula:

δLST = ∆LST/∆AISF.

Positive (negative) δLST indicates an increasing
(decreasing) trend of LST along AISF gradients, and
the absolute value of δLST reflects the magnitude of
this trend. This method is applicable to this study
because of its overall good performance in fitting the
LST–AISF relation (figure 3 and S1 (available online
at stacks.iop.org/ERL/16/024032/mmedia)).

Before calculating δLST, we filtered the MODIS
LST pixels in each city as follows: (a) LST pixels con-
taining surface water area were removed; (b) LST
pixels with too high/low elevations (out the range of
mean ± 2 standard deviations) were excluded; (c)
LST pixels with low quality or no data (due to cloud
coverage or other reasons) were eliminated. These
filtering processes were applied to all the MODIS
LST images (4366, half for day and night) in each
city, and only images with a percentage of valid LST
pixels larger than 50%were kept for calculating δLST.
The 50% threshold was utilized because the δLST
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Figure 1. Spatial distributions of 682 global cities and the artificial impervious surface fraction (AISF) within 16 typical cities.
NYM: New York Metropolitan; PRD: Pearl River Delta. Climate zone is based on the Köppen–Geiger climate classification map.

Figure 2. The flowchart of our analysis. δLST is the coefficient of a linear regression model, measuring the LST change by 1 unit
(1%) increase in AISF.

tended to be stable in all cities when the percentage
of valid LST pixels exceeded this value (figure S2).
In addition, for each city, we required the retained
daytime/nighttime MODIS LST images must cover
every month of a year, otherwise the city would be
discarded. Finally, 682 of the initial 713 cities were
included in the following analyses, and the number of
the retained daytime/nighttime MODIS LST images
in each city is shown in supplementary materials
(figures S3–4).

In each of the 682 cities (figure 1), for every
retained daytime/nighttimeMODIS LST image (after
above processes), the valid LST pixels were firstly
binned within each AISF interval (every 1%). This
approach ignores physical locations of the pixels,
which makes the continuous measure of AISF gradi-
ent possible, independent of city shape and develop-
ing direction (Jia et al 2018, Jia and Zhao 2019). Then,
the binned LST, along with its corresponding AISF
data, was applied to calculate δLST using the linear

5
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Figure 3. Examples of the LST–AISF relation in six typical cities. These cities are located in temperate (Pearl River Delta (PRD)
and London), cold (Chicago and Moscow), tropical (Bangkok), and arid (Riyad) climate zones. The LST–AISF relation was
quantified by the coefficient (δLST,∆LST/∆AISF) of a linear regression model, which measures the LST change by 1 unit (1%)
increase in AISF. We calculated both daytime and nighttime δLST for all valid MODIS LST images (2014–2016) in each city, but
only the results for 1 d (the date shown in each subplot) were displayed as examples.

regression model. Figure 3 shows the spatial distri-
bution of AISF and LST, and their scatterplots, in
several typical cities. It is obvious that LST increases
linearly along the AISF gradient, and that our meth-
ods can well depict the LST–AISF relation regard-
less of the variations in climate and period. Addi-
tionally, the good performance of our methods was
observed in most cities in our study (figure S1). Sub-
sequently, these obtained daytime/nighttime δLSTs
weremonthly averaged, and then these monthly aver-
age δLSTs were further annually averaged.

Along with δLST, we also calculated monthly and
annually average values of δEVI, δAlbedo, and δNLby
using the same approaches. δEVI, δAlbedo, and δNL
reflect the trends of EVI, albedo, and NL along AISF
gradients in each city, respectively, and they were
combined to explore the drivers of spatiotemporal
variations of δLST by using a multiple linear regres-
sion method. In the multiple regression, δLST was
the dependent variable, and δEVI, δAlbedo, and δNL
were the independent variables. The overall impact of
all the independent variables on δLST was reflected
by the coefficient of determination (R2), and the role
of each independent variable in the variation of δLST

was determined by the standardized coefficient (β).
All the analyses were performed in the R software.

3. Results

3.1. Spatial patterns of δLST and relevant factors
Figure 4 shows the spatial patterns of annually average
δLST across 682 global cities. It is obvious that day-
time δLST varies evidently across cities within differ-
ent climate zones. The daytime δLST is positive (>0)
in most cities located in the tropical (66/70), tem-
perate (409/414), and cold (104/105) climate zones,
but is negative in more than two-thirds of cities
(65/93) located in the arid climate zone. On aver-
age, the tropical climate zone has the largest average
daytime δLST (0.0323 (0.0274, 0.0371) ◦C/%, val-
ues in parenthesis define the 95% confidence inter-
val, hereinafter), followed by the temperate climate
(0.0267 (0.0255, 0.0279) ◦C/%), the cold climate
zone (0.0207 (0.0184, 0.0229) ◦C/%), and finally the
arid climate zone (−0.006 (−0.009, −0.003) ◦C/%).
The global average daytime δLST reaches to 0.0219
(0.0205, 0.0232) ◦C/%. At night, there are more cities
with positive δLST (681/682), but the magnitude of
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Figure 4. Spatial variations of annually average δLST. (a)–(b) Spatial patterns of δLST across global cities. (c)–(d) Frequency
distributions of δLST in different climate zones. (e) Average values of δLST in different climate zones. The bar means the 95%
confidence interval.

nighttime δLST is usually lower than that of daytime
δLST. The global average nighttime δLST is 0.0168
(0.0166, 0.0169) ◦C/%. Besides, the spatial pattern of
nighttime δLST is also different from that of daytime
δLST. During nighttime, the tropical climate zone
witnesses the lowest average δLST, with a magnitude
of about one-third of the average daytime δLST. The
higher nighttime δLST tends to occur in the cold cli-
mate zone, where the average value of nighttime δLST
is comparable with that of daytime δLST.

The spatial pattern of daytime δLST corresponds
well to δEVI. As shown in figure 5, the annually aver-
age δEVI is negative inmajority of cities, and its abso-
lute value is largest in the tropical climate zone, and
smallest in the arid climate zone. More importantly,
daytime δLST is significantly and negatively correl-
ated to the δEVI across global cities (r = −0.629,
p < 0.001, figure 6(a)). In contrast, the relationship
between daytime δLST and δAlbedo or δNL is quite
weak (figure 6 and S5). This result was further sup-
ported by the multiple regression, in which the abso-
lute value of standard coefficient (β) of δEVI is much
larger than that of δAlbedo or δNL (table 2). Unlike
daytime δLST, the spatial pattern of nighttime δLST

appears to be more strongly associated with δAlbedo.
It is found that the annually average δAlbedo is neg-
ative in most cities except the tropical climate zone
(figure 5). Similar to nighttime δLST, the average
absolute value of δAlbedo is largest in the cold cli-
mate zone, and is smallest in the tropical climate zone
(figure 5). Additionally, the closer relation between
nighttime δLST and δAlbedo is also revealed by the
bivariate correlation analysis (r = −0.392, p < 0.001,
figure 6(d)) and the multiple regression results (the
larger absolute value of β of δAlbedo, table 2).

3.2. Seasonal variations of δLST and relevant
factors
Figure 7 depicts the monthly averages of daytime
δLST. The daytime δLST is largely season-dependent,
generally characterized by stronger δLST during
warm months than cold months. In the north-
ern hemisphere, the average daytime δLST reaches
its highest value in July (0.0364 (0.0344, 0.0384)
◦C/%), which is almost 4 times of that in Janu-
ary (0.0085 (0.0073, 0.0096) ◦C/%) and Decem-
ber (0.0090 (0.0080, 0.0100) ◦C/%). In the south-
ern hemisphere, the maximal average daytime δLST
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Table 2. The relative importance of δEVI, δAlbedo, and δNL on the spatial variation of δLST. In the multiple linear regression model,
annually average δLST is the dependent variable, and annually average δEVI, δAlbedo, and δNL are independent variables. The larger
the absolute value of standardized coefficient (β), the greater the influence of independent variable on dependent variable.

β of δEVI β of δAlbedo β of δNL R2

Daytime δLST −0.659 0.067 0.045 0.445
Nighttime δLST −0.061 −0.381 0.053 0.152

Figure 5. Spatial variations of annually average δEVI and δAlbedo. (a)–(c) Spatial patterns of δEVI and δAlbedo across global
cities. (d)–(f) Frequency distributions of δEVI and δAlbedo in different climate zones. (g)–(i) Average values of δEVI and δAlbedo
in different climate zones. The bar means the 95% confidence interval. See supplementary materials for the results of δNL.

is observed in January. The daytime δLST changes
drastically across months in the temperate and cold
climate zones, but appears to be seasonally stable in
the arid climate zone. Similar to the daytime δLST,
the nighttime δLST also tends to be stronger during
warmmonths, but with amuch smaller seasonal vari-
ation amplitude (figures S6 and S7).

As shown in figure 8, δEVI shows a very sim-
ilar seasonal variation pattern with the daytime δLST.
δEVI is much stronger during warmmonths, and this
seasonal pattern has been observed in both hemi-
spheres and across different climate zones. However,
seasonal changes in δAlbedo and δNL seem to be
very weak in all cities, except for those located in
the cold climate zone where δAlbedo and δNL show
an abrupt change during cold months (figures S8

and S9). This coincides well with the sudden rise of
nighttime δLST during wintertime in the cold climate
zone (figure S6).

To further explore drivers of the seasonal vari-
ation of δLST, a multiple regression model, with
monthly average δLST as the dependent variable,
and monthly average δEVI, δAlbedo, and δNL as the
independent variables, was applied in each city. As
shown in figure 9, the regression model works well
in most cities for explaining the seasonal variation
of daytime δLST (R2 > 0.5 for > 90% cities). Day-
time δLST mostly correlates negatively to δEVI and
δAlbedo, while positively to δNL. And more notably,
the absolute value of β of δEVI is far greater than that
of δAlbedo or δNL, indicating the dominant effect
of δEVI on the seasonal pattern of daytime δLST.
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Figure 6. Relationships between annually average δLST and (a)–(b) δEVI and (c)–(d) δAlbedo across global cities. r and p are
coefficient and p-value of the Pearson correlation analysis, respectively. See supplementary materials for the results of δNL.

Figure 7.Monthly averages of daytime δLST in global cities and different climate zones. The colored lines and lighted shaded
areas represent the mean values and 95% confidence intervals, respectively. The monthly averages of nighttime δLST are shown in
supplementary materials.
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Figure 8.Monthly averages of δEVI in global cities and different climate zones. The colored lines and lighted shaded areas
represent the mean values and 95% confidence intervals, respectively. The monthly averages of δAlbedo and δNL are shown in
supplementary materials.

However, for nighttime δLST, its seasonal relation-
ships with δEVI, δAlbedo and δNL exhibit high spa-
tial heterogeneity (figure S10).

4. Discussion

4.1. Spatiotemporal variations of the relationship
between LST and AISF
Through a global-scale analysis, this study provides a
comprehensive assessment of the LST–AISF relation,
including its spatiotemporal variations and possible
drivers. Our results show that cities located in differ-
ent climate zones vary greatly in daytime δLST, and
this can be largely attributed to the heterogeneity in
ecological conditions (e.g. vegetation types) among
climate zones considering the close relation between
daytime δLST and δEVI. For instance, tropical cli-
mate zones are mostly dominated by dense evergreen
vegetation (e.g. rainforests), and an increase in AIS in
the tropical climate zone results in a higher decrease
in EVI (larger absolute value of δEVI, figure 5(e)),
which can lead to a typically greater loss of the day-
time vegetative cooling effect (e.g. through evapo-
transpiration). This is the most plausible reason for

the stronger daytime δLST in the tropical climate zone
(figure 4(e)). In the arid climate zone, the natural sur-
face around cities mainly consists of low and sparse
vegetation or bare land and gravel (Imhoff et al 2010,
Zhou et al 2016), and thus human interventions (e.g.
tree planting and irrigation) in urban areas can pos-
sibly improve local ecological conditions, which res-
ults in a much slower decline or even a slight increase
in EVI as AISF increases (figure 5(a)). Besides, com-
pared to surrounding bare land and gravel, shad-
ings by buildings and trees in urban regions can also
provide a potential cooling effect. All of these provide
a reasonable explanation for the unique decreasing
trend of daytime LST along AISF gradients in some
cities located in the arid climate zone. At the seasonal
scale, the variation of daytime δLST corresponds well
with δEVI in all climate zones. For example, δEVI
varies greatly among months in the temperate and
cold climate zones, because of the distinct difference
in their vegetation conditions between growing and
dormant seasons, whereas δEVI seems to be much
stable in tropical and arid climate zones (figure 8).
Correspondingly, daytime δLST shows an obviously
seasonal contrast in both temperate and cold climate
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Figure 9. Seasonal effects of δEVI, δAlbedo, and δNL on daytime δLST. In the multiple regression model, monthly average
daytime δLST is the dependent variable, and monthly average δEVI, δAlbedo, and δNL are the independent variables. (a)–(c) The
standardized coefficient (β) of δEVI, δAlbedo, and δNL in each city. (d) The coefficient of determination (R2) of the multiple
regression model in each city. (e) The violin plots and mean values (white points) of β in different climate zones. The seasonal
effects of δEVI, δAlbedo, and δNL on nighttime δLST are shown in supplementary materials.

zones, but seemly seasonal stability in tropical and
arid climate zones (figure 7). This understanding is
further supported by the high contribution of δEVI
to the seasonal variation of daytime δLST in each city
(figure 9).

In the nighttime, the evapotranspiration through
vegetation weakens, and LST is more closely related
the energy stored during the daytime (Peng et al
2014). Therefore, δLST correlates weakly to δEVI, but
instead relates closely to δAlbedo, because the change
of albedo can pose a direct impact on the solar energy
absorption and emissivity. Similar to δEVI, δAlbedo
also shows obvious spatial variations. For instance,
cities located in the cold climate zone exhibit themax-
imal negative δAlbedo (figure 5(f)) along with high
nighttime δLST (figure 4(e)). In contrast, the tropical
cities have small and positive δAlbedo (figure 5(f))
that in part can explain the relatively weak nighttime
δLST for those cities (figure 4(e)). This evident spa-
tial heterogeneity in δAlbedo can be attributed to the
difference in local background. Cities in cold climate
zone are mainly surrounded by seasonal cropland
and/or deciduous trees, whose albedo is generally
higher than that of urban regions covered by artifi-
cial constructionmaterials (Brest 1987, Oke 1987). In
addition, heavy snow and ice cover in the cold climate
zone during wintertime further enhance the albedo

contrast along the AISF gradient (Zhou et al 2014),
resulting in stronger δAlbedo in cold months (figure
S8). However, the natural surfaces around tropical
cities are dominated by evergreen forests or continu-
ous cropland, whose albedo is similar to or even lower
than urban areas (Pinker et al 1980, Culf et al 1995),
leading to the positive δAlbedo in some cities in/near
the tropical climate zone (figure 5(b)).

4.2. Implications and uncertainties
To date, though the relationship between temperat-
ure and AISF has been assessed by a number of local
studies, it is still challenging to obtain a quantitat-
ive understanding by directly synthesizing these local
evidences (table 1). Thus, a global-scale analysis, with
consistent data and approaches, is urgently needed
for current investigations. In this study, we presen-
ted a systematic analysis of the LST–AISF relation in
682 global cities, and found that each percent increase
in AISF leads to an increase in annually average day-
time and nighttime LST of about 0.0219 ◦C and
0.0168 ◦C, respectively. Such fine-grained and quant-
itative results fill the gap of current SUHII studies, and
provide valuable information for understanding how
LST changes along AISF gradients.More importantly,
we found that the LST–AISF relation depends largely
on local climate conditions. For example, daytime
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LST is found to increase rapidly along AISF gradi-
ents in cities located in tropical and temperate climate
zones, but appears to be stable or even decreases in
cities located in arid climate zones. This suggests that
urbanization is generally detrimental to the local cli-
mate in cities with good natural conditions (e.g. trop-
ical cities surrounded by dense evergreen vegetation),
but can serve to improve the local climate for cities
with relatively poor natural conditions (e.g. arid cit-
ies dominated by desert or bare land). In addition, it
is found that changes in surface biophysical proper-
ties, including vegetation conditions and albedo, are
main contributors to the spatiotemporal variations of
daytime and nighttime δLST, respectively. The direct
implication of this result is that increasing vegetation
conditions is beneficial for alleviating daytime urban
heat island effect, whereas the use of building materi-
als with higher albedo appears to be more effective in
mitigating nighttime urban thermal stress. However,
it should be pointed out that these results obtained by
multi-city analysis present the general pattern of the
impact of urbanization on climate, but the practical
applicability of these results to improve thermal com-
fort for specific cities needs to be carefully considered.
Themost typical example is that alleviating the urban
thermal stress in arid cities through increasing veget-
ation requires great attention to the water resources
(e.g. surface water, groundwater and air moisture)
available for planting and irrigating (Malagnoux et al
2007). Besides, not all cities with temperature elev-
ated by urbanization require mitigation measures
(Martilli et al 2020a, 2020b). For example, for cit-
ies in cold climate zones (e.g. Moscow), the temper-
ature increase in urban areas helps to alleviate the
severe wintertime coldness and can even potentially
reduce the energy consumption for heating supply
(Li et al 2019).

4.3. Limitations and future studies
Several limitations need to be addressed in this
study. Firstly, this study used a linear regression
method to quantify the LST–AISF relation, and this
method has been proved to work well in most cit-
ies (figures S1(a) and (b)). However, due to the com-
plexity of the ground surface, the performance of this
method is more limited when fitting the relationship
between AISF and other factors (e.g. albedo, figure
S1(d)). Secondly, this study included all the MODIS
daily LST data (4366 images, half for day and night) in
each city, but only part of them were retained for cal-
culating δLST after the filtering processes (see Meth-
ods). The number of retained MODIS LST images
shows greatly spatial and monthly variations (figures
S3–4), because of the obvious difference in cli-
matic conditions (e.g. precipitation and cloud cover)
among cities and seasons. This may cause uncer-
tainty to our results when analyzing the spatiotem-
poral variations of the LST–AISF relation. Thirdly,
our results are based on the data of 2015. To test

the consistency our findings across years, we con-
ducted the same experiment using data from other
years (2005, 2010). It turns out that the current results
are consistent with those from other years, suggest-
ing negligible influence of using data from differ-
ent periods (figure S11). Fourthly, in the driver ana-
lysis, three commonly used satellite observed vari-
ables (EVI, albedo and NL) were included in this
study. Other possible factors, including landscape
configurations (Yang et al 2017a, Guo et al 2020a,
2020b), urban three dimensional structures (Huang
andWang 2019, Yang et al 2020), and climatic condi-
tions (e.g. drought), were not included in this study
due to the lack of requisite data. Besides, specific
episodic events (e.g. wildfires) may bias the results
because of their possible influence on local ecolo-
gical conditions and/or remote sensing observations
(e.g. the smoke from wildfires), which also need to be
addressed in future analyses. Finally, attention needs
to be paid to the limitations of remote sensing data.
(a) Remote sensing data are typically transient obser-
vations, which limits their ability to provide detailed
time-series information on the impact of urbaniza-
tion on climate. (b) Remote sensing data can provide
a good picture of the local impact of urbanization
on current climate, but it is difficult to quantify the
remote impact of urbanization on future climate as
numerical modeling studies did (Tewari et al 2017,
Krayenhoff et al 2018, Broadbent et al 2020). (c)Most
importantly, satellite-derived LST represents only a
subset of urban surfaces seen by the radiometer, but
does not measure air temperature which is of more
relevance to the heat stress of urban dwellers and the
associated need for mitigation (Martilli et al 2020b).
Therefore, future studies should combine full range of
data (e.g. remote sensing and in-situ data) and integ-
rate different methods (e.g. observational and mod-
elling approaches) to make a more comprehensive
assessment of the impact of urbanization on climate.

5. Conclusions

The LST–AISF relation is an important topic in the
field of urbanization and climate change. Although
numerous studies have explored how LST responds
to the change of AISF, most of them are local studies
focused on specific case city, and there is still a lack of
global-scale analysis. This study fills this research gap
through a systematic analysis of the LST–AISF rela-
tion in 682 global cities. The LST–AISF relation was
quantified by the coefficient (δLST, ∆LST/∆AISF)
of a linear regression model, which measures the
trend of LST along AISF gradients. Besides, δEVI,
δAlbedo, and δNL were also calculated by using the
same method, to explore possible drivers underlying
the spatiotemporal pattern of the LST–AISF relation.

The results show that daytime LST exhibits an
increasing trend along AISF gradients (positive δLST)
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in most global cities (over 90%), except for cities loc-
ated in the arid climate zone where more than two-
thirds of cities show negative δLST. On average, cities
located in the tropical climate zone have the largest
average daytime δLST, followed by cities located in
the temperate, cold, and arid climate zones. While
at nighttime, LST increases along AISF gradients in
nearly all global cities, and cities located in the cold
climate zone witness the strongest average nighttime
δLST. Overall, each percent increase in AISF can lead
to an increase in annually average daytime and night-
time LST of 0.0219 ◦C and 0.0168 ◦C, respectively,
for global cities. At the seasonal scale, δLST tends to
be stronger during warm months, especially for cit-
ies located in temperate and cold climate zones. More
importantly, driver analyses suggest that the spati-
otemporal variations of daytime and nighttime δLST
corresponds well with those of δEVI and δAlbedo,
respectively. Generally speaking, through a compar-
ative analysis of global cities, this study provides a sys-
tematic and quantitative assessment of the LST–AISF
relation, which not only helps for broadening or
deepening our understandings of the climatic impact
of urbanization, but also presents valuable informa-
tion for urban sustainable development in the context
of continued global warming.

Data availability

All data that support the findings of this
study are included within the article (and any
supplementary files).
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