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Abstract— Satellite-derived land surface temperatures (LSTs)
are a critical parameter in various fields. Unfortunately, there
are numerous gaps in LST products due to cloud contamination
and orbital gaps. In previous studies, various gapfilling methods
have been developed. However, most of those methods use only
spatiotemporal information to fill gaps. In this study, a gapfilling
method called the enhanced hybrid (EH) method that integrates
spatiotemporal information and information from other similar
LST products was proposed. The accuracy of the EH method was
compared with the accuracies of three other gapfilling methods
that only use spatiotemporal information: Remotely Sensed DAily
land Surface Temperature reconstruction (RSDAST), interpola-
tion of the mean anomalies (IMAs), and Gapfill. It was found
that the correlations between the four LST products were strong,
indicating that using information from other products may
improve the accuracy of gapfilling. On average, the mean absolute
errors (MAEs) of the data filled using the EH method were
23.7%-52.7% lower than those of RSDAST, 35.4%-38.7% lower
than those of IMA, and 38.5%-46.9% lower than those of the
Gapfill method. The usage of information from other similar LST
products was the main reason for the high accuracy observed
for the EH method. In addition, the LST images filled using
the RSDAST and IMA methods had some outliers, while there
were fewer obvious outliers in the LST images filled with the
EH method. It was concluded that the EH method is a robust
gapfilling method with a high accuracy.

Index Terms— China, gapfilling, land surface temperature
(LST), remote sensing, interpolation.
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I. INTRODUCTION

AND surface temperature (LST) represents the temper-

ature of the earth’s surface, which plays an important
role in many research fields. For example, it can be used to
investigate urbanization and the urban heat island effect [1],
[2], estimate air temperature and soil moisture [3]—[5], and
study climate warming and natural disasters [6], [7].

Satellite remote sensing is an effective way to obtain
LSTs. The Moderate Resolution Imaging Spectroradiome-
ter (MODIS) and Visible Infrared Imaging Radiometer
Suite (VIIRS) provide two excellent satellite-derived LST
products that have global coverage and high temporal reso-
lutions. However, MODIS and VIIRS LST data have numer-
ous gaps, mainly due to cloud contamination and orbital
gaps. For example, Li et al. [8] found that the proportion
of valid data to total data in MODIS LST products was
only approximately 28% in urban areas of the conterminous
United States. Gaps in LST products seriously limit their
application. For instance, eight-day composite LST data were
averaged into monthly and seasonal composites with which
to study the urban heat island effect [9]-[11]. In this aver-
aging process, only valid LSTs were used, which caused
some uncertainty [12]. In addition, air temperature data esti-
mated with LST data have many gaps due to the gaps
in the LST data [13]-[16]. For example, Zhang et al. [13]
estimated the daily air temperature on the Tibetan Plateau
from 2003 to 2010. A total of four LST variables (MOD11A1
daytime and nighttime LSTs, and MYDI11A1l daytime and
nighttime LSTs) were used to reduce the missing values
in the estimated air temperature data. However, 14% of
the values were still missing in the final air temperature
maps.

To solve this problem, various methods for reconstructing
missing LST data have been developed. These methods can
generally be divided into two types: 1) the reconstruction
of clear-sky LSTs, in which unreal LSTs are reconstructed,
assuming that there are no cloud effects [8], [17]-[21] and
2) the reconstruction of cloudy-sky LST, in which real LSTs
are constructed under cloudy-sky conditions [22]-[27]. The
reconstructed clear-sky LST data have successfully been used
to analyze the surface urban heat island effect [28], investigate
the relationship between LSTs and vegetation coverage [29],
estimate air temperature [30], [31], calculate the dryness index,
and support drought risk management [32]. In addition, the
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estimation of clear-sky LSTs is an important step in some
methods for estimating cloudy-sky LSTs [23], [33], [34]. For
example, Zeng et al. [23] first reconstructed clear-sky LSTs
for cloudy regions and then corrected the clear-sky LSTs
to cloudy-sky LSTs. Wang er al. [34] divided cloudy pixels
into two categories: cloud shadows and illuminated surfaces.
The illuminated surfaces were filled with clear-sky LSTs.
Therefore, the present study will focus on the reconstruction
of clear-sky LSTs.

The data—model fusion method (data and model represent
remotely sensed LST and land surface model-based LST,
respectively) [35], surface energy balance model [23], and
passive microwave data [25] can be used to reconstruct
cloudy-sky LSTs. The methods for reconstructing clear-sky
LSTs can normally be grouped into four categories: 1) the use
of spatial information to fill the gaps (i.e., spatial gapfilling)
[36]—-[38]. Spatial gapfilling assumes that the LST of a given
pixel will be more strongly correlated with the LSTs of
pixels that are closer to that pixel than those that are farther
away. 2) The use of temporal information to fill the gaps
(i.e., temporal gapfilling) [29], [39]. Temporal gapfilling is
based on the hypothesis that LSTs on a given day will have
stronger relationships with the LSTs of closer days than
with the LSTs of days that are further away. 3) The use
of information from another similar LST product to fill the
gaps [40], [41]. These methods use the information from the
MODI11A1 LST product to fill the gaps in MYDI11A1 data
because these two data sets have similar monitoring times
and the same spatiotemporal resolution. 4) The hybrid method
[81, [17]-[20], [42], [43], which simultaneously uses at least
two kinds of information to fill the gaps in LST data. Hybrid
methods that use spatiotemporal information to fill gaps (i.e.,
spatiotemporal gapfilling) have been widely developed [17]-
[20], [33], [42]-[44]. Spatiotemporal gapfilling generally has
a higher accuracy than spatial gapfilling or temporal gapfilling
do because it uses more information [8], [17], [42]. However,
to our knowledge, few studies have integrated these three kinds
of information (i.e., spatial, temporal, and other similar LST
products) to fill the gaps in LST data. Li et al. [8] developed a
hybrid method that uses three kinds of information to fill the
gaps in MYDI11A1 LST data. However, this method first fills
approximately half of the gaps using temporal information and
the MODI11A1 LST product and then fills the remaining gaps
using spatiotemporal information. Therefore, these three kinds
of information were not fully used by the method developed
by Li et al. [8]. A comparison study showed that the accuracy
of this method was lower than that of the spatiotemporal
gapfilling method [33].

This study aims to develop a method [called the enhanced
hybrid (EH) method] that integrates spatiotemporal informa-
tion and information from other similar LST products to recon-
struct clear-sky LSTs. The novel element of this method is that
it makes full use of three kinds of information. This is different
from all previous articles. In the following text, Section II
presents the study areas and data. Section III shows the
gapfilling method developed in this study. Sections IV and V
show the results and discussions, respectively. Section VI
summarizes this study.
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II. STUDY AREAS AND DATA
A. Study Areas

The study areas in this study include two regions in China:
1) the Beijing—Tianjin—Hebei region (BTH) and 2) the Pearl
River Delta region (PRD) (Fig. 1). These two regions have
distinct geographical locations and climate types that were
used to test the universality of the gapfilling method.

The BTH region includes Beijing city, Tianjin city, and
Hebei Province (Fig. 1). It covers an area of approximately
218000 km? and has a population of approximately 110 mil-
lion. The altitude of BTH generally decreases from northwest
to southeast, ranging from below sea level to over 2600 m
(Fig. 1). This region is characterized by a warm temperate
monsoon climate, with an average annual mean air temperature
(MAT) of 11.4 °C and an average annual total precipitation of
547 mm.

The PRD region includes Guangdong Province and the
Hong Kong Special Administrative Region. The PRD area is
approximately 180800 km? and the population is approxi-
mately 120 million. The elevation gradually decreases from
north to south. The PRD region is characterized by a subtrop-
ical monsoon climate, with an average annual MAT of 22.3 °C
and an average annual total precipitation of 1761 mm.

B. Data

A total of four LST products were used in the present study.
MODIS MOD11A1 (monitored at 10:30 am and pm local solar
time) and MYD11A1 (monitored at 1:30 am and pm local solar
time) daily daytime and nighttime LST products with a 1-km
spatial resolution in 2018 were used. The LST data of these
products are retrieved using a split-window (SW) algorithm
[45], [46]. In 2018, the National Aeronautics and Space
Administration (NASA) released new MODIS (MOD21 and
MYD21) and VIIRS (VNP21, monitored at 1:30 am and pm
local solar time) LST products with a 1-km spatial resolution.
The LST data are retrieved using a temperature emissivity
separation (TES) algorithm in these products [47]. MODIS
MYD21A1 (including MYD21A1D and MYD21AIN) and
VIIRS VNP21AL1 (including VNP21AID and VNP21AIN)
daily LST data in 2018 were also used in this study. To our
knowledge, MYD21A1 and VNP21A1 have only been used by
few previous studies since these data were released recently.
The MODIS MOD21A1 TES data were not used, as these
data were only available from 2001 to 2008. The VIIRS
SW data were not used since daily composite data were
not available. The MOD11A1, MYD11A1, MYD21A1, and
VNP21A1 products are abbreviated as MODI11, MYDI11,
MYD21, and VNP21, respectively, in the following text.

III. METHODS
A. Gapfilling Method Developed in This Study

In the present study, a gapfilling algorithm called EH
was proposed to reconstruct the missing LSTs. Daytime and
nighttime LST data were processed separately. The EH method
includes the following five steps. A schematic of the EH
method is shown in Fig. 2.
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Study areas. (a) Land cover map of the BTH region. (b) Elevation map of BTH. (c) Land cover map of the PRD region. (d) Elevation map of PRD.

The outliers in the LST data were removed.
Satellite-derived LST data have some outliers primarily
due to undetected clouds [48] and incorrect emissivity
estimations [49]; these outliers are especially seen in the
MYD21 LST data [49]. The undetected clouds occur
under cloudy-sky conditions, but incorrect estimations
of emissivity occur under clear-sky conditions. In BTH,
if the daytime (nighttime) LST of a pixel was
over 15 °C (12 °C) higher or lower than the mean
daytime (nighttime) LST of the preceding and following
ten days at the same pixel of the same product, it was
considered an outlier. In this process, missing values
were not used to calculate mean LSTs. For example,
if there were 12 valid and 8 missing values for a pixel,
the mean of the pixel was calculated using the 12 valid
values. The number of preceding and following days
was set as 15 in PRD because there were more missing
values in the LST products for the PRD region. These
outliers were also considered gaps in the following
steps. This step can be expressed as follows:

LST, if LSTmean,s—t < LST;
< LSTmean s+
missing value, otherwise

LST, = (1)

where LST; is the LST of pixel s; LSTmean,s represents
the mean LST of the preceding and following ten (or
15) days at pixel s, and ¢ is set to 15 °C and 12 °C for
daytime and nighttime, respectively.

A subset of LST images were defined for the target
image (the image to be filled). These images were used

3)

4)

to fill the gaps in the target image. The subset consisted
of 11 images: a) three other LST products for the same
day as that of the target image (three images) and b)
the same product as that of the target image from the
preceding and following four days (eight images). It can
be seen that this subset contains information from other
LST products. An example is shown in Fig. 2. The
number of preceding and following days was selected
as four because this number was selected by previous
studies [8], [19], [42].

Spatial windows for the target pixel (the pixel to be
filled) were defined. For the target pixel, a 21 x 21-km
window [8], [42], centered on the target pixel, was
first generated. If there were at least five valid pixels
in the window in the target image, this window was
selected for the target pixel. If this requirement was not
met, the size of the spatial window iteratively increased
with an interval of 20 km (i.e., to 41 x 41 km, 61
x 61 km, etc.) until this requirement was met. We set
the maximum window size to 201 x 201 km because:
a) filling missing LSTs using a large window requires
considerable computing time [18] and b) the accuracy
of the spatiotemporal gapfilling method is lower than
that of the temporal gapfilling method when the size
of the gap is large enough [27]. After that, the LSTs
of the pixels in the windows in the subset of images
were extracted (Fig. 2). These LSTs were defined as the
prediction set (except for that of the target pixel itself).
The target pixel was predicted. The prediction set was
further divided into three groups: a) LSTs of the pixels
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Schematic of the EH method. MODI1 daytime LST data on March 9, 2018, were used as examples (target image). The MOD11A1, MYDI11A1,
MYD21A1, and VNP21A1 products are abbreviated as MOD11, MYDI11, MYD21, and VNP21, respectively.

at the same location (but from different images) as the
target pixel; b) LSTs of the pixels in the same image (but
at different locations) as the target pixel; and ¢) LSTs of
other pixels. The prediction set includes three kinds of

information: group a) includes temporal information and
information from other similar LST products; group b)
includes spatial information; and group c) includes three
kinds of information. Then, the LST of the target pixel
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can be predicted using (2), which simultaneously uses
three kinds of information

LST,1=LSTy, y,,i, +LSTy, y, i, —LSTx, y, i, (2)

where LST); is the predicted LST of the target pixel;
(x0, yo) is the location of the target pixel; iy is the
target image; LSTy. .0, is the LST at location (x¢, yo)
in image i,, which is an image in the subset; LSTy, y, s,
belongs to group (a); LST,, y, , is the LST at location
(x;,y;) in the target image; (x;,y;) is a location in
the spatial window; LST,, . ; belongs to group (b);
LSTy; y,.i, is the LST at location (x;, y;) in image p;
and (x;, y;,i,) belongs to group (c). This equation was
proposed by Sun ez al. [19] and was based on the
hypothesis that the LST difference between two days
(or images) of a pixel will be similar to that of a nearby
pixel

LST,1—LSTy,y,i,=LSTy, y, i, —LSTx, y, i, 3)

where, if LST, y,;, is placed on the right of the equal
sign, (3) becomes (2). Note that the LST cannot be
predicted when at least one of the variables on the right
side of the equal sign in (2) is missing. Because the
LST of the target pixel may be predicted using many
pixels in the prediction set, the LST of the target pixel
was finally predicted as the weighted average of these
predicted values

E:l:l LST,,],]( X Wi
Do Wk
where LST), is the final predicted LST for the target
pixel; m is the total number of LSTs that were predicted
using the prediction set and (2); LST, is the kth

predicted LST; and wy, is the weight of the kth predicted
LST. The weight, wy, was calculated using three indexes

1

LST,, = )

e 5
k= DI xSI; x SDI; ©)

where the distance index (DI) was calculated as:
DI, = \/()Co—xk)2 + o=y’ (6)

where (xg, yo) is the location of the target pixel and
(xx, yx) is the location of the pixel in the prediction set
for the kth predicted LST. The reason for using DI is that
a given pixel generally has stronger correlations with
closer pixels than with pixels that are farther away. The
similarity index (SI) was calculated as

SI; = [LST LST,, .0, | + 1 (7)

X0,Y05iq

where LST,, y,;, is the pixel at location (xo, yo) (the
location of the target pixel) in image i,, which is
an image in subset; LST,, y,; belongs to group (a);
LSTy,,y,.i;, is the LST of the pixel at location (x, yx)
in image i,; and LSTy, y,; belongs to group (c). The
reason for using SI is that a given pixel generally
has similar surface characteristics (e.g., land cover and
elevation) as pixels that have similar LSTs. Finally, the
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5)

subset includes images from other similar LST products
and from near days, and these images may have different
degrees of correlations with the target image. Therefore,
a standard deviation index (SDI) was used to weight
each image. The SDI was calculated as the spatial
standard deviation of the LST difference between the
target image and image ¢

1 n ___ .,
SDI; = - Z(LSTDq,r—LSTDq) (8)

r=1

where n is the number of pixels for which both the target
image and image g have valid LSTs; LSTD, , is the
LST difference between the target image and image g at
the rth pixel; and LSTD,, is the average LST difference
between the target image and image g. The reason for
using SDI is as follows. If the spatial standard deviation
of the LST difference between the target image and a
given image in the subset was low, the LST difference
between the target image and this image would be stable
across the whole image. The prediction of missing LSTs
using samples from this image will have high accuracy
because the hypothesis of gapfilling is that the LST
difference between two images of a given pixel will be
similar to that of a nearby pixel. Therefore, when the
spatial standard deviation of the LST difference between
the target image and an image in the subset is low, a high
weight should be set.

The remaining gaps were temporally filled. There were
still some gaps in the target image that were not filled
with the above-mentioned steps. These gaps occurred:
a) when the whole target image was empty; b) when the
LSTs were missing for a pixel in the target image and
in all 11 images in the subset; and c) when the size of
the gap was large. For the first case, temporal gapfilling
is the only choice to fill the gaps because there is no
spatial information to use. Therefore, a simple temporal
interpolation method was used to fill the remaining gaps.
Specifically, the missing values were filled using valid
LSTs measured on the nearest dates at the same pixel.
If the missing values could be filled using valid LSTs
from two equally nearby dates, the average of the two
valid values was used. This step can be expressed as
follows:

LST,3

LST, is missing

LSTy, yo.15 if¢ can be filled with one
value

ETPTHTE SR it

2
values

LST),, if LST,, is not missing

©)

where LST,3 is the predicted LST of the target pixel after
temporal gapfilling; LST,, ,, ;1 is the LST at location (xo, Yo)
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Fig. 3. Schematic diagrams of the introduced gaps in the LST images.
MODI11 nighttime LST data from May 23, 2018, were used as examples.
Pixels within 50 km of the periphery of the study area were retained to enable
more spatial information to be used.

in the gapfilled image at day 71, which is the nearest date that
has a valid LST; and 72 and #3 are the two equally nearby
dates with valid LST values.

B. Accuracy Verification

In this study, gaps of 20 x 20 km and 150 x 150 km (rep-
resenting small and large gaps, respectively) were artificially
created in the original LST data on the eighth and twenty-
third days of each month in 2018 (a total of 24 days) (Fig. 3).
These artificial gaps were then filled with the method proposed
in this study. The filled LSTs were then compared with the
original observed LSTs. The mean absolute error (MAE) and
root-mean-square error (RMSE) were calculated to describe
the accuracy [8], [17], [20], [50].

C. Accuracy Comparison

The impact of some thresholds in the EH method should be
analyzed in detail. A total of five thresholds were selected:
1) the number of preceding and following days with data
used to remove outliers [in step (1)]; 2) the temperature
threshold used to remove outliers [in step (1)]; 3) the number
of preceding and following days with data used to fill the gaps
[in step (2)]; 4) the initial window size used to fill the gaps
in step (3)]; and 5) the maximum window size used to fill
the gaps [in step (3)]. These thresholds were systematically
analyzed in Supplementary Material 1.

Some settings for the EH method should be tested and
discussed. First, the accuracies of the EH method with and
without the removal of outliers [step (1)] were compared.
Second, the effects of the three indexes [step (4)] on the
accuracy of the EH method were analyzed. These settings were
systematically analyzed in Supplementary Material 2.
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The accuracy of the EH method was compared with
three spatiotemporal gapfilling methods: Remotely Sensed
DAily land Surface Temperature reconstruction (RSDAST)
[19], interpolation of the mean anomalies (IMAs) [17], and
Gapfill [42]. RSDAST first defines a spatiotemporal subset
(similar to the EH method) for a missing LST and then fills
the missing LST using (4). The filled LST is then considered a
valid value when filling other pixels [19]. In the IMA method,
a mean image of the subset is first calculated and then an
anomaly image is computed, representing the LST difference
between the target image and the mean image. Next, the
gaps in the anomaly image are interpolated using the thin
plate spine interpolation method. The final gapfilled image is
calculated by adding the interpolated anomaly image to the
mean image [17]. In the Gapfill method, a subset of images
are first defined and then each image is ranked according
to the proportion of values in the image that is the highest
among members of the subset at the same location. Next, for
images that have a valid value at the location of the target
pixel, the quantile of this valid value relative to the entire
image is calculated. Finally, all values in the prediction set
are regressed using quantile regression, and the target pixel is
predicted using fitted quantile regression [42].

These three methods were selected for two main rea-
sons. First, it has been demonstrated that these methods
have higher accuracy than do other gapfilling methods. For
example, Liu et al. [27] found that the accuracy of RSDAST
was higher than that of regression kriging interpolation.
Militino et al. [17] found that the accuracy of IMA was higher
than that of Gapfill, harmonic analysis of time series (HANTS)
[51], and TIMESAT software. Gerber et al. [42] showed that
the accuracy of the Gapfill method was higher than those of
TIMESAT software and the spatiotemporal gapfilling method
proposed by Weiss et al. [20]. Second, these methods can be
easily implemented. RSDAST is relatively simple and does
not require other auxiliary data. IMA and Gapfill can be
easily implemented with the “RGISTool” and “Gapfill” add-on
packages in R software, respectively. In addition, to reveal the
effect of the information from other similar LST products on
the accuracy, the accuracy of the EH method without the use
of other LST products was calculated and compared with the
original EH results. In this analysis, the subset members in step
(2) were defined as the LST images from the same product as
the target image in the four preceding and following days.

D. Real Examples

In addition to validating the accuracies of the gapfilling
methods using artificial gaps, the performances of the gap-
filling methods were evaluated for real examples. First, the
gaps in the four daily LST products in 2018 were filled with
the gapfilling methods. Second, the spatiotemporal variations
in the gapfilled LST data were examined.

E. Calculation Costs

The calculation costs of the four methods were analyzed
using the MOD11 daytime LST data from October 18, 2018,
to October 28, 2018, in the BTH region and from October 27,

Authorized licensed use limited to: Wuhan University. Downloaded on July 11,2021 at 14:59:17 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAO et al.: ROBUST METHOD FOR FILLING THE GAPS IN MODIS AND VIIRS LST DATA 7
TABLE I 1.0 ) . L )
Daytime LST in BTH Nighttime LST in BTH
PROPORTIONS OF PIXELS WITH VALID VALUES OF THE FOUR PRODUCTS
IN 2018. AT LEAST ONE: THE PROPORTIONS OF PIXELS WITH AT 0.3 i
LEAST ONE VALID VALUE OF THE FOUR PRODUCTS
0.6
MODI1l  MYDI1 MYD21 VNP2l At least one (Edl
The proportions of the pixels that have valid values in the BTH 0.41
Daytime LST 46.5% 43.9% 39.8% 57.4% 66.3%
Nighttime LST 51.8% 53.5% 46.9% 64.4% 73.2% 0.24
The proportions of gaps that can be filled using information from other products
Daytime LST 37.1% 40.0% 44.0% 20.9% 1.0-
Nighttime LST 44.3% 42.2% 49.4% 24.5% . . . . .
The proportions of pixels that have valid value in PRD 0.8/ Daytime LST in PRD Nighttime LST in PRD
Daytime LST 21.0% 21.0% 18.4% 30.9% 39.0% ' 7 —
Nighttime LST 22.7% 23.0% 19.6% 31.2% 42.2% 0.6
The proportions of gaps that can be filled using information from other products ]
in PRD ~
Daytime LST _ 22.8%  228%  253%  11.8% 041
Nighttime LST ~ 25.2% 24.9% 28.1% 15.9% 02
2018, to November 7, 2018, in the PRD region. These dates 0.0 HH H H
were selected because their proportions of valid pixels to total ZSaado fzZaa ZSaacg fzZaa
. c [agay Nag N [agaNay [ayay Nay N [N a ey
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=233y =222 =Z3233 =227
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=Ry alal ~AAereAQ
IV. RESULTS 88%&;; 88§EEE
A. Proportions of Valid Value ===2 ====
Fig. 4. Comparisons of the spatial correlations between different LST

The proportions of the pixels that have valid values
in 2018 are shown in Table I. The VNP21 product has the
highest proportion of valid values because the swath width
of the VIIRS sensor (3000 km) is significantly wider than
that of the MODIS sensor (2330 km). Comparatively, the
MYD21 product has the lowest proportion of valid values,
which is primarily due to its stricter cloud removal method
[49]. In Additionally, there are more missing values in the
LST products for the PRD region than for the BTH region. The
reason for this phenomenon is that the climate of PRD is more
humid than that of BTH. Finally, the proportions of pixels that
had at least one valid value in the four products were 66.3%
(39.0%) and 73.2% (42.2%) for daytime and nighttime LSTs,
respectively, for BTH (PRD).

The proportions of gaps that could be filled using informa-
tion from other products are shown in Table I. Information
from other products was more useful for the VNP21 product
than for the other products. This is because the proportions of
valid values in VNP21 were significantly higher than those in
other products. Additionally, information from other products
was more useful for BTH than for PRD. The reason for this is
that the proportions of valid values for BTH were significantly
higher than those for PRD.

B. Strong Correlations Between Different LST Products

The spatial correlations between the LST values of different
products on the same day were compared with the spatial
correlations between the LST values of the same product on
two adjacent days. The spatial correlations between different
LST products were calculated for 365 days in 2018. The
spatial correlations between the same LST product on two
adjacent days were calculated for 364 cases in 2018. The
average coefficient of determination (R?) of these correlations
is shown in Fig. 4. It was found that the correlations between
different LST products on the same day were stronger than

products and between the same LST product on two adjacent days. Red bars
represent the spatial correlations between different LST products, averaged
for 365 days. Green bars represent the spatial correlations between the same
LST product on two adjacent days, averaged for 364 cases.

those between the same LST product on two adjacent days.
For example, R? of the spatial correlations between different
daytime LST products, averaged for 365 days for the BTH
region, ranged from 0.598 to 0.905, while R? of the spatial
correlations between the same LST product on two adjacent
days, averaged for 364 cases, ranged from 0.464 to 0.471.
These results suggested that using information gathered from
other products on the same day to fill gaps may be more
accurate than using information from the same product on
adjacent days. This is primarily because the monitoring times
of the four LST products are nearly the same. Additionally,
the correlations between the MYDI11 and MYD21 LST prod-
ucts were much stronger than those between the other LST
products. This can be attributed to the fact that the MYDI11
and MYD21 products are retrieved from the same raw data.

C. Accuracy of the Four Methods

The accuracies of the four gapfilling methods are shown in
Tables II and III. The EH method significantly outperformed
the three other methods. When filling 20 x 20-km gaps in
daytime (nighttime) LST data, the average MAEs of the EH,
RSDAST, IMA, and Gapfill methods were 0.845 (0.584) °C,
1.107 (0.791) °C, 1.316 (0.927) °C, and 1.374 (1.101) °C,
respectively (Table II). When filling 150 x 150-km gaps in
the daytime (nighttime) LST images, the average MAEs of
the EH, RSDAST, IMA, and Gapfill methods were 1.031
(0.805) °C, 2.181 (1.573) °C, 1.596 (1.329) °C, and 1.860
(1.513) °C, respectively, (Table III). Therefore, the MAEs
of the EH method were 23.7%-52.7% lower than those of
RSDAST, 35.4%-38.7% lower than those of IMA, and 38.5%—
46.9% lower than those of the Gapfill method. In addition, the
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TABLE II

ACCURACIES OF FOUR GAPFILLING METHODS IN FILLING 20 x 20-KM GAPS. THE ACCURACIES FOR DAYTIME AND NIGHTTIME LSTS ARE PLACED AT
THE LEFT AND RIGHT, RESPECTIVELY. UNIT: °C

MODL11 MYDI1 MYD21 VNP21 Average

BTH

MAE EH 0.704, 0.510 0.703, 0.423 0.800, 0.479 1.274,0.793 0.870, 0.551
RSDAST 0.844, 0.602 0.992, 0.638 1.182, 0.745 1.404,0.916 1.106, 0.725
IMA 0.995, 0.703 1.152,0.700 1.376, 0.849 1.458, 0.947 1.245, 0.800
Gapfill 1.180, 1.011 1.403,0.974 1.598, 1.044 1.783, 1.196 1.491, 1.056

RMSE EH 1.074, 0.722 1.169, 0.609 1.226,0.713 1.878, 1.113 1.337,0.789
RSDAST 1.272,0.850 1.544, 0.909 1.755, 1.069 2.079, 1.265 1.663,1.023
IMA 1.412,0.974 1.676, 0.952 1.954,1.337 2.109, 1.294 1.788, 1.139
Gapfill 1.696, 1.390 1.999, 1.314 2.248, 1.448 2.500, 1.591 2.111, 1.436

PRD

MAE EH 0.624, 0.455 0.577,0.475 0.704, 0.601 1.370, 0.936 0.819,0.617
RSDAST 0.740, 0.593 0.919, 0.669 1.106, 0.924 1.668, 1.244 1.108, 0.858
IMA 1.105, 0.762 1.156, 0.853 1.488,1.179 1.799, 1.424 1.387, 1.055
Gapfill 0.939, 0.891 1.118, 1.004 1.273,1.265 1.700, 1.421 1.258, 1.145

RMSE EH 0.875, 0.688 0.841, 0.764 0.999, 1.006 2.055, 1.454 1.193, 0.978
RSDAST 1.087, 1.025 1.548, 0.993 1.743, 1.454 2.538, 1.996 1.729, 1.367
IMA 1.512, 1.031 1.560, 1.235 2.035, 1.662 2.530, 2.008 1.909, 1.484
Gapfill 1.323, 1.270 1.553, 1.499 1.775, 1.903 2.403, 2.042 1.764, 1.679

Average

MAE EH 0.664, 0.483 0.640, 0.449 0.752, 0.540 1.322, 0.865 0.845, 0.584
RSDAST 0.792, 0.598 0.956, 0.654 1.144, 0.835 1.536, 1.080 1.107, 0.791
IMA 1.050, 0.733 1.154,0.777 1.432,1.014 1.629, 1.186 1.316, 0.927
Gapfill 1.060, 0.951 1.261, 0.989 1.436, 1.155 1.742, 1.309 1.374,1.101

RMSE EH 0.975, 0.705 1.005, 0.687 1.113, 0.860 1.967, 1.284 1.265, 0.884
RSDAST 1.180, 0.938 1.546, 0.951 1.749, 1.262 2.309, 1.631 1.696, 1.195
IMA 1.462, 1.003 1.618, 1.094 1.995, 1.500 2.320, 1.651 1.849, 1.312
Gapfill 1.510, 1.330 1.776, 1.407 2.012, 1.676 2.452,1.817 1.937, 1.557

TABLE III

ACCURACIES OF FOUR GAPFILLING METHODS IN FILLING 150 x 150-KM GAPS. THE ACCURACIES OF DAYTIME AND NIGHTTIME LSTS ARE PLACED
AT THE LEFT AND RIGHT, RESPECTIVELY. UNIT: °C

MODI11 MYDI11 MYD21 VNP21 Average

BTH

MAE EH 1.006, 0.723 0.888, 0.572 0.963, 0.602 1.549,1.033 1.102,0.733
RSDAST 2.176,1.224 2.476,1.247 2.439,1.428 2.818, 1.636 2.477,1.384
IMA 1.264, 1.045 1.524, 1.089 1.753, 1.135 1.754,1.379 1.574,1.162
Gapfill 1.644, 1.331 1.985,1.283 2.082,1.362 2.261,1.520 1.993,1.374

RMSE EH 1.540, 1.008 1.464, 0.820 1.488, 0.819 2.264,1.477 1.689, 1.031
RSDAST 3.196, 1.661 3.851, 1.675 3.687,1.925 4.165,2.308 3.725,1.892
IMA 1.751, 1.409 2.158,1.581 2.500, 1.655 2.480, 1.961 2.222,1.652
Gapfill 2.380, 1.811 2.814,1.727 2.912,1.801 3.095, 2.085 2.800, 1.856

PRD

MAE EH 0.768, 0.688 0.643,0.674 0.751, 0.854 1.683, 1.371 0.961, 0.897
RSDAST 1.432, 1.353 1.672, 1.153 1.612,2.056 2.822,2.489 1.885, 1.763
IMA 1.273,1.128 1.277,1.188 1.649, 1.675 2.271, 1.996 1.618, 1.497
Gapfill 1.462, 1.296 1.524,1.416 1.762, 1.824 2.160,2.071 1.727, 1.652

RMSE EH 1.079, 1.018 0.941, 1.065 1.080, 1.297 2.466, 2.056 1.392, 1.359
RSDAST 1.960, 1.943 2451, 1.573 2.596, 3.287 4.539, 4.020 2.887,2.706
IMA 1.748, 1.530 1.813,1.612 2.732, 8.524 3.087,2.715 2.345,3.595
Gapfill 2.153,1.778 2.065,2.134 2.592, 2.560 2.957,3.009 2.442,2.370

Average

MAE EH 0.887, 0.706 0.766, 0.623 0.857,0.728 1.616, 1.202 1.031, 0.815
RSDAST 1.804, 1.289 2.074,1.200 2.026, 1.742 2.820, 2.063 2.181, 1.573
IMA 1.269, 1.087 1.401, 1.139 1.701, 1.405 2.013, 1.688 1.596, 1.329
Gapfill 1.553,1.314 1.755, 1.350 1.922,1.593 2.211, 1.796 1.860, 1.513

RMSE EH 1.310, 1.013 1.203, 0.943 1.284, 1.058 2.365, 1.767 1.540, 1.195
RSDAST 2.578,1.802 3.151, 1.624 3.142, 2.606 4.352,3.164 3.306, 2.299
IMA 1.750, 1.470 1.986, 1.597 2.616, 5.090 2.784,2.338 2.284,2.623
Gapfill 2.267,1.795 2.440, 1.931 2.752,2.181 3.026, 2.547 2.621,2.113

MAESs obtained when the EH method was used to fill 20 x 20-
km gaps in daytime and nighttime LST data were, on average,
0.845 °C and 0.584 °C, respectively. These accuracies are
similar to the accuracies obtained for the MOD11 and MYD11
LST products themselves (< 1 °C in most cases [48], [52]).
Furthermore, the EH method significantly outperformed the

three other gapfilling methods for both BTH and PRD. These
results suggest that the EH method performs well over the two
study areas.

The primary reason for the high accuracy of the EH
method is that it uses three kinds of information (spatial
information, temporal information, and information from other
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TABLE IV

ACCURACY OF THE EH METHOD WITHOUT THE USE OF INFORMATION FROM OTHER LST PRODUCTS. THE ACCURACIES OF DAYTIME AND NIGHTTIME
LSTS ARE PLACED AT THE LEFT AND RIGHT, RESPECTIVELY. UNIT: °C

MODI11 MYDI11 MYD21 VNP21 Average

20 x 20 km gaps

MAE BTH 0.764, 0.563 0.929, 0.583 1.094, 0.691 1.301, 0.863 1.022, 0.675
PRD 0.642, 0.502 0.758, 0.609 0.978, 0.844 1.472,1.040 0.963, 0.749
Average 0.703, 0.533 0.844, 0.596 1.036, 0.768 1.387,0.952 0.992,0.712

RMSE BTH 1.142,0.788 1.454, 0.808 1.628,0.977 1.910, 1.186 1.534, 0.940
PRD 0.915, 0.738 1.085, 0.899 1.383,1.303 2.164,1.543 1.387, 1.121
Average 1.029, 0.763 1.270, 0.854 1.506, 1.140 2.037,1.365 1.460, 1.030

150 x 150 km gaps

MAE BTH 1.130, 0.822 1.291, 0.851 1.434,0.958 1.658, 1.182 1.378, 0.953
PRD 0.831, 0.759 0.907, 0.902 1.068, 1.210 1.851, 1.499 1.164, 1.093
Average 0.981, 0.791 1.099, 0.877 1.251, 1.084 1.755, 1.341 1.271,1.023

RMSE BTH 1.675, 1.128 1.989, 1.165 2.141, 1.281 2.400, 1.642 2.051, 1.304
PRD 1.158, 1.085 1.284, 1.295 1.530,1.710 2.641,2.163 1.653,1.563
Average 1.417,1.107 1.637,1.230 1.836, 1.496 2.521,1.903 1.852, 1.434

LST products), while RSDAST, IMA, and Gapfill use only
spatial and temporal information. The accuracy of the EH
method decreased significantly when information from other
LST products was not used (Table IV). For example, when the
20 x 20-km gaps in the daytime and nighttime LST data were
filled without the use of other LST products, the MAEs were,
on average, 0.992 °C and 0.712 °C, respectively (Table IV).
Comparatively, these values were 0.845 °C and 0.584 °C when
other LST products were used (Table II). These results suggest
that the usage of other LST products is the main reason for
the high accuracy of the EH method. This can be explained
by the fact that the four LST products used in this study have
the same or nearly the same monitoring times. Therefore, the
correlations between these products are strong, and the gaps
can be accurately filled when information from other LST
products is used.

In addition to the high accuracy of the EH method, three
main results need to be mentioned. First, the accuracies of
the four methods obtained when filling gaps in daytime LSTs
were generally lower than those obtained when filling gaps in
nighttime LSTs. This is mainly because daytime LSTs are
more variable than are nighttime LSTs [16], which makes
daytime LSTs hard to predict. Second, the accuracies of
the four methods obtained when filling 20 x 20-km gaps
were higher than those obtained when filling 150 x 150-km
gaps. These results were logical since the 150 x 150-km
gaps were filled using information from distant pixels. Third,
the accuracies of the four gapfilling methods obtained when
filling the VNP21 products were generally lower than those
obtained when filling the MODIS products. The reason for this
phenomenon is not clear but may be related to the differences
in the spatial resolutions between the MODIS (1 km) and
VIIRS sensors (750 m). The VNP21 LST product was released
recently and has been used by few studies. More detailed
analyses of this phenomenon should be performed in future
studies.

D. Real Examples

The spatial distributions of the annual mean gapfilled LSTs
in 2018 are presented in Figs. 5 and 6. The regional means
and standard deviations of the annual mean gapfilled LSTs
are shown in Table V. The EH, RSDAST, and IMA methods

were used in this section. The Gapfill method was not selected
because: 1) Gapfill is very time-consuming, especially for
filling large gaps in daily LST products (see Section IV-E)
and 2) Gapfill has a lower accuracy than do other gapfilling
methods (see Section IV-C). The LSTs of the study areas
were strongly dependent on elevation, with higher LST val-
ues in areas with lower elevations. The daytime LSTs of
MYDI11 were generally higher than those of MODI11, while
the nighttime LSTs of MYDI1 were normally lower than
those of MODI11. These differences are primarily because
the observation time of MYDI11 is closer to the time of the
appearance of the highest and lowest LSTs in the diurnal cycle
than the observation time of MODI11 is. In addition, the LSTs
of MYD21 and VNP21 were commonly higher than those of
MYD11, although their monitoring times were the same. This
can be explained by the following: 1) in arid areas, MYD21
and VNP21 corrected the cold bias of the MOD11 and MYDI11
products and 2) in vegetated areas and water surfaces, MYD21
and VNP21 overestimated LSTs, but MODI11 and MYD11
underestimates LSTs [49], [53].

The LSTs filled by RSDAST were generally lower than
those filled using the EH method (Figs. 5 and 6, Table V).
Further analysis showed that this can partly be attributed to
the extremely low values caused by undetected clouds. The
EH method removed these outliers, but the RSDAST method
did not. Additionally, the difference in LST data filled by the
EH and IMA methods was primarily due to the IMA method
generating some outliers when filling the missing LSTs.

Fig. 7 shows the temporal variations in the regional average
LST after gapfilling. The LSTs were higher in summer and
lower in winter. The LSTs filled by RSDAST were lower than
those filled with the EH method on some days because the
EH method removed extremely low LSTs due to undetected
clouds. Additionally, there were some outliers in the LST
curves filled with RSDAST and IMA. For example, the
regional average LST was lower than 0°C on some days in
the warm months. These results suggested that the EH method
was more reliable than RSDAST and IMA in the real example.
In addition, there were more outliers observed in the temporal
variations in LSTs filled with RSDAST and IMA in PRD than
were observed in BTH. This is probably because: 1) the ranges
of LSTs in BTH were larger than those in PRD and 2) the

Authorized licensed use limited to: Wuhan University. Downloaded on July 11,2021 at 14:59:17 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE V
REGIONAL MEANS AND STANDARD DEVIATIONS OF ANNUAL MEAN GAPFILLED LSTS. UNIT: °C
Region Method MODI1 MYDI1 MYD21 VNP21
Daytime
BTH EH 16.82+3.37 18.70+3.59 20.47+4.10 19.64+4.08
RSDAST 16.23£3.18 17.42+3.23 18.20+3.82 18.09+3.97
IMA 16.01+3.08 17.95+3.36 19.1443.93 18.76+3.87
PRD EH 23.68+2.00 25.39+2.22 28.88+2.79 27.12+2.80
RSDAST 23.13+1.84 23.924+2.06 26.3842.56 25.5942.60
IMA 23.95+2.29 24.28+2.22 27.69+3.13 26.514£3.76
Nighttime
BTH EH 4.1243.53 2.87+3.58 4.30+3.89 3.74+3.87
RSDAST 3.64+3.41 2.89+3.63 4.5243.95 3.13£3.69
IMA 3.81+3.43 2.74+3.69 3.99+4.06 3.47+3.78
PRD EH 16.72+1.62 15.93£1.73 17.7542.20 17.1442.28
RSDAST 15.25+1.43 14.90+1.69 16.20+2.13 15.77£2.25
IMA 16.07+1.54 15.48+1.94 17.704£2.59 16.2442.86
() ()
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Fig. 5.

proportions of missing values in the original LST products in
PRD were higher than those in BTH, which makes it more
challenging to fill the gaps in PRD.

E. Calculation Costs

The calculation costs of the four methods are shown in
Table VI. The processing time of the gapfill method was the
highest, followed by the IMA, EH, and RSDAST methods.
The high processing time of the Gapfill method is because the
ranking process is very time-consuming [17], [42]. The high

High: 2°C

||
Low: -2°C

High: 2°C High: 2°C High: 2°C
- - ||
Low: -2°C Low: -2°C Low: -2°C

Spatial distributions of the annual mean gapfilled LSTs in BTH in 2018. (a) EH, (b) RSDAST minus EH, (c) IMA minus EH.

processing time of IMA can be attributed to the usage of the
thin plate spline interpolation method [17]. It should be noted
that the processing time of IMA decreased when the number of
missing values increased. This is because the processing time
of the thin plate spline interpolation method decreased when
the number of missing values increased. The reason for the
higher processing time of the EH method than that of RSDAST
is that: 1) the EH method uses information from other LST
products, while RSDAST does not, and 2) RSDAST uses the
filled LSTs to fill the next gap, while the EH method does not.
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V. DISCUSSION

A. Strengths

The EH method proposed in this study has several advan-
tages, which are summarized as follows. The major advantage
of the EH method is that it has a high accuracy compared with
other gapfilling methods. The reason for the high accuracy of
the EH method is that it can make full use of three kinds
of information (i.e., spatial information, temporal information,
and information from other LST products), while the IMA
and Gapfill methods as well as most previous methods use
only spatiotemporal information. The four LST products used
in this study had similar spatiotemporal characteristics since
their monitoring times were the same or nearly the same.
Therefore, the usage of other similar products can improve
the accuracy of gapfilling. The accuracy of the Gapfill method
was low because it was originally developed to fill gaps in
MODIS normalized difference vegetation index (NDVI) data
[42], although it can be and has been used to fill gaps in
LST data [8], [31]. The rank method in Gapfill works when
filling gaps in NDVI data because images with high NDVIs
generally indicate good atmospheric conditions [54]. However,
this method may not work when filling LST data. The accuracy
of IMA was relatively low because: 1) the calculation of
the mean image has some uncertainties because there are
numerous gaps in the original LST images. 2) To reduce
computing costs, IMA uses a moving window average method
to smooth the anomaly images. The accuracy of RSDAST was
relatively low because this method uses the filled LSTs to fill
the next gap [19]. This causes errors to propagate, especially
for large gaps.
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The EH method can fill all gaps in LST data, even if the
LSTs are missing for the entire study area. This is because the
EH method includes a temporal gapfilling step. In addition,
the input data for the EH method are only the LST data; other
auxiliary data are not required. The four LST data sets used in
the EH method have global coverage and are freely available.
Therefore, this method can be easily applied to any region
of the world, although some modifications may be needed
(e.g., to the outlier detection method). Finally, the EH method
uses spatiotemporal information and other similar products
to fill gaps in LST data. It can also be used to fill gaps in
other satellite data sets that have spatiotemporal coherence
and several similar products (e.g., sea surface temperature,
vegetation index, snow cover, and aerosol optical depth data).

B. Limitations

The EH method proposed in the present study has three
main limitations:

1) The reconstruction of LSTs can be divided into clear-
and cloudy-sky LSTs. Both clear- and cloudy-sky LSTs
are useful for the remote sensing community but have
some limitations. Reconstructed clear-sky LST data
have successfully been used in many research fields
[28]-[32]. In addition, the estimation of clear-sky LSTs
is an important step in some methods for estimat-
ing cloudy-sky LSTs [23], [33], [34]. However, recon-
structed clear-sky LSTs are higher than real LSTs
under cloudy-sky conditions. Reconstructed clear-sky
LSTs cannot be used (or should be modified) in stud-
ies requiring real LSTs and may cause uncertainties
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in some research fields (e.g., estimations of air tem-
perature). Cloudy-sky LSTs are critical for studies of
energy balance and water cycle [26]. However, the
reconstruction of real LSTs under cloudy-sky conditions
can be problematic and model-dependent. The accu-
racy of reconstructed cloudy-sky LSTs is lower than
that of the reconstructed clear-sky LSTs [8], [17]-[21],

[23]-[27]. The same as many previous studies [8],
[17]-[21], [36]-[39], the only purpose of this article is
to reconstruct clear-sky LSTs. The EH method could
not be directly used in studies requiring real LSTs
(e.g., studies estimating sensible and latent heat fluxes
[26]). We are considering reconstructing clear-sky LSTs
in the future. For example, similar to the approach
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TABLE VI

PROCESSING TIMES OF THE FOUR GAPFILLING METHODS. PROPORTIONS
OF VALID PIXELS TO TOTAL PIXELS ARE SHOWN IN BRACKETS.
*INDICATES THAT THE PROCESSING TIME WAS MORE THAN TWO
DAYS. UNIT: SECONDS

EH RSDAST IMA Gapfill
BTH
Removing outliers 66 0 0 0
October 18 (0.851) 14 4 1372 227
October 19 (0.614) 37 6 971 531
October 20 (0.212) 302 12 162 48122
October 21 (0.107) 667 14 63 *
October 22 (0.305) 258 10 371 34404
October 23 (0.996) 2 2 2245 6
October 24 (0.792) 21 4 1460 487
October 25 (0.021) 950 15 21 *
October 26 (0.668) 144 6 896 16959
October 27 (0.925) 6 2 1989 104
October 28 (0.454) 368 9 417 227
Temporal interpolation 4 0 0 0
Total time 2839 84 9967 *
PRD
Removing outliers 111 0 0 0
October 27 (0.843) 25 4 889 761
October 28 (0.902) 47 3 959 2185
October 29 (0.997) 2 2 1295 5
October 30 (0.998) 2 2 1347 3
October 31 (0.691) 95 6 645 3741
November 1 (0.505) 223 8 299 *
November 2 (0.013) 522 15 28 *
November 3 (0.227) 443 11 125 82492
November 4 (0.092) 562 12 59 *
November 5 (0.382) 105 10 412 2687
November 6 (0.528) 154 8 385 10125
November 7 (0.283) 489 11 107 *
Temporal interpolation 5 0 0 0
Total time 2785 92 6550 *

proposed by Zeng et al. [23], we are considering first
reconstructing the clear-sky LSTs for cloudy regions,
and then correcting clear-sky LSTs to the cloudy-sky
LSTs. Additionally, the data—model fusion framework
proposed by Long et al. [35] can be used to generate
LST under all-weather conditions. This new approach
can improve the quality of remote sensing retrievals
and spatial resolution of land surface modeling, without
largely degrading the accuracies of remote sensing and
modeling.

2) The VNP2l LST product is only available from
January 2012 to the present. Therefore, in studies requir-
ing LST data for long time series or in early years, the
VNP21 LST product could not be used, and the EH
method should be modified.

3) The EH method uses four products from the 15 days
following the target date to fill in missing values. This
is a drawback for many real-time applications.

VI. CONCLUSION

In this study, a method called the EH method that integrates
spatiotemporal information and information from other LST
products was proposed to reconstruct clear-sky LSTs. The
accuracy of the EH method was compared with the accuracies
of three spatiotemporal gapfilling methods. In addition, the
performances of the gapfilling methods were evaluated using
real examples. The results are summarized as follows.

The correlations between the LSTs obtained by different
products on the same day were stronger than the correlations
between the LSTs obtained by the same product on two adja-
cent days. In the simulation study, the EH method significantly
outperformed the RSDAST, IMA, and Gapfill methods. The
MAEs of the EH method were, on average, 23.7%-52.7%
lower than those of RSDAST, 35.4%-38.7% lower than those
of IMA, and 38.5%—46.9% lower than those of the Gapfill
method. The high accuracy of the EH method can primarily be
attributed to the usage of information from other LST products.
The EH method also outperformed IMA in real examples. The
LST images filled with RSDAST and IMA had some outliers,
while there were fewer obvious outliers in the LST images
filled with the EH method.

Overall, this study proposed a robust method that can be
used to fill gaps in LST data. Future studies should: 1) use
the EH method to fill gaps in LST data and then use the
gapfilled LST data to investigate the surface urban heat island
effect and develop a spatially continuous air temperature map;
2) analyze the accuracy of using the EH method to fill gaps
in sea surface temperature, vegetation index, snow cover, and
aerosol optical depth data; and 3) test the EH method on more
climate and land cover types.
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