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In this article, we propose a Distance-Weighted Markov Random Field (DwMRF)
for classification of high–spatial resolution imagery. The proposed DwMRF inte-
grates the spectral and spatial information of the image, and better coordinates
the interaction between neighbours and the central pixels than the conven-
tional Equal-weighted MRF (EwMRF). In addition, we propose a Serial Iterated
Conditional Mode (SICM) method for the solution of the Markov Random Field
(MRF) model. Experiments are conducted on three data sets: HYDICE data of
the Mall in Washington, DC, HYMAP data of Purdue University and QuickBird
data of Beijing. We compare the proposed DwMRF approach with other methods:
the EwMRF, Maximum Likelihood Classification (MLC) and a multiresolution
segmentation (Fractal Net Evolution Approach (FNEA)) method. Experiments
show the DwMRF is robust and outperforms the other methods; furthermore,
the proposed SICM method converges more rapidly than conventional Iterated
Conditional Mode (ICM) and provides classification results comparable with the
conventional ICM method.

1. Introduction

Recently, high–spatial resolution remote sensing images have become easy to acquire.
They contain abundant detailed ground information such that complex characteris-
tics of spectral and spatial information can be extracted for classification. However, in
these images different objects may present spectral similarity or the same objects may
have different spectral reflectance. Therefore, the traditional pixel-wise methods based
on spectral information alone are not able to provide satisfactory results. In addi-
tion, the high–spatial resolution images contain abundant spatial information, which
is very useful for identification of objects. Thus, many classifiers using both spectral
and spatial information have been designed. In addition, it has been proved that the
combination of spatial and spectral information in one classifier can improve the clas-
sification accuracy of high-resolution remote sensing images. Some spatial features
are extracted and used for the classification of urban areas on high-resolution multi-
spectral imagery (Huang et al. 2007). Huang et al. (2009) adopted the morphological
texture features for mangrove forest mapping and species discrimination. Some meth-
ods utilize the spatial and spectral features to extract homogeneous objects, which
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can then be used to analyse the images, such as the Fractal Net Evolution Approach
(FNEA) (Baatz and Schäpe 2000) and the adaptive mean-shift method (Huang and
Zhang 2008).

The Markov Random Field (MRF) model plays an important role in the spectral–
spatial classification for high-resolution images. The MRF usually combines with
Bayesian theory used to establish a priori probability (Geman and Geman 1984, Li
1995, 2001). Jackson and Landgrebe (2002) constructed an adaptive Bayesian con-
textual classifier based on MRF; this classifier produces a high-quality classification
map with significantly less pepper-salt noise than the pixel-wise method. In addition,
the MRF model can easily integrate multi-source information (Gamba et al. 2007,
Trianni and Gamba 2007). Tso and Olsen (2005) proposed a contextual classifier
using both IKONOS panchromatic and multispectral data, which incorporates the
multi-scale line features extracted from panchromatic data in the MRF model. This
method improved the accuracy and visual results by avoiding over-smoothing because
of the boundary information. Liu et al. (2005) used multi-temporal high–spatial reso-
lution imagery for monitoring forest disease spread based on the MRF model, which
models the spatial–temporal contextual prior probabilities of multi-temporal imagery.
This method obtained better results than per-pixel, or single-data image classifications.
Trianni and Gamba (2005) proposed a classifier based on the MRF model in urban
areas, which integrates multi-source data including Landsat Thematic Mapper, ERS-1
and ASAR images.

Actually, the MRF is based on the principle that adjacent pixels are more likely to
belong to the same kind of class. According to the first law of geography, close objects
are more related than objects far apart. Therefore, in this study, we propose a Distance-
weighted MRF (DwMRF), where the influences of neighbours for the central pixel are
weighted according to distance.

On the other hand, there have been some methods available to solve the calculation
of MRF, such as the Iterated Conditional Mode (ICM). However, the disadvantage
of the ICM method is that it only reaches the steady state but cannot achieve con-
vergence. Trianni and Gamba (2005) stopped the iterations when the percentage of
changed pixels was smaller than a user specified value. Tso and Olsen (2005) assigned
each pixel to the class with the highest frequency in the iterative process. However,
in this case, when the iterations become steady, the labels of those pixels that do
not achieve convergence will just swing between two classes; hence, it is difficult to
determine the final results (Tso and Olsen 2005). In this context, we propose a Serial
Iterated Conditional Mode (SICM), which allows rapid convergence, and is faster
than the conventional ICM to reach the steady status.

This article is organized as follows. Section 2 introduces the basic theory of the
MRF method, the proposed DwMRF and the SICM method. Experiments and the
analysis of results are described in §3. Finally, conclusions are presented in §4.

2. Methodology

2.1 Classification model based on Markov random field

Here, the MRF classification model based on the Bayesian paradigm is illustrated
simply. Let xi denote the high-resolution image or feature vector with N pixels, and
{i = 1, 2, . . . , N} denote the index of pixels or feature vectors. p, {p = 1, 2, . . . , P} is
the number of dimensions of the image or feature vectors. c = {c1, . . . ck, . . . , cK}
denotes the label level of the image, where {k = 1, 2, . . . , K}, and K is the number of
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classes. Here, the maximum a posteriori (MAP) is used to acquire the labels of image
pixels; for any one pixel x, the formulation is represented as below:

c = arg max p(x|c)p(c). (1)

p(x|c) is the class-conditional distribution, in general modelled on the Gaussian dis-
tribution model; its energy function can be represented as equation (2) for pixel i. For
the labels of any pixel i, the class-conditional distribution just depends on the spectral
value of i; also uspectr(xi, ck) denotes the spectral cost term.

uspectr(xi, ck) = 1
2

ln |2π�k| + 1
2

(xi − μk)T�−1
k (xi − μk), (2)

where μk and �k are the mean vector and covariance matrix of class k with
dimension P, respectively; they can be obtained from training samples. In equation
(1), p(c) is a priori probability distribution of the label layer, and according to the
Hammersley–Clifford theorem (Geman and Geman 1984) and the MRFs-Gibbs the-
orem (Li 2001), the global contextual information of i just depends on the local
neighbourhood of i, denoted by Ni. Therefore, based on the MRF the a priori
probability of the labelling p(c) can be modelled as (Li 2001):

p(c) = 1
Z

exp{−u(c)}, (3)

usp(c(xi)) =
∑
j∈Ni

βI(c(xi), c(xj)), (4)

I(c(xi), c(xj)) =
{ −1 if c(xi) = c(xj)

0 if c(xi) �= c(xj)
, (5)

where c(xi) is the label of pixel i, usp(c(xi)) is called the spatial energy function (or
spatial cost term) of pixel i in the label layer, Z is the normalizing constant, Ni is the
spatial local neighbourhood of pixel i in the label layer and i /∈ Ni, j ∈ Ni. Parameter
β is controlling the strength between neighbourhood j ∈ Ni and the pixel i in the label
layer, which is decided by experience. Therefore, the function (1) can be solved by
equation (6) or equation (7):

U(xi, c(xi)) = arg max(−uspectr(xi, ck) − usp(c(xi))), (6)

U(xi, c(xi)) = arg min(uspectr(xi, ck) + usp(c(xi))). (7)

In general, the ICM method is adopted to solve equation (7) to obtain the classifica-
tion maps (Trianni and Gamba 2005, Tso and Olsen 2005). In this method, the initial
label of the image is obtained by the pixel-wise Maximum Likelihood Classification
(MLC); of course, the initial labels of the image can be acquired by other classifiers.
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2.2 Distance-weighted MRF

In this section, the proposed DwMRF model will be defined in detail. Its basic princi-
ple is that the neighbours of pixels i in the neighbourhood Ni have different influences
on the centre pixel i in the label layer. The proposed method uses the inverse of the
Euclidian distance as the weight of interaction between neighbours and the centre
pixel i.

I(c(xi), c(xj))
j∈Ni

=
{ −wij if c(xi) = c(xj)

0 if c(xi) �= c(xj)
, (8)

where wij is the weight of the interaction between i and j in the label layer. Figure 1
shows the square neighbourhood system of scale 3, i is the centre pixel. Figure 1(a)
shows the neighbours of the pixel i, denotes Ni,j{j = 0, 1, . . . , 7}. Figure 1(b) shows
the weight wij of Ni,j.

However, in order to keep the metric of the spectral cost term and the spatial cost
term, this method redistributes the weight by the reciprocal of the Euclidean distance
as follows:

Wij = wij · J
wall

, (9)

wall =
∑
j∈Ni

wij, (10)

where J is the number of neighbours, wall is the summation of all the weights in the
neighbourhood, J and wall are constant values at a certain scale and Wij is the regular-
ized weight. Therefore, the neighbours near pixel i have stronger influence, and farther
neighbours have a weaker influence. Then, function (8) becomes equation (11), and
the spatial cost term is as follows (12):

I(c(xi), c(xj))
j∈Ni

=
{−Wij if c(xi) = c(xj)

0 if c(xi) �= c(xj)
, (11)

usp(c(xi)) =
∑
j∈Ni

I(c(xi), c(xj)). (12)

Ni,7
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Ni,5

iNi,3 Ni,4
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1 2

1 2 1 1 2

1 2

i1 1

1

(a) (b)

Figure 1. The neighbours of pixel i at 3×3 window (a) and the distance-weighted weights of
neighbours (b).
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Equation (7) is substituted by the function (13), and the parameter β is substi-
tuted by parameter α. Parameter β in function (4) is just to control the interaction
between pair-wise pixels in the neighbourhood of MRF, whereas the parameter α in
function (13) can conveniently control the interrelations between spectral and spatial
energy, where the sum of the weights of spatial and spectral energy is 1.

U(xi, c(xi)) = arg min
c

((1 − α) · uspectr(xi, c(xi)) + α · usp(c(xi))). (13)

Experimental results show that the DwMRF method outperforms the conventional
Equal-weighted MRF (EwMRF; as function (5)). In the EwMRF method, the inter-
action between pair-wise pixels is equal no matter what the distance between them is
in spatial space. The value of parameter α can be obtained from experience; different
scales have different values of α to obtain the optimal result. In general, as the scale
increases, the optimal value of parameter α becomes smaller.

2.3 Serial iterated conditional mode

In general, the ICM method is usually employed to solve equation (13), which can
quickly reach steady state. But the conventional ICM just reaches the steady state;
it cannot reach convergence. In order to achieve convergence quickly, we propose an
SICM method.

The process of the SICM is as follows. Suppose that cl is the labels layer of the lth
iteration result, obtained by the function (13). Figure 2 shows the neighbours of pixel
i in a square neighbourhood system in the label layer in the iteration process, namely,
j, j = 0, 1, . . . , 7. Now, suppose the SICM is implementing the l + 1 th iteration after
the lth iteration and calculating the label of pixel i. Obviously, the pixels that are to
the left and above pixel i, namely, j, j = 0, 1, 2, 3, denoted by Ni,pre, have labels in the
l + 1th iteration, denoted by ci,j,l+1,pre, j = 0, 1, 2, 3. But the pixels that are at the right
and below the pixel i, namely, j, j = 4, 5, 6, 7, denoted by Ni,beh, and pixel i do not
have labels in the l + 1th iteration, having just the labels in the lth iteration result,
denoted by ci,j,l,beh, {j = 4, 5, 6, 7}. And now when calculating the label for pixel i using
the spatial energy term usp(c), the neighbours’ labels of i are ci,j,l+1,pre, j = 0, 1, 2, 3 and
ci,j,l,beh, {j = 4, 5, 6, 7}.

It is obvious that in the proposed SICM method, the current pixel’s label depends
on the previous pixel’s label obtained in the same iteration, so this method is called
the SICM. The conventional ICM is called the Parallel ICM (PICM). The difference
between the SICM and the conventional ICM is that the current pixel’s label depends
on its previous pixel’s label obtained in the current iteration. The convergence of the

ci,0,l+1

ci,3,l+1

ci,1,l+1 ci,2,l+1

ci,4,l

ci,7,lci,6,lci,5,l

i

Figure 2. The neighbourhood of the pixel i at label layer.
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central pixel is affected by its neighbours; therefore, the SICM can reduce the uncer-
tainty of the PICM method and lead to a quick convergence. The initial labels can be
obtained by any classifier.

Experiments show that the SICM method can reach convergence quickly, faster
than the conventional ICM reaches steady state. And the difference between the
classification accuracies is very small or even 0, and can be neglected.

3. Experiment and discussion

To verify the superiority of DwMRF, we compare it with the EwMRF, MLC and the
widely used multiresolution segmentation method (Fractal Net Evolution Approach
(FNEA)) (Baatz and Schäpe 2000). FNEA is the key technique of the well-known
commercial software eCognition, which is an object-based analysis approach. For fair
comparison, Support Vector Machine (SVM) is used to classify the segmented images.

Three high–spatial resolution data sets were employed to validate the proposed
method: the HYDICE Washington, DC, image with 5 m spatial resolution, the
HYMAP Purdue University image and the Beijing QuickBird image with 0.61 m spa-
tial resolution. In experiments, the overall accuracy (OA) and Kappa coefficient (Ka)
are used as the accuracy statistical parameters.

3.1 The Washington, DC, data set

The hyperspectral data set of the Mall, Washington, DC, was obtained by the
HYDICE sensor, which has 210 bands in the 0.4–2.4 µm region of the visible and
infrared spectrum. It retained 191 bands after the removal of the water absorption
bands, and contains 1280 scan rows and 307 columns. This experiment adopts 4 bands
extracted from the 191 bands by Principal Components Analysis (PCA). This data set
has seven classes: roads, grass, water, trails, trees, shadow and roofs. Figure 3(a) shows
one part of the first three principal components of the Washington, DC, data set. It
has complex spectral information, as different classes have similar spectral information
such as roofs, roads and trails, as shown in figure 3(b). Its training and test samples
are listed in table 1.

3.1.1 Distance-weighted MRF. In general, as the scale increases, the spatial cost
increases and the optimal parameter α becomes smaller, as table 2 shows. Experiments
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Figure 3. One part of Washington, DC, data set (a) and the histogram of training samples (b).
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Table 1. Numbers of training and test samples.

Classes Training Test

Roads 110 6147
Grass 111 4622
Water 110 946
Trails 114 2401
Trees 110 5763
Shadow 111 2820
Roofs 111 5331

Table 2. Parameter α and scales of the highest statistical accuracy (OA and Ka) of
DwMRF and EwMRF.

Scale Method α OA (%) Ka

3 EwMRF 0.70 95.01 0.9397
DwMRF 0.65 94.95 0.9390

5 EwMRF 0.30 95.40 0.9445
DwMRF 0.35 95.80 0.9492

7 EwMRF 0.15 95.17 0.9416
DwMRF 0.15 95.29 0.9431

9 EwMRF 0.10 94.83 0.9374
DwMRF 0.10 95.34 0.9436

11 EwMRF 0.10 92.15 0.9048
DwMRF 0.10 93.90 0.9261

show that the appropriate scales are 3, 5, 7, 9 and 11, and the optimal parameter
α of EwMRF and DwMRF are similar at the same scale (table 2). In addition, the
McNemar’s Test (McNemar 1947, Hollander and Wolfe 1999) was used and it was
found that the DwMRF was significantly better than EwMRF when both got the best
results. In table 2, the p-values are less than 0.00002, with the significance level being
0.05.

Both EwMRF and DwMRF obtained better results than the pixel-wise MLC and
FNEA+SVM as shown in figure 4. The OA (Ka) of DwMRF and EwMRF are
95.51% (0.9457) and 94.12% (0.9288). The OA (Ka) of MLC is 81.57% (0.8255).
Figure 4(b) shows the best results of FNEA with SVM: OA = 85.76% and Ka =
0.8282.

In MLC and FNEA+SVM (figure 4(a) and (b)), some shadows are misclassified
as water, and roofs as trails. And there are many speckle errors in MLC. Although
the grass and trails are well-extracted by the FNEA+SVM, some shadows and roads
are wider than their actual values and many roofs are misclassified as roads. It is
interesting to see that those errors were all corrected in both DwMRF and EwMRF
(figure 4(c) and (d)), and the DwMRF are even better. For example, trails in the mid-
dle of the maps and some shadows were removed in EwMRF, but DwMRF identified
them effectively.

Figure 5 shows that when α increases, the accuracies of DwMRF are always
greater than those of EwMRF and the differences between DwMRF and EwMRF
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(a)

(c)

(b)

(d)

Roads Grass Water Trails Trees Shadow Roofs

Figure 4. Classification maps of one part of Washington, DC, data set. (a) MLC,
(b) FENA+SVM, S = 10, sw = 0.2, cw = 0.5, (c) DwMRF and (d) EwMRF with scale = 5,
α = 0.4.

are increasing. The classification maps in different scales presented in figure 6 further
demonstrate the advantages of the DwMRF compared with EwMRF.

3.1.2 Multiscale distance-weighted Markov random field. To further prove the
performance of DwMRF, we propose to use the multiscale distance-weighted
(MDwMRF) classifier in this section. This method fuses two or three scales of
DwMRF, as the spectral cost is the same in different scales of DwMRF for 1 pixel.
Therefore, the multiscale information is fused in the decision level according to the
spatial cost of each single scale DwMRF:

us,sp(c) = us,sp(c)
J(s)

, (14)

c(xi) = arg min
s,s = 1,2,. . .,S

(us,sp(c(xi))), (15)
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Figure 5. The OA of DwMRF and EwMRF at scales (a) 5, (b) 7, (c) 9 and (d) 11.

where scale s, s = 1, 2, . . . S, is the number of the scales, J(s) is the number of neigh-
bourhoods in the scale s, us,sp(c(xi)) denotes the spatial cost in the scale s and
us,sp(c(xi)) is the normalized spatial cost for pixel i. The label of i can be decided
according to equation (15), which comes from one of the single scale DwMRF classes
where the normalized spatial cost is the minimum.

In figure 7(a), both MDwMRF and MEwMRF considered three scales (3, 5 and 7).
In figure 7(b), scales 5 and 9 were fused. It is obvious that MDwMRF outperforms
MEwMRF.

3.1.3 Serial iterated conditional mode. The experiments with the SICM and PICM
methods are based on the DwMRF method. Table 3 shows the numbers of pixels that
do not converge after the PICM reaches steady states, which are denoted as uncertain
pixels. As the scale increases, the general trend in the numbers of uncertain pixels
is decreasing with the same parameter α. Experiments proved that as the iteration
continues after the PICM reaches the steady state, the labels of uncertain pixels will
swing between two fixed classes.

Figure 8 shows the iterations of SICM and PICM of DwMRF at scales 3, 5, 7 and
9. The iterations of SICM are those which DwMRF needs to reach convergence, and
the PICM iterations are the minimal iterations for the DwMRF to reach the steady
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I. (a) (b) (c)

(b) (c)II. (a)

(b) (c)III. (a)

(b) (c)IV. (a)

Roads Grass Water Trails Trees Shadow Roofs

Figure 6. I–IV: (a) Four parts of Washington, DC, data set and the corresponding classifica-
tion maps of (b) DwMRF and (c) EwMRF. I and II, scale = 5, α = 0.4; III, scale = 7, α = 0.3;
and IV, scale = 9, α = 0.4.
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Table 3. The numbers of uncertain pixels of PICM after they reached the steady state
in EwMRF.

α Scale = 3 Scale = 5 Scale = 7 Scale = 9 Scale = 11

0.1 29 44 34 28 16
0.2 114 83 79 38 21
0.3 250 160 80 48 29
0.4 362 150 92 62 44
0.5 592 195 93 70 33
0.6 880 194 96 61 38
0.7 1274 323 90 36 19
0.8 1797 343 119 34 19
0.9 2473 297 99 40 12

state. Besides, in the method of DwMRF, each sub-process of iteration of the PICM
and SICM takes the same period of time, denoted as unit time, which is related to the
size of the remote sensing data set and computer hardware. Figure 8 shows that the
iterations of the SICM are almost always less than those of PICM at any scale. And
the difference between them becomes larger with increasing parameter α and scales.
When the parameter α is relatively large, the iterations of PICM are about twice that
of SICM, or even more.
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Figure 8. The iterations of SICM and PICM of DwMRF at scales (a) 3, (b) 5, (c) 7 and (d) 9.
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SICM can produce as good results as PICM; table 4 proves that the accuracy statis-
tics of SICM and PICM are similar or even the same, but with many fewer iteration
steps.

3.2 The Purdue University data set

The hyperspectral data set of Purdue University, obtained by the HYMAP sensor,
has 126 bands in the visible and infrared spectrum and is also of high-spatial resolu-
tion. This experiment adopts just four features extracted from the 126 bands by PCA.
Figure 9(a) shows one part of the data set, which contains six classes: roads, grass,
shadow, bare land, trees and roofs. It has complex spectral information in that differ-
ent classes have similar spectral information such as roofs, roads and trails, and the
same class has different spectral information such as roads and roofs, as shown in
figure 9. This data set contains 377 scan rows and 512 columns; its training and test
samples are listed in table 5.

3.2.1 Distance-weighted MRF. Table 6 shows that the optimal parameter α becomes
smaller with increasing scale, and the optimal parameter α of EwMRF and DwMRF
are similar at the same scale. Also, experiments proved that the appropriate scales are
3, 5, 7, 9 and 11. Once again, in order to verify whether DwMRF is significantly better
than EwMRF when both obtain their best results (table 6), the McNemar’s test was
used. The p-values at different scales is lower than 0.0002, indicating that the DwMRF
is significantly better than the EwMRF.

Figure 10 shows the best results of FNEA+SVM, DwMRF, EwMRF (table 6) and
MLC. The OA (Ka) of MLC and FNEA+SVM are 86.58% (0.8255) and 80.28%
(0.7421), respectively. In figure 10(a) and (b), grass sketched out by the blue oval boxes
are misclassified as trees; roads sketched out by the black rectangle are misclassified
as roofs; some bare land is polluted by pixels that are misclassified as roads. Besides,
in FNEA+SVM (figure 10(b)), there are many grass areas that are misclassified as
bare land, and areas of roofs and shadows are bigger than in reality. However, both
DwMRF and EwMRF rectified them to a certain extent, and DwMRF was better
than EwMRF. For example, roofs sketched out by the yellow rectangular box are lost
in the EwMRF but well maintained in DwMRF.

Figure 11(a) shows that the OA values of DwMRF are higher than those of
EwMRF after they reach the best OA at scale 5. However, the OA value of DwMRF
is always higher than EwMRF in the larger scales 7, 9 and 11. Figure 11 shows that
the average difference of OA is increasing from scale 5 to scale 11.

The classification map also proves that DwMRF outperforms EwMRF, as shown
in figure 12. Figure 12(a) presents the first three principal components of four prin-
cipal component features extracted from original images by PCA. Four roofs are
misclassified by EwMRF as roads in figure 12I(c); the grass in the middle of road
and some roofs are also smoothed out by EwMRF in figure 12II(c). However, they
are all preserved by the DwMRF to some extent (figure 12(b)).

3.2.2 Multiscale distance-weighed Markov random field. Figure 13 shows that the
OA of MDwMRF is higher than MEwMRF, especially the combination of scales 5
and 9. This experiment proves that DwMRF outperforms the EwMRF method, not
only with the single scales but also with multiscales.
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Figure 9. One part of Purdue University data set (a) and the histogram of training samples (b).

Table 5. Numbers of training and test samples.

Classes Training Test

Roads 53 3812
Grass 53 4726
Shadow 53 900
Bares 37 344
Trees 49 2517
Roofs 53 4775

Table 6. Parameter α and scales of the highest statistical accuracy (OA and Ka) of
DwMRF and EwMRF.

Scale Method α OA (%) Ka

3 EwMRF 0.85 93.04 0.9095
DwMRF 0.85 92.87 0.9074

5 EwMRF 0.50 93.47 0.9152
DwMRF 0.55 93.77 0.9175

7 EwMRF 0.35 92.88 0.9075
DwMRF 0.30 93.45 0.9149

9 EwMRF 0.15 91.67 0.8918
DwMRF 0.25 92.96 0.9085

11 EwMRF 0.10 90.34 0.8744
DwMRF 0.10 92.07 0.8970

3.2.3 Serial iterated conditional model. Table 7 shows the number of uncertain pix-
els. Figure 14 shows the iterations of SICM and PICM. In general, as the scales and
the parameter α increase, the difference in iterations is larger between SICM and
PICM. Therefore, it is obvious that the method of SICM has the advantage of speed
of calculation compared with the PICM method.

Table 8 shows that the OA and Ka of SICM and PICM are almost equal, except
when the parameter α equals 0.8 and 0.9 at scales 7, 9 and 11. Experiments with the
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(a) (b)

(c)

Roads Grass Shadow Bares Trees Roofs

(d)

Figure 10. Classification maps of Purdue University data set. (a) MLC, (b) FNEA+SVM
S = 5, sw = 0.2, cm = 0.5, (c) DwMRF, scale = 5, α = 0.55 and (d) EwMRF, scale = 5, α = 0.50.

Purdue University data set also prove that SICM outperforms PICM in the speed of
computing and can also deliver results as good as PICM.

3.3 The Beijing data set

Figure 15(a) shows the high–spatial resolution data set of Beijing obtained by
QuickBird. It consists of three multispectral bands (RGB) with 0.61 m resolution.
Because roofs and roads used the same material, they have a similar spectrum and
are difficult to distinguish, as shown in figure 15(b). The numbers of training and test
samples are shown in table 9.
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Figure 11. The OA of DwMRF and EwMRF at scales (a) 5, (b) 7, (c) 9 and (d) 11.

I. (a) (b) (c)

II. (a) (b) (c)

Roads Grass Shadow Bares Trees Roofs

Figure 12. I–II: (a) Two parts of Purdue university data set and the corresponding classifica-
tion maps of (b) DwMRF and (c) EwMRF with scale = 7, α = 0.5.

3.3.1 Distance-weighted MRF (DwMRF). Table 10 shows the optimal parameter α

of EwMRF and DwMRF is similar or even the same at the same scale, and the OA
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Figure 14. The iterations of SICM and PICM of DwMRF at scales (a) 3, (b) 5, (c) 7 and (d) 9.

and Ka of DwMRF are higher than EwMRF. The p-values of the McNemar’s test
is less than 0.00007, which proves that DwMRF is significantly better than EwMRF
when both deliver their best results (table 10).
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Table 7. The numbers of uncertain pixels of the PICM after they reached the steady
state in the DwMRF.

α Scale = 3 Scale = 5 Scale = 7 Scale = 9 Scale = 11

0.1 26 31 28 24 8
0.2 88 80 54 28 37
0.3 176 129 64 59 12
0.4 311 157 84 34 23
0.5 493 170 77 43 34
0.6 656 196 86 48 25
0.7 942 262 84 24 29
0.8 1422 265 95 40 15
0.9 2210 265 77 32 3

The best results of DwMRF and EwMRF at scale 5 (table 10) are much better
than those of MLC and FNEA+SVM in figure 16. The OA (Ka) of the MLC and
FNEA+ SVM are 65.30% (0.5700) and 74.10% (0.6708), and about 24.24% (0.2903)
and 15.44% (0.1895) lower than DwMRF. DwMRF shows a slight improvement com-
pared with EwMRF. Compared with DwMRF and EwMRF (figure 16(c) and (d)),
there are too many roofs misclassified as roads in MLC (figure 16(a)). In FNEA+SVM
(figure 16(b)), too many roofs are misclassified as bare land, and there are many
misclassified points in the lower-right corner.

Figure 17(a) and (b) show the OA of DwMRF slightly lower than that of EwMRF
before they achieve their best results. However, after they reached the optimal α, the
OA of DwMRF is higher than that of EwMRF. At scales 9 and 11 (figure 17(c)
and (d)), the OA of DwMRF is always higher than that of EwMRF. Figure 18
shows the classification map of DwMRF (OA = 83.46%, Ka = 0.7770) and EwMRF
(OA = 76.66%, Ka = 0.6836) with the same scale 5 and parameter α of 0.6. It can be
seen that some road and shadow were smoothed out in EwMRF. However, all were
retained well in the DwMRF.

3.3.2 Multiscale distance-weighted Markov random filed. Compared with EwMRF,
the advantages of DwMRF are still obvious in the multiscale MRF method. In the
multiscale 3, 5 and 7 (figure 19(a)), the improvement of MDwMRF is obvious com-
pared with MEwMRF. In multiscale 5 and 9, the MDwMRF is always higher than
the MEwMRF (figure 19(b)).

3.3.3 Serial iterated conditional model (SICM). Table 11 shows that the general
trend of the number of uncertain pixels is decreasing with the increase of scale.
Figure 20 shows that the iterations of both PICM and SICM increase with the increase
of scales and parameters α; and the iterations of PICM are about twice that of SICM,
or even more.

The improved method SICM is not only much faster than the PICM in comput-
ing speed but can also reach convergence, and can obtain results as good as PICM.
Table 12 shows that the OA and Ka both of SICM and PICM in the DwMRF method
are similar and the differences between them are very small.
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Figure 15. One part of Beijing data set (a) and the histogram of training samples (b).

Table 9. Numbers of training and test samples.

Classes Training Test

Roads 44 2322
Grass 37 933
Water 37 547
Bares 43 1396
Trees 41 4644
Shadow 41 9677
Roofs 40 10 286

Table 10. Parameter α and the scale of the highest statistical accuracy (OA and Ka) of
DwMRF and EwMRF.

Scale Method α OA (%) Ka

3 EwMRF 0.65 82.10 0.7690
DwMRF 0.7 82.53 0.7745

5 EwMRF 0.3 88.70 0.8500
DwMRF 0.4 89.54 0.8603

7 EwMRF 0.15 87.89 0.8378
DwMRF 0.15 88.74 0.8502

9 EwMRF 0.1 83.88 0.7872
DwMRF 0.1 87.61 0.8338

11 EwMRF 0.1 71.93 0.6154
DwMRF 0.1 79.16 0.7170
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(b)(a)

(d)(c)

Roads Grass Water Bares Trees Shadow Roofs

Figure 16. Classification maps of Beijing data set. (a) MLC, (b) FNEA+SVM, S = 30,
sw = 0.3, cw = 0.5, (c) DwMRF, scale = 5, α = 0.4 and (d) EwMRF, scale = 5, α = 0.3.

4. Conclusions

Experiments show that the DwMRF obviously outperforms MLC and FNEA+SVM.
Also proved is that the proposed DwMRF is more robust than the con-
ventional EwMRF. Especially when the scale increases, the advantages of the
proposed method become more prominent because DwMRF well coordinates
the interaction between neighbours and the centre pixels. It can be seen that
DwMRF could well maintain the integrity of objects, avoiding the displace-
ment or smoothing out by EwMRF, especially with narrow objects. Experiments
also proved that the advantages of DwMRF are more prominent when adopting
multiscale.

In addition, experiments proved that the SICM can achieve convergence faster
than the conventional ICM (PICM), and the results obtained from the SICM are
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Figure 17. The OA of DwMRF and EwMRF of Beijing data set at scales (a) 5, (b) 7, (c) 9 and
(d) 11.

(a) (b)

Roads Grass Water Bares Trees Shadow Roofs

Figure 18. Classification maps of (a) DwMRF and (b) EwMRF at scale = 5 and α = 0.6.
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Figure 19. The OA of MDwMRF and MEwMRF at scales (a) 3, 5, 7 and (b) 5 and 9.

Table 11. The numbers of uncertain pixels of the PICM after they reached the steady
state in the DwMRF.

α Scale = 3 Scale = 5 Scale = 7 Scale = 9 Scale = 11

0.1 481 192 111 28 11
0.2 999 270 61 18 11
0.3 1604 245 58 10 9
0.4 2129 303 54 20 2
0.5 2673 249 39 18 10
0.6 3256 228 38 10 6
0.7 3806 198 0.29 8 4
0.8 4414 161 56 13 7
0.9 5005 192 74 17 8

comparable with the conventional ICM. It was also proved that it is meaningless
to continue the iterations after PICM reaches its steady state, because the labels of
uncertain pixels will then swing between two classes.

Experiments show that different scales have different optimal values for the param-
eter α, and in general, as scale increases, the optimal value of α is decreasing.
However, the shortcoming is that as the parameter α increases after reaching the best
result, the accuracies of DwMRF (also EwMRF) are low, especially when both scale
and the parameter α are large, though DwMRF is much better than EwMRF. That
is because when both scale and α are very large, spatial information plays a greater
role than spectral information, leading to spatial information dominating the clas-
sifier, which easily leads to misclassification. Therefore, further work will focus on
automatic selection of the scale and parameter α and will attempt to design a more
stable classifier that is not sensitive to the parameters, especially the parameter of
scale.
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Figure 20. The iterations of SICM and PICM of DwMRF at scales (a) 5, (b) 7, (c) 9 and
(d) 11.
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